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Abstract—An interesting and desirable encryption property
is homomorphism. A homomorphic encryption scheme is a
cryptographic system that allows computation to be executed
directly on encrypted data. Homomorphic computation could
include a wide series of operations such as addition, multi-
plication, and quadratic functions. The most powerful class
of such schemes is described as fully homomorphic. A fully
homomorphic encryption scheme is an encryption scheme that
supports arbitrary computation on encrypted data.

Several partially homomorphic encryption schemes have been
developed that support limited operations, such as addition or
multiplication. Although these schemes perform relatively well in
practice, they have few applications due to their restricted set of
operations. Conversely, there exist fully homomorphic encryption
schemes that support both addition and multiplication, but run
rather slowly in practice. Consequently, homomorphic encryption
has found few applications in real world systems, despite its
potential to offer confidentiality in a ubiquitous technology: cloud
computing.

Cloud computing has the potential to be one the most expan-
sive applications of homomorphic encryption. Unfortunately, it
requires a fully homomorphic cryptosystem that performs well
in practice. In the interest of this application, we have developed
a new fully homomorphic cryptosystem. Our setting strays from
the traditional encryption setting in that our primary function
is not messaging. In fact, our scheme does not need to support
encrypted messaging at all, though it will utilize it. We propose a
fully homomorphic encryption scheme under a weakened model,
in which the encrypting party is also the decrypting party. The
cryptosystem is built on multiparty computation. In particular,
we are weakening the traditional homomorphic encryption model
as follows. Plaintext messages will be encrypted using multiple
keys in a secret sharing mechanism, so that only parties that
know every key can decrypt a ciphertext. Our system offers
computation on ciphertext by allowing parties with any key to
perform some restricted operations. In order for a full operation
to be executed, an analogous operation needs to be executed with
each key. The encryption and operation methods are inspired
by one time pads and symbolic execution. The cryptosystem is
inspired by Shamir’s secret sharing construction and multiparty
computation.

I. INTRODUCTION

Encryption is primarily used as a means to keep data
confidential and integrous while sharing it with another party.
Several such encryption schemes exist, but most of them are
only concerned with read and write operations. In particular,
common encryption schemes such as padded RSA encryption
and encryption through Diffie-Hellman key exchange are only
designed to allow parties to encrypt data when trying to
write or send messages, and decrypt data when trying to
read or receive messages [14] [15]. This is sufficient for
simple applications such as sending messages and storing data,
but more complex applications could benefit from modify
operations that could be applied to encrypted data.

Such encryption schemes are called homomorphic. Specifi-
cally, homomorphic encryption schemes support direct compu-

tation on ciphertexts, without revealing any information about
the underlying plaintext. Given a homomorphic encryption
scheme, a client could run computational tasks using encrypted
inputs on an untrusted server without sacrificing confidential-
ity. There is a wide range of applications for homomorphic
encryption schemes such as anonymous voting, confidential
medical device algorithms, and cloud computing.

Partially homomorphic schemes are encryption schemes
that support operation on ciphertexts, but do not support
arbitrary computation on ciphertexts. There currently exist
several partially homomorphic encryption schemes. Most of
these schemes only support either addition or multiplication.
Such encryption schemes tend to perform well in practice. Un-
fortunately, their computational restrictions limit their potential
applications.

Fully homomorphic encryption schemes are schemes that
support arbitrary computation on ciphertexts. Fully homomor-
phic encryption schemes are better suited for real world appli-
cations, because they support arbitrary computation. However,
the few existing fully homomorphic encryption schemes run
too slowly to support any practical applications.

We propose a fully homomorphic encryption scheme built
on multiparty computation. We have designed this scheme
with cloud computing as the potential application in mind.
In particular, the system described in the following sections is
designed to support arbitrary operations over the integers in a
way that places most of the computational load on the servers.
Furthermore, note that our proposed encryption scheme does
not support messaging between parties, but instead focuses
on providing a client the ability to perform computation on
untrusted servers.

