
1

End-To-End Message Encryption for Tinder
Katie Ho, Akhil Nistala, Kevin Tu

MIT CSAIL, {ksho, anistala, kevintu}@mit.edu
Professor Ron Rivest

May 11, 2016

ABSTRACT

Users of dating apps often share sensitive personal
information on the app’s messaging system. Because
this information is often personally identifying, mes-
sage security and therefore user identity protection is
of utmost importance. For Tinder, a rapidly growing
dating start-up, this message security is largely absent.
Therefore, we propose an end-to-end messaging en-
cryption scheme that provides message security and
gives Tinder the ””backdoor” ability to access and
read any messages if necessary. At a high level, the
suggested implementation puts the onus on Tinder to
facilitate the generation and distribution of keys to all
users, but then maintains a hands-off third party role in
the end-to-end messaging unless legally or otherwise
required to investigate messages.

1. INTRODUCTION

Tinder is a rapidly growing location-based dating
startup that aims to bring people–often strangers–
together via a mutual opt-in system. Users create an
account on Tinder linked to their personal Facebook. A
Tinder profile contains self-selected images from Face-
book, a short written bio, location data relative to the
viewing party, and a list of mutual Facebook friends.
A user is shown other Tinder profiles sequentially. At
each profile the user is forced to make a decision,
”LIKE”, indicating they’d like to connect with the
person, or ”NOPE,” indicating the opposite, before they
can view another profile. If two users ”LIKE” each
other, they can begin a private conversation with each
other on the app.

Tinder has seen incredible growth since its founding
in 2012. As of late 2015 Tinder was approaching 50
million users [1], with well over 10 million daily active
users [2]. Tinder self-reported a daily average of 26
million matches per day, totaling 10 billion matches
overall throughout its 4 years [3].

The app provides this service to a significant num-
ber of users, which requires it to maintain nontrivial

amounts of messaging information. Because the ap-
plication encourages meetups, people often share sen-
sitive personal information via the app, including but
not limited to their phone numbers and addresses. For
this reason, Tinder requested that our team develop and
propose a more secure messaging encryption scheme.
We had multiple objectives: (1) to increase the user
protection provided by the app, (2) to provide Tinder
with a backdoor to access and read any messages
if necessary, and (3) to prevent users who have un-
matched from accessing their previous conversation.

2. CURRENT IMPLEMENTATION

Tinder currently uses a fairly minimal Data at Rest
encryption scheme for their users’ messages. This
encryption exists only at Tinder’s servers, where all
the messaging data is stored. While the identity of
the parties and users of the message exchange is
authenticated by Transport Layer Security (TLS), the
messages transmitted are sent in plaintext. This makes
the TLS records vulnerable to various attacks.

Fig. 1. Messages sent between users pass through Tinder’s servers,
where they are stored using KMS. Currently, only TLS guarantees
authentication - messages are otherwise unencrypted.

In Tinder’s messaging model, Tinder acts as a
middleman who listens in on all communications–all
messages between users are first sent to Tinder, where
the information is stored at the servers. The messages
are then sent from the Tinder server to the receiving



2

user. Encrypted versions of the messages are stored
in Tinder’s databases. Tinder then uses Amazon Web
Services (AWS) Key Management Service (KMS) to
encrypt and store the keys. The encrypted messages
and the encrypted key are stored together so that Tinder
can decrypt the messages on demand.

The messaging between Tinder and its users is
secured via TLS. In the current implementation, this
only ensures that the two communicating parties are
authentic-the user is communicating with the real
Tinder and vice versa. Following the successful TLS
handshake, the users can communicate with Tinder
under the TLS record protocol. However, in Tinder’s
implementation, protocol messages are unencrypted
plaintext messages and are therefore susceptible to
attack by adversaries.