II. PREVIOUS WORK

Several partially homomorphic encryption schemes have
been developed already. Some example of multiplicative ho-
momorphic encryption schemes are unpadded RSA encryption
and the ElGamal cryptosystem. Similarly, the Goldwasser-
Micali cryptosystem, the Benaloh cryptosystem, and the Pail-
lier cryptosystem are all examples of additive homomorphic
encryption schemes. Implementations of these schemes have
even performed well enough to find applications in systems
today, such as anonymous voting systems [5]. There also exist
some fully homomorphic encryption schemes, but they have
yet to be applied to real world systems in an time-efficient
manner.

We examined all of the encryption schemes listed above,
and even implemented the ElGamal and Paillier cryptosystems.
The following subsections discuss a few of the homomor-
phic encryption schemes that we studied before trying to
develop our own scheme. Studying these schemes revealed
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several components and attributes that are essential to any
homomorphic encryption scheme. In particular, the following
sections will summarize four components of each scheme:
key generation, encryption, homomorphic computation, and
decryption. Additionally, we will analyze how confidentiality
is maintained in each scheme.

A. Unpadded RSA

Key Generation: A party begins key generation by ran-
domly selecting two prime integers p and q.

p
$←− P

q
$←− P

The party then computes n and φ(n) as follows.

n = p · q
φ(n) = (p− 1) · (q − 1)

Finally, the party randomly selects an positive integer e in
the less than φ(n) that is coprime with φ(n), and computes
its modular multiplicative inverse.

e
$←− Z+

n | gcd(e, phi(n)) = 1

d = e−1 (mod φ(n))

Ultimately, the party’s public key is (n, e), and its private
key is (n, d) [14].

Encryption: A message m can be encrypted under a party’s
RSA public key (n, e) as follows [14].

ε(m) = me (mod n)

Homomorphic Computation: The RSA algorithm’s multi-
plicative homomorphic property is built on the power of a
product property. In particular, encrypting two messages m1

and m2 would produce the following ciphertexts.

ε(m1) = me
1 (mod n)

ε(m2) = me
2 (mod n)

It follows that the product of these ciphertexts can be
derived as follows.

ε(m1) · ε(m2) (mod n)

me
1 ·me

2 (mod n)

By the power of a product property, it is clear that encrypt-
ing the product of m1 and m2 produces a ciphertext equivalent
to the product of ε(m1) and ε(m2).

ε(m1 ·m2) = (m1 ·m2)
e (mod n)

ε(m1 ·m2) = me
1 ·me

2 (mod n)

ε(m1 ·m2) = ε(m1) · ε(m2) (mod n)

This shows that unpadded RSA encryption satisfies the
multiplicative homomorphic property.

Decryption: A party can decrypt a message encrypted under
its public key (n, e) using its corresponding private key (n, d)
as follows.

m = ε(m)d (mod n)

m = med (mod n)

m = m (mod n)

The correctness of the decrypted output follows from the
fact that d and e are inverses in n’s multiplicative group,
implying that e · d = 1 (mod n) [14].

Confidentiality: Unfortunately, unpadded RSA encryption
does not satisfy confidentiality to a high degree. It is vul-
nerable to both chosen ciphertext attacks and chosen plaintext
attacks. The vulnerability to chosen plaintext attacks is obvious
from the fact that the encryption scheme is deterministic.
Adversaries could easily distinguish between the encryption of
two known plaintexts by encrypting the plaintext themselves.
Worse yet, if the message space is too small, adversaries
could simply brute force search the set of messages and
build a rainbow table. Unpadded RSA really only satisfies
confidentiality in the case where the message space is too large
to search, and plaintexts are selected in a uniform distribution
to make repeats unlikely. This weaker degree of confidentiality
is enforced by the difficulty of prime factorization [16], which
is used to prevent an adversary from compromising a party’s
private key.

B. ElGamal

Key Generation: Under the ElGamal encryption scheme, a
party generates a public key (G, q, g, h) and private key x by
the following procedure. First, the party selects an cyclic group
G of order q with generator g. The party can then randomly
select its private key x.

x
$←− Z+

q

Next, the party can compute the last component of its public
key, h.

h = gx

Finally, the party can publish G, q, g, h) as its public key
and retain x as its private key [1].

Encryption: A message m can be encrypted under an
ElGamal public key as follows. First, the encrypting party
randomly selects some integer y less than q, and uses it to
compute the first part of the ciphertext, c1.

y
$←− Z+

q

c1 = gy
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The encrypting party can then compute a secret to be shared
with the decrypting party using the decrypting party’s public
key. The shared secret is used to encrypt the plaintext m and
compute the second part of the ciphertext, c2.

s = hy

c2 = m · s

Lastly, the encrypting party’s ciphertext is compiled as
follows [1]

ε(m) = (c1, c2)

Homomorphic Computation: The multiplicative homomor-
phic property of the ElGamal cryptosystem is built on product
of powers property. To demonstrate this, consider that encrypt-
ing two messages m1 and m2 would produce the following
ciphertexts.

ε(m1) = (gy1 ,m1 · hy1)
ε(m2) = (gy2 ,m2 · hy2)

It follows that the product of these tuple ciphertexts can be
derived as follows.

ε(m1) · ε(m2)

(gy1 ,m1 · hy1) · (gy2 ,m2 · hy2)
(gy1+y2 ,m1 ·m2 · hy1+y2)

Note that this exactly equivalent to encrypting m1 · m2

with a y3, where y3 = y1 + y2. This implies that
ε(m1 · m2) = ε(m1) · ε(m2), and shows that the ElGamal
cryptosystem satisfies the multiplicative homomorphic
property.

Decryption: A party can decrypt a ciphertext (c1, c2) en-
crypted under its public key (G, q, g, h) by using its corre-
sponding private key as follows. The correctness of the shared
secret is built on the power of a power property. In particular,
the decrypting party must begin by computing the shared
secret from the ciphertext as follows.

s = cx1

s = gxy

s = hy

As shown above, the decrypting party will always compute
the same shared secret computed by the encrypting party, by
the power of a power property. Next, the decrypting party can
use the shared secret to recover the plaintext from the second
part of the ciphertext.

m = c2 · s−1

m = m · s · s−1

m = m

Finally, because the shared secret can always be correctly
computed, the correct plaintext can always be recovered from
the ciphertext [1].

Confidentiality: ElGamal does manage to offer stronger
confidentiality guarantees than unpadded RSA. In particular,
ElGamal is secure against chosen plaintext attacks. This is
achieved because of the randomized shared secret selection.
By selecting a new secret key for each message, encrypting
parties ensure that plaintexts do not always produce the same
ciphertexts. This prevents an adversary from listening for
repeated messages, or even from being able to distinguish the
encryption of any two plaintexts. Note though that ElGamal
is still vulnerable to chosen ciphertext attacks due to its
malleability. Ultimately, ElGamal offers IND-CPA security by
encrypting plaintexts with randomly selected shared secrets.
The confidentiality of the shared secrets follows from the
difficulty of the discrete logarithm problem [16].

C. Paillier

Key Generation: A party begins key generation by ran-
domly selecting two large prime integers p and q, such that
pq and (p− 1)(q − 1) are coprime.

p
$←− P

q
$←− P

s.t. gcd(pq, (p− 1)(q − 1)) = 1

Next, the party computes the values n and λ, to be used in
its public and private keys as follows.

n = pq

λ = lcm(p− 1, q − 1)

Finally, the party randomly selects a random integer g in
the multiplicative group of n2, and calculates a carefully
constructed modular multiplicative inverse µ.

g
$←− Z∗n2

µ =
(gλ mod n2)− 1

n

−1

(mod n)

The party’s public key can then be published as (n, g), and
its private key can be retained as (λ, µ) [4].

Encryption: A plaintext m can be encrypted under a party’s
Paillier public key (n, g) using a randomly selected integer r
as follows [4].

r
$←− Z∗n

ε(m) = gm · rn mod n2
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Homomorphic Computation: To demonstrate the additive
homomorphic property of the Paillier cryptosystem, consider
that encrypting two plaintexts m1 and m2 would produce the
following ciphertexts.