3. DESIGN GOALS & CONSIDERATIONS

At a high level, our project was to design an end-
to-end message encryption scheme that allows for a
backdoor. We broke this down into five design goals.
These goals summarize our main considerations when
designing the encryption scheme.

a) Messages between ”matched” users A and B
should be encrypted while in transit and on their
devices: This design goal is in line with the basic defi-
nition of an end-to-end encryption scheme. Encrypting
messages on users’ devices and also while in transit
ensures that only the people communicating (matched
Tinder users) can read the messages.

b) When users A and B ”unmatch,” neither
should be able to decrypt their conversation, even
locally cached copies: This design goal ensures that
users cannot see conversations from matches that no
longer exist. The idea behind this is that it will prevent
or at least dissuade users from using old messages to
blackmail or threaten each other. We ignored many
edge-cases when considering this design goal, since the
threat model is simply too vast. For example, malicious
users can simply screenshot conversations before a
match becomes nonexistent, or use a jailbroken device
to access locally cached copies.

c) Tinder should always be able to decrypt mes-
sages, even after two users have unmatched: This
design goal falls in line with the ”backdoor” of our
encryption scheme. Being able to decrypt messages
even after users unmatch is critical when responding
to user complaints or requests from law enforcement.

d) The encryption scheme should be imple-
mentable on a node.js platform running on AWS:
This design goal simply ensures that the encryption
scheme is compatible with Tinder’s current framework
and guarantees backward compatibility.

e) The encryption scheme should be fast and
scalable: This design goal ensures that the encryption
scheme doesn’t lead to a decrease in quality of Tinder’s
main product. There should be a zero or negligible
increase in message latency. The scheme must be
scalable to accommodate the millions of current Tinder
users.

4. PROPOSED ENCRYPTION SCHEME

Our proposed encryption scheme can be broken
down into several subcategories which make it easier to
describe - key generation, key distribution, behavior on
match and on unmatch, message passing, and message
storage. These aspects of our encryption scheme are
described in detail below, as well as some miscella-
neous points that should be taken into consideration.

Some terminology used in this section may be
confusing – following are some definitions to act as
clarifications.

• User - A person using the Tinder application
• Client - The Tinder application code on a users

device. A user interacts with the Tinder applica-
tion, whereas the client interacts with the Tinder
server.

Fig. 2. Tinder will generate a random secret and public key for
all users, which it is responsible for distributing. It also maintains a
copy of both keys along with a user ID in its own secure database.

4.1 Key Generation

The main Tinder server generates a unique (public
key, secret key) pair for each user. These keys will
be generated on account creation for new users. For
existing users, these keys will be generated on demand
as the new encryption scheme is rolled out. Tinder
stores each users secret key (SK) using Amazons



3

Key Management Service (KMS). This process can be
summarized through the steps given below.

1) The Tinder server generates a KX = (PK, SK)
pair for user X

2) The server encrypts KX with a special Tinder
encryption key KT to produce K = E(KX , KT )

3) Amazon KMS essentially stores an encrypted
copy of each users (PK, SK) pair, as well as
an encrypted copy of the key that was used to
encrypt the (PK, SK) pair.

4.2 Key Distribution

Each user acquires his/her (public key, secret key)
pair from the Tinder server using Shamir’s Three-Pass
Protocol. We assume that communicating over TLS
and using an appropriate certificate authority will help
the Tinder server and user authenticate each others
identity. Each user will acquire his/her key through the
following sequence of events:

1) Existing user updates Tinder app OR new user
installs Tinder app.

2) User authenticates him/herself by logging into
Tinder with Facebook.

3) Users client sends request to Tinder server to
generate unique (public key, secret key) pair.

4) Client and Tinder both create random keys to
communicate with each other.

5) Users client pulls this (public key, secret key)
pair from the server using Shamir’s Three-Pass
Protocol.

Using Shamir’s Three Pass Protocol ensures that the
key exchange is secure against eavesdroppers without
having to previously agree on any shared key. Due
to the computational and communication requirements
required, we chose not to use this encryption for mes-
saging. However, because each party can communicate
securely without overhead, this protocol is appropriate
for exchanging keys. This allows the users to transfer
to symmetric encryption, which performs significantly
better than asymmetric encryption.