ε(m1) = gm1 · rn1 mod n2

ε(m2) = gm2 · rn2 mod n2

It follows that the product of these ciphertexts can be
derived as follows.

ε(m1) · ε(m2) (mod n2)

gm1 · rn1 · gm2 · rn2 (mod n2)

pm1+m2 · (r1 · r2)n (mod n2)

Note that this is exactly equivalent to encrypting
m1 + m2 with an r3 = r1 · r2. This implies that
ε(m1 + m2) = ε(m1) · ε(m2), and that the ElGamal
cryptosystem satisfies the additive homomorphic property.

Decryption: A party can decrypt a ciphertext encrypted
under its public key (n, g) by using its corresponding private
key as follows.

m =
ε(m)λ mod n2 − 1

n
· µ (mod n)

Correctness follows from the fact that µ was selected to
be the aforementioned modular multiplicative inverse, and
that λ is the least common multiple of p − 1 and q − 1. In
particular, µ and λ cancel out all variables in the expression
above except for m [4].

Confidentiality: Much like ElGamal, Paillier is secure
against chosen plaintext attacks. This is achieved because
of the randomized selection of g, and consequently µ. By
selecting a new secret µ for each message, encrypting par-
ties ensure that plaintexts do not always produce the same
ciphertexts. This prevents an adversary from listening for
repeated messages, or even from being able to distinguish the
encryption of any two plaintexts. Note though that Paillier
is still vulnerable to chosen ciphertext attacks due to its
malleability. Ultimately, Paillier offers IND-CPA security by
encrypting plaintexts with randomly selected shared secrets.
The confidentiality of µ is protected by the confidentiality of
λ, which follows from the difficulty of the discrete logarithm
problem [16].

D. Fully Homomorphic Encryption Schemes

Several fully homomorphic encryption schemes have been
developed and implemented. The first proposed fully homo-
morphic cryptosystem, developed by Craig Gentry, was based
on ideal lattices [6]. Unfortunately, the first implementation
of the scheme took about 30 seconds to execute a single bit
operation [7].

Soon after, several new techniques and schemes were de-
veloped to offer more efficient fully homomorphic encryption.

In particular, between 2011 and 2013, the Brakerski-Gentry-
Vaikuntanathan cryptosystem [8], Brakerski’s scale-invariant
cryptosystem [9], the NTRU-based cryptosystem [10], and
the Gentry-Sahai-Waters cryptosystem [11] all emerged in at-
tempts to develop efficient fully homomorphic cryptosystems.

The technical details of these cryptosystems are beyond
the scope of this project, but we will briefly mention
that the Brakerski-Gentry-Vaikuntanathan cryptosystem, Brak-
erski’s scale-invariant cryptosystem, and the Gentry-Sahai-
Waters cryptosystem are all based on the learning with errors
problem [8] [9] [11], which is conjectured to be computa-
tionally hard machine learning problem [12]. The NTRU-
based cryptosystem is based on lattice-based cryptography and
multiparty computation [10].

Different implementations of these new schemes have
emerged since their development, but none of them have
proven to be efficient enough for arbitrary cloud computing.
HElib, one of the more popular fully homomorphic imple-
mentation, is an open source implementation of the Brakerski-
Gentry-Vaikuntanathan cryptosystem. In our experience, even
this implementation took about 2-5 seconds per operation,
which is still much too slow for general cloud computing.
Even still, each of the aforementioned schemes is interesting in
its confidentiality guarantees and its supported homomorphic
properties.

III. THREAT MODEL

Our system has a weaker threat model than typical homo-
morphic encryption schemes. We use two servers to compute
homomorphically, and we assume that an adversary controls at
most one of them. We also assume that the client and servers
have a secure method of sending data between each other.
Furthermore, note that our scheme is not designed to support
secure communication between parties. In our model, only one
party ever sees the plaintexts. Since our main focus is on cloud
computing, it is fair to expect that the encrypting party and
decrypting party are always the same.