Tinder will tentatively roll out this encryption
scheme as an app update. Future users will download
the updated version of the app and will be all set to go
with the new encryption scheme. However, there may
be many existing users who either don’t update the
app or take a considerable time to do so. One way to
approach this problem is to give existing users some
leeway time, perhaps a few weeks to a few months,
during which they can continue to use the app as is.
However, users who fail to update their app within this
time will be removed from the Tinder recommendation
system until they use the new encryption system.

4.3 Behavior on Match

For each new Tinder match, a Diffie-Hellman key
exchange is initiated between the two users’ clients
to establish a shared secret key. The users learn each
other’s public keys when they swipe right on each other
– e.g. user A’s client stores user B’s public key when
A swipes right on B. A’s client then stores this public
key along with a timestamp in a local cache. Public
keys that are more than two weeks old (indicating that
no match has occurred in that time) will be cleared.

Each user then uses his/her own secret key along
with with the other user’s public key to generate the
shared secret key. This results in a unique secret key for
this match, which Tinder can learn on-demand when
necessitated, since Tinder maintains a record of all
secret keys in their user-key database.

We decided to use a Diffie-Hellman key exchange
for our encryption scheme as it is secure, simple to
follow, and already has a JavaScript implementation
that is compatible with Tinder’s existing framework.

4.4 Message Passing

Once two users match and their clients have estab-
lished a shared secret key, they can exchange messages
using the Advanced Encryption Standard (AES). We
have decided to use AES for message encryption for
several reasons; the most pertinent ones are listed
below:

1) AES handles variable message length
2) AES is highly performant
3) AES already has an existing JavaScript imple-

mentation

Handling variable message length is obviously a
key consideration as messages in Tinder conversations
definitely fall into this category. Furthermore, high per-
formance is critical to the design goal of having a fast
and scalable encryption scheme. Finally, the existing
JavaScript implementation of AES is compatible with
Tinders node.js framework, which is a huge bonus.

4.5 Message Storage

Message storage is handled in a similar manner
to key storage. A special Tinder encryption key KT
(different than the one used for key storage) is used
to encrypt all messages passed between users. The
encrypted message is then stored using Amazon KMS
along with an encrypted copy of the encryption key.
This aspect of the message encryption scheme mirrors
the current Data at Rest encryption used by Tinder.



4

4.6 Behavior on Unmatch
This part of the design can be best explained through

an example. Suppose that, for whatever reason, user
A unmatches user B. A’s client will first delete all
messages with B from the Tinder app. A’s client will
then tell the Tinder server (through an API call) of this
unmatch. The Tinder server then makes an API call of
its own, signalling B’s client of this unmatch. The next
time B uses the app, B’s client will delete all messages
with A from the app. Both A’s and B’s clients will also
delete any locally cached copies of their conversation.

The Tinder server then blocks any attempts at further
communication from either A or B – this isn’t done
through a key ’revocation’ but rather just by preventing
any sent messages from reaching their destination.
From a UI standpoint, neither A nor B can see a
conversation window from this recent unmatch, which
also prevents any further messages from being sent.

4.7 Miscellaneous Points
In addition to the encryption scheme discussed so

far, we are presenting Tinder with a few additional
recommendations that are in line with our design goals.

The Tinder client app currently caches all conver-
sations. This results in good user experience, but at
the slight expense of security. For example, if user A
unmatches user B and B’s phone is in airplane mode,
then B will be able to see the entire conversation until
reconnecting to the network.

Fig. 3. One suggestion to accomplish pseudo-ephemeral message
access is to reduce the number of messages cached on the phone.
Instead, require users to ping the server in order to access previous
messages.

A solution to this is to only locally store the previous
10 messages or so messages per conversation on each

client. This solution gives the benefit that adversaries
will only be able to access very few messages on an
unmatched conversation. However, a drawback to this
solution is that there will be increased latency to load
the rest of any conversation, as each load will require
an API call to the Tinder server.

We give this recommendation with the caveat that
10 is an arbitrary number, and thorough testing should
be done to determine the optimal number.

Another feature that we recommend is allowing
users to opt-in to an additional passcode or touch-ID
verification for messages. This augments security in
the case that a user’s phone is stolen by an adversary
who knows the phone’s main passcode.

5. ANALYSIS

In this section we use several different metrics
to evaluate our proposed encryption scheme and use
calculations to justify our design decisions. We address
concerns regarding both the scalability of the system
and the speed of the system.

5.1 Scalability

While most of this paper has been focused on mes-
sages sent between two individual users, it is important
to remember that Tinder is a service used widely across
the world. Our proposed framework will need to scale
seamlessly to connect users who may be located at
very different geographies and many users all in close
proximity.

Based on Tinders current and projected usage, we
have determined that on average between 0 and 10,000
messages are being sent every second (range purpose-
fully widened to mask sensitive information). At this
load, Tinders servers that store messages and doubly
encrypt the keys using Amazons Key Management
Service are sufficient for processing and storing every
message that is sent. Now considering this load within
our proposed implementation, Tinder would not need
to exercise any additional computation or processing
power on the server side to store messages. All en-
cryption and decryption is done on the client side,
distributing the work and helping ensure a bottleneck
does not occur on the servers. Instead of storing
plaintext messages, Tinder servers will now simply
store encrypted messages. The only additional storage
required would be for tracking the secret keys of each
user, something that could be run on a separate ma-
chine with minimal impact on scalability. In summary,
due to the nature of our encryption system, Tinder will
remain scalable as it continues to grow its user base.



5

5.2 Timing Analysis

One of the primary design goals of our encryption
system was to ensure that it was fast and high
performing. To validate our proposed framework
we conducted a careful analysis of the impact this
additional encryption and decryption would have
compared to Tinders pre-existing framework. For
the purposes of this timing analysis, we ignore the
one-time setup costs of generating and distributing
public and secret keys. This procedure will be
implemented to take place when a user first signs
up or installs the update, making the additional
time required to complete these tasks negligible.
Furthermore, our system will have no additional
impact on the unmatch process or the server-side
message storage process (as described in Section 6.1),
since the underlying processes are not affected by
the end-to-end encryption. To asses the impact of
encryption and decryption has on the speed of our
system we consider two scenarios:

5.2.1 On Match Timing Analysis: When a match
occurs, the two parties engage in a Diffie-Hellman
key exchange. The way we designed the app to work,
when a user is looking at recommended matches,
they would have direct access to each persons public
key, which would be embedded in each individuals
profile. On a match, it is trivial for a user to calculate
the shared secret key for that pairing by making
one exponentiation with their private key and the
public key of the matched user. This operation takes a
negligible amount of time, and therefore the additional
step in the matching process does not impact the
overall performance of Tinder.

5.2.2 Message Passing Timing Analysis: The only
portion of our system that has a notable impact on
performance is the actual message passing process.
By using AES as our encryption protocol, a well
tested industry standard, we are able to estimate the
approximate effect on speed. Assuming that a normal
message consists of a couple hundred characters, our
research and calculations indicate that the encryption
and decryption process would take at most a few
milliseconds. Furthermore, the decryption process can
be run in parallel due to the structure of AES, allowing
for even faster speeds. From that point, the encrypted
message is passed over TLS to the Tinder servers in
the same way that it currently is. Therefore, the net
difference in overall performance due to our changes
is on the order of a few milliseconds, a worthwhile
tradeoff to achieve true message security.

6. FINDINGS

We had several insights and findings from designing
this message encryption scheme for Tinder, which
we’ve summarized below.

We don’t believe we can prevent the visibility of
messages by an active adversary who has previously
had access to the messages. As a result, we focused
our efforts on an end-to-end encryption scheme with a
backdoor, rather than on client side revocation (which
prevents unmatched users from seeing previous con-
versations).