Three goals in security are to provide confidentiality, in-
tegrity, and availability. However, our system only seeks to
provide confidentiality. Homomorphic encryption can never
provide integrity, as the point is to allow meaningful manipula-
tion of ciphertexts. Additionally, our scheme can not provide
availability, since both servers are required to compute, and
the adversary could control one of them.

We give a game based definition for providing confidential-
ity, modeled after IND-CCA2 [18]. A description follows.
• The adversary has access to the entire system, both

servers and the client. It can compute any function any
inputs it likes using the system.

• The adversary selects a function f and two inputs arrays
i and j.

• The adversary chooses one of the servers to control
during computation.

• The client randomly selects one of the input arrays, and
computes f on it homomorphically.

• After the client’s computation is completed, the adversary
can again access the entire system and compute any sets
of inputs on it, including i and j
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Fig. 1. Client sending keys to the primary and decryption servers.

• The adversary guesses which of i and j the client
computed on homomorphically. If he guesses correctly
with greater than 50% probability, he wins the game.

We choose this threat model because it provides a very
strong requirement for confidentiality. After the design section,
Section IV, we will prove that our system satisfies these
criteria.

IV. SYSTEM DESIGN

Our system contains a single client and two servers. The
client has an input vector ~m = [m0, ...,mx−1], and a function
f , which takes in an input vector of length x, and outputs a
vector of length y. The client wants to be able to compute
f(~m) homomorphically.

Of the two servers, the first is called the primary server.
This server will be responsible for actually performing ho-
momorphic computation on input from the client. The second
server is the decryption server. This server is responsible for
simplifying the output from the primary server.

A. Key Generation

The client starts by picking a number n that defines the
message space and key space Zn. The client then generates
two random pad vectors, one corresponding to the input vector
~m and one corresponding to the homomorphic output vector
f(~m). The pad vector ~a corresponding to the input vector ~m
can be defined as follows.

~a = [a0, ..., ax−1]

Each pad ai is randomly selected from Zn. Similarly, the
pad vector ~b corresponding to the output vector f(~m) can
be defined as follows.

~b = [b0, ..., by−1]

Each bi is again randomly selected from Zn.
After generating the two pad vectors, the client then sends ~a

to the decryption server, and ~b to the primary server for future
computation. Figure 1 depicts the client distributing keys.

Fig. 2. Encrypted values sent between client and servers

B. Encryption

Our system uses a simple encryption scheme, based on the
One Time Pad [19]. In this scheme, we encrypt all values
modulo n, a public value which the client chose during the key
generation phase. To encrypt a value d, we start by picking
a random value r ∈ Zn. The encryption is then E(d, r) =
d + r mod n. To encrypt an array in this scheme, we start
by generating a random pad array that the same length as the
input vector. The encrypted array is the pairwise sum of the
input and random pad vectors modulo n.

To encrypt the input array, the client uses the described
encryption scheme to compute ~C = E(~m,~a). The client
then sends ~C to the primary server. After performing its
computation, the primary server will send an output array
encrypted under both ~a and ~b to the decryption server. The
decryption server will then use its secret key array ~a to
simplify the output. The result is an output array encrypted
under ~b. Finally, the result is returned to the client. Note
that the primary server only sees the input and output arrays
encrypted under a, and the decryption server only sees the
output array encrypted under b. A diagram of these interactions
can be found in Figure 2.

C. Homomorphic Computation

When the primary server receives the ciphertext vector ~C
from the client, it computes f on the ciphertext, storing the
offset between the encrypted and decrypted results.

The key insight here is that we can use symbolic execution
to compute f on ~m to generate a result in terms of ~a and
the unencrypted output of the function. Each term on the
primary server is stored as a 〈value, offset〉 pair. The value
is the actual ciphertext values for that term. The offset is an
algebraic expression in terms of ~a such that the unencrypted
value of that term can be computed by subtracting the offset
from the value after plugging in for ~a.

When the primary server first receives the ciphertext vector
~C from the client, the terms on the server will each have
an offset of a single element of ~a. Specifically, since ~C =
~m+ ~a mod n, each term will have the form:
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〈Ci,ai〉

We can see here that subtracting the offset from each of
these terms will yield the corresponding term of the input
vector.

Now that the primary server has initial offsets from the
client, it can perform computations on the terms, propagating
the offsets such that the relationship between value, offset, and
the decrypted result is preserved. Below, we will discuss how
terms can be both added and multiplied while preserving off-
set. These two operations are sufficient for fully homomorphic
encryption [20]. As such, the primary server can use these two
operations to compute f on the ciphertext.

1) Adding Terms: To add terms, we simply add the offsets
of the respective terms. Specifically, if we let

t1 = 〈v1,o1〉, t2 = 〈v2,o2〉

Then we can add the terms to get

t1 + t2 = 〈v1 + v2,o1 + o2〉

Such that subtracting the offsets produces the result of the
unencrypted computation, as desired.

2) Multiplying Terms: Multiplying terms is slightly more
complicated, and requires multiplying the values and offsets
together. Again, we define:

t1 = 〈v1,o1〉, t2 = 〈v2,o2〉

And then

t1 · t2 = 〈v1 · v2,o2 · v1 + o1 · v2 − o1 · o2〉

We derive this quantity by realizing that the underlying
plaintext result will be:

(v1 − o1) · (v2 − o2)

Furthermore, the value of the resulting term will be v1 · v2,
so we want to find an offset such that

v1 · v2 − offset = (v1 − o1) · (v2 − o2)

We can expand this equation to get

v1 · v2 − offset = v1 · v2 − o1 · v2 − o2 · v1 + o1 · o2

Which simplified yields

offset = o1 · v2 + o2 · v1 − o1 · o2

Which is the desired result. Hence, multiplying terms while
propagating the offset in this manner will preserve the under-
lying plaintext values.

D. Decryption

After the primary server has finished computing f on the
ciphertext ~C, it will end with an output vector ~u where each
element is a term: 〈ui,v,ui,o〉. It then encrypts the values from
~u under ~b to get a new encrypted vector E(~u,~b) where each
element in E(~u,~b) is of the form 〈ui,v+bi mod n,ui,o〉. The
primary server then sends E(~u,~b) to the decryption server.

The decryption server uses ~a from the client to simplify
the offsets given by the primary computation server. Each of
the offsets in E(~u,~b) will only be in terms of ~a, and hence
the decryption server can simplify the offset to a numerical
value, and subtract it from the current the current value on
the term. After this is complete, E(~u,~b) will have all of the
offset terms be 0. The decryption server will then send this
simplified result to the client.

When the client gets this result, they can determine the
unencrypted result by simply subtracting ~b from the values
in E(~u,~b). This will be the unencrypted result of the homo-
morphic computation.

E. Further Improvements

There are many optimizations that can be made to our
scheme to improve both security and speed.

1) Offset Removing: The size of the offsets in each term in
the primary computation server can grow exponentially in the
size of the program, bounded exponentially by the the number
of inputs x. If x is small, the maximum size of the offsets in
a term will be as well, and our system will run quickly. Note
that the system can still take large inputs by increasing n, the
size of each input.

It may be the case that x is too large to perform computation
on the primary server. If this is the case, the primary server can
use a technique called offset removing to reduce the amount
of computation needed. In this technique, when the offsets of
the terms on the primary server get too large, the primary
server encrypts the terms under ~b and sends them to the
decryption server. The decryption server then simplifies the
offsets of the terms to a single value each. Then, the primary
computation server can start computing again with offsets back
to a single value. The decryption server stores the new single
value offsets for either the next time this technique is used, or
for decryption.

Determining when to use offset removing is implementation
dependent. Each call will require a back and forth of the net-
work, during which the primary server will not be computing.

2) Parallelized Decryption: This technique is related to
offset removing. It provides faster computation by simplifying
offsets as fast as possible, but increases network overhead.