We came to this conclusion based off the vast threat
model – adversaries can screenshot or even write
down entire conversations; they can keep the ciphertext
and their decryption key (which allows for reading
conversations even after an unmatch); etc. Given this
threat model, we firmly believe that it is not worth it
to invest in a client/server model that prioritizes client
side revocation over system performance.

However, this being said, it is still a good idea to
have an encryption scheme for locally stored mes-
sages that satisfies some basic criteria. The encryption
scheme should be simple to implement (not many
developer hours) and shouldn’t affect system perfor-
mance (message latency should be about the same as
before).

7. FUTURE WORK

We have demonstrated that our proposed end-to-end
message encryption scheme satisfies the original design
considerations and is highly performant in standard use
cases. There are additional components to the project
that our team plans to explore further, including (1)
empirical validation of performance thresholds and (2)
filtering and searching encrypted messages.

As mentioned in Section 4.7, our design balances se-
curity and latency by minimizing the number of cached
messages on a clients phone. This decision makes it
infeasible for a client to, upon an unmatch, manipulate
or retain a substantial number of cached messages
from the old conversation. The corresponding tradeoff
in performance is that retrieving old messages would
require additional server calls, increasing latency. A
next step for this project includes determining what
the optimal number of messages to cache on a clients
phone is, based on this tradeoff. This would require
running extensive tests with varying thresholds of
messages and examining at the resulting latency that
users see. Based on the results of these tests we would
be able to determine an exact threshold that best aligns
with our design goals.



6

Our proposed message passing scheme stores the
encrypted messages on Tinder servers in the case that
the messages need to be revisited by legal authorities.
However since the messages are encrypted, it becomes
extremely difficult to filter, sort, or quickly search
through the data. Tinder may want to read and classify
messages that are flagged by users to improve their
bot recognition and spam prevention features. Our team
plans to investigate encryption schemes that may allow
for searching and sorting without fully decrypting the
entire database, which would compromise the security
of the overall system. Research in this field conducted
by Microsoft Research and Boston University (insert
citation) explores potential abstractions that could meet
this requirement. While this specific consideration was
outside the original scope of the project, we hope to
continue to develop this idea and empower Tinder to
be able to interact with messages in this manner.

8. CONCLUSION
This paper demonstrated an encryption scheme that

can greatly improve the current implementation that
Tinder employs. The combination of key distribution
and added layers of encryption and decryption ensure
data integrity for messages while still allowing Tinder
to have a means to read messages if necessary. Through
a rigorous design process we were able to meet all
requirements and considerations that the system needed
to follow, without significant impacts to scalability and
speed. After analyzing the viability of the framework
under different scenarios, we strongly recommend that
Tinder adapt this end-to-end encryption scheme as a
compelling improvement to their current messaging
system.

9. ACKNOWLEDGMENTS
This paper was made possible by the support and

guidance of the Tinder Security Team. In particular,
we would like to thank Anthony Trummer, Shiv Patel,
and Alex Segal for their technical insights and time
spent working alongside us. Additionally, Professor
Ron Rivest and Conner Fromknecht were integral to
the development of this project and we thank them for
their design recommendations.

REFERENCES

[1] Giuliano, Karissa. ”Tinder Is Swiping Right on
Monetization.” CNBC. 02 Mar. 2015. Web. 18 Mar. 2016.
¡http://www.cnbc.com/2015/03/02/-monetization.html¿.

[2] Margalit, Liraz. ”Tinder And Evolutionary Psychology.”
TechCrunch. 27 Sept. 2014. Web. 18 Mar. 2016.
¡http://techcrunch.com/2014/09/27/tinder-and-evolutionary-
psychology/?ncid=rss¿.

[3] Tinder. ”Tinder.” Tinder. 2016. Web. 18 Mar. 2016.
¡https://www.gotinder.com/press¿.

[4] Baldimtsi, F. & Ohrimenko, O. (2015). Sorting and Searching
Behind the Curtain.

[5] Chatterjee, A. & Sengupta, I. (2015). Searching and Sorting of
Fully Homomorphic Encrypted Data on Cloud.