Here, the primary encryption server repeatedly sends offset
removing calls to the decryption server in parallel with its
computation. The realization here is that the primary server
does not have to wait for the decryption server to finish
the offset removing calls in order to be able to continue
computation. However, the primary server can only have one
outstanding offset removing request at a time.

Therefore, the primary server will constantly be sending a
offset removing call to the decryption server in parallel with
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Fig. 3. Encrypted values send between client and servers with the Hiding
Servers optimization

the computation it is doing. Each time it gets a response from
an offset removing call, it simply sends another. This technique
will keep very small offsets on the primary server, and will
not hurt computation time since it is parallelized. However, it
will drastically increase network overhead.

3) Hiding Servers: The current system assumes that both
the primary and decryption servers know each others’ iden-
tities and can talk to each other. However, it is possible to
implement our system such that the servers are not aware of
each other. This technique is at odds with offset removing and
parallelized decryption, as those in conjunction with hiding
servers would require the client to perform lots of work
during the computation. Even without those optimizations, this
technique requires the client to perform a small amount of
extra work.

To implement this, the client has data that would be routed
directly between the primary and computation server routed
through itself instead. Rather than giving the primary server
the ID of the decryption server, the client instead has the
primary server send it the result of the computation. Then,
the client directly passes the result to the decryption server to
simplify the offset. This is shown in Figure 3.

This improvement makes it challenging for an adversary to
control both servers. Assuming the adversary controls one of
the servers, he can not then determine the other server to take
control of it. This improvement will not protect against traffic
analysis, where the adversary can look at the client’s packets
to determine which servers they are sending to. However, to
protect against this attack, the client can route data through
Tor or a similar system [17].

4) Additional Servers: Another way of increasing security
for this system is to use many servers, rather than just two,
such that the adversary would still need to control each
server to reveal the client data. This would drastically increase
security by increasing the number of servers that need to be
controlled by an adversary in order to access client data.

We have not yet come up with a scheme to implement this
improvement. It is one of the areas in which we would like to
improve our system.

5) Additional Function Methods: In Section IV-C we saw
how add and multiply are implemented in our system. This
is sufficient to provide fully homomorphic encryption, but
provides an inconvenient interface for programmers. It is
possible to easily also support adding and multiplying by
constants. Here, the new value of the term is just the updated
value from the constant, and the offset remains the same. It is
also possible to use control statements with constant inputs,
such as a for loop in the range (0, 100). This can drastically
reduce the size of programs, but providing convenience for the
programmer and reducing the amount of data sent from the
client to the primary server.

V. PROOF OF SECURITY

To prove security of our system, we want to show that
for any server the adversary can control, the inputs to that
server can correspond to any plaintext with equal probability.
Therefore, the adversary’s initial probability distribution over
possible inputs ~m will be the same as his probability distribu-
tion after seeing the computation.

We break the proof down into two sections, one where
the adversary controls the primary server, and one where the
adversary controls the decryption server.

One of our assumptions stated above is that the client and
servers are using a secure and authenticated encryption scheme
to communicate, such that the adversary can learn nothing
from watching the network. As such, the only data that the
adversary sees will be the data that is directly sent to the
server it controls.

For this proof, it doesn’t matter that the adversary can
control the whole system in the sections of the game before
and after the stage where the client computes on the randomly
selected input. If we can show that all the input that the
adversary sees during this computation can correspond to any
plaintext with equal probability, then he will not be able to
distinguish the plaintext that was selected.

A. Adversary Controls Primary Server
In this case, the input the adversary receives is the ciphertext

~C = E(~m,~a) from the client. They also receive the vector ~b
from the client. We want to show that any plaintext ~m can be
underlying these values with equal probability. From there,

First, we note that ~b has no relation to m, and therefore
gives no information about ~m.

We want to show that the adversary gains no knowledge
by seeing ~C = E(~m,~a). We can do this as follows. First, we
show that any ciphertext ~C is equally likely. For each element
in ~C:

Pr[C = c] =
∑
m′∈Zn

Pr[C = c|M = m′] · Pr[M = m′]

Pr[C = c] =
∑
m′∈Zn

Pr[a = c−m′] · Pr[M = m′]

Pr[C = c] =
∑
m′∈Zn

1

n
· Pr[M = m′]

Pr[C = c] =
1

n
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Then, we can use Bayes’ Rule to show that the adversary
gains no knowledge about the message from seeing a cipher-
text.

Pr[M = m|C = c] =
Pr[C = c|M = m] · Pr[M = m]

Pr[C = c]

Pr[M = m|C = c] =
Pr[a = c−m] · Pr[M = m]

1
n

Pr[M = m|C = c] =
1
n · Pr[M = m]

1
n

Pr[M = m|C = c] = Pr[M = m]

Since the adversary gains no knowledge about the underly-
ing message from the information he receives, he will not be
able to guess which message the client is computing on over
50% of the time. Therefore, he will not be able to win the
game.

B. Adversary Controls Decryption Server

In this case, the adversary receives the encrypted result ~E =
E(~u,~b) from the primary server. It also receives the pad vector
~a from the client. We note here that knowing the values of ~u
and ~m are equivalent for the adversary. Therefore, we will
show that the adversary can not determine ~u, and therefore
can not determine ~m.

First, we note that ~a is independent of ~u, and therefore gives
the adversary no information about ~u.

We want to show that the adversary gains no knowledge
about ~u by observing a given set of values from ~E. We start
by showing that each value of ~E is equally likely given a value
for ~u. For each element in ~E:

Pr[E = e] =
∑
u′∈Zn

Pr[E = e|U = u′] · Pr[U = u′]

Pr[E = e] =
∑
u′∈Zn

Pr[b = c−m′] · Pr[U = u′]

Pr[E = e] =
∑
u′∈Zn

1

n
· Pr[U = u′]

Pr[E = e] =
1

n
Now, we can use this to show that the adversary gains no

information about ~u from seeing ~E. For each element in ~u:

Pr[U = u|E = e] =
Pr[E = e|U = u] · Pr[U = u]

Pr[E = e]

Pr[U = u|E = e] =
Pr[b = e− u] · Pr[U = u]

1
n

Pr[U = u|E = e] =
1
n · Pr[U = u]

1
n

Pr[U = u|E = e] = Pr[U = u]

Therefore, the adversary will gain no information about
~u. Therefore, since ~E is the only piece of information the
adversary has that relates to ~m, the adversary will not be able
to determine any information about ~m, and will lose the game.

VI. CONCLUSION

Homomorphic encryption has many potential applications,
most notably cloud computing. Unfortunately, no fully homo-
morphic encryption schemes have performed well enough in
practice to be applied in this field. Our scheme relaxes the
security model of homomorphic encryption, allowing for two
computing servers, and assuming that an adversary controls
at most one of them. Furthermore, our proposed encryption
scheme is not concerned with securing communications across
parties. A single client is both the encrypting party and the
decrypting party. These relaxed assumptions allow us to build
a fully homomorphic encryption scheme that uses far simpler
encryption than previous schemes.

While our system provides many benefits over previous
fully homomorphic schemes, it does have drawbacks. First,
the current design only uses two servers, which is less secure
than if many servers were used. While we suspect that our
scheme can be extended to include many servers, we have not
yet found such an extension. Additionally, symbolic execution
on the offsets is the main bottleneck for our system. Assuming
a large number of inputs, the size of the symbolic execution
the servers perform can scale exponentially with the depth of
the circuit. While we have many optimizations to reduce this
workload, they come at the cost of anonymity between the
servers. We hope in the future to devise a scheme that does
not require this trade off.

We have designed our system to satisfy confidentiality,
while allowing a client to dispatch arbitrary computation to
two servers. By focusing solely on the cloud computing ap-
plication, we believe we have developed a simpler alternative
to current fully homomorphic cryptosystems. Furthermore,
we believe that our scheme could perform reasonably well
if it were implemented using highly parallelized symbolic
execution.
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