
Apollo

A secure, anonymized voting system using the Paillier cryptosystem

Varun Mohan, Rahul Sridhar, Lawrence Sun, Kevin Zhu

{vmohan, rsridhar, sunl, kevinzhu}@mit.edu

6.857 Project Report

May 11, 2016



1 Introduction

With the growing number of problems with traditional voting methods, there has been mounting theoretical
interest in leveraging cryptography to run end-to-end verifiable elections [1, 15]. At the same time, voters
have expressed rising interest in Internet-based voting schemes due to the almost unparalleled ease of access
provided by such a service [13]. However, numerous challenges must be overcome before web-based voting
can become a reality: voter coercion, malware, DDoS attacks, are all very real problems that have the
potential to cast complete doubt on the outcome of an election [14].

Although such problems make Internet voting unsuitable for presidential elections, it may be appropriate for
use in elections with lower stakes, such as MIT’s elections for positions in the Undergraduate Association.
While the possibility of a targeted, malicious actor is low, basic guarantees about vote anonymity and election
integrity are still useful in convincing candidates and voters to trust the outcome of the election.

In recent years, a small number of end-to-end verifiable voting systems have been created. Many of them,
including Scantegrity and Wombat Voting, continue to use paper ballots, which have the advantage of being
able to conduct a manual recount in the case of wide-spread, suspected fraud [6, 7]. The most prominent
example of an end-to-end, Internet-based voting scheme is the open-source system Helios, which has been
used and tested in a number of small-scale, low-stakes elections [2].

End-to-end auditable voting systems [12] have two main goals: anonymity and election integrity. Most
systems accomplish anonymity through a combination of homomorphic tallying (summing ballots encrypted
by the voters to produce an encryption of the result of the election) and mixnets (routing protocols that use a
series of proxy servers to shuffle the incoming ballots). Helios, for example, uses the ElGamal cryptosystem
with the Sako-Kilian mixnet. As with most voting schemes, Helios achieves end-to-end integrity using
interactive zero-knowledge proofs (ZKPs) that convince each individual voter that (1) their vote was included
in the election result, and that (2) no extra votes were added when computing the result [2].

In creating Apollo, our goal was to create an Internet voting scheme suitable for use in the MIT community
that provides similar guarantees to Helios. Apollo takes advantage of a number of features of the MIT
ecosystem (such as the widespread use of certificates for authentication) to side-step much of the complexity
necessary in Helios.

2 Design Goals

Apollo was designed to be distributed, anonymous, and end-to-end auditable.

• Distributed : No single entity should control the entirety of the election process, making Apollo a
distributed system and reducing the consequences of one module being compromised.

• Anonymous: Apollo should maintain voter anonymity, in that no party other than the voter should
be able to determine who a voter voted for.

• End-to-end auditable: Voters should be able to confirm that the results of an election are valid, namely
that their vote was counted correctly and the results of the election were tallied properly.

For our security/attack model, anyone can be an adversary, including the modules of our system. We assume
that at most one module of our system is malicious. Under this model, Apollo still successfully maintains
the anonymity of voters and end-to-end integrity.

2



3 Modules

Apollo makes use of five modules: a registrar, talliers, an aggregate tallier, an authority, and voters. All of
these modules are capable of supporting several concurrent elections.

Voter: A voter is someone with an MIT certificate who is a specified participant of an election, for example
students in 6.857. Voters interact with Apollo by registering with the registrar and sending their encrypted
votes to talliers.

Registrar: The registrar’s primary function is to authenticate voters. To register for an election, a voter
presents his or her MIT certificate to the registrar, and the registrar confirms that the user is an eligible
voter. The registrar maintains a list of encrypted votes and registered users.

Tallier: Talliers receive encrypted votes from users and aggregate them. Talliers are added to the system
by registering with the registrar. When a new election is created, the registrar selects a subset of the
registered talliers to be allocated for the election. Talliers make use of the fact that our encryption scheme
is homomorphic, allowing them to sum together votes despite only knowing the ciphertexts.

Aggregate Tallier: The aggregate tallier computes the total encrypted sum of the votes using the encrypted
sums provided by each tallier. Once an election has finished, each tallier sends its aggregate total of votes
to the aggregate tallier. Then, the aggregate tallier sends its sum of votes to the authority.

Authority: When an election is created, the registrar requests that the authority generate a public/private
key pair. The public key is used by voters to encrypt their votes, and the private key is used by the authority
to decrypt the final results of the election.

4 Cryptographic Security

Apollo makes use of the Paillier cryptosystem to encrypt all votes, granting anonymity to voters, as only
the tallier and registrar, which do not possess the private key, can determine which voter cast a given vote.
Additionally, Apollo uses zero-knowledge proofs to prevent voters from sending invalid votes and serve as an
end-to-end check that the election was tallied correctly.

4.1 Paillier Encryption

The Paillier cryptosystem is an asymmetric public-key encryption algorithm [3]. It is extremely useful because
its encryption is additively homomorphic: given two plaintexts v1, v2 and public/private keys (pk, sk) we
have

Dsk(Epk(v1) · Epk(v2)) = v1 + v2

Because of this property, the Paillier cryptosystem is widely used in voting. It can be broken up into the
following three components.

4.1.1 Key Generation

To create a public/private key pair, first generate two large primes p, q that satisfy gcd(pq, (p−1)(q−1)) = 1.
Let n = pq and λ = ϕ(n). Generate a random g modulo n2 that is relatively prime to n2. It is ensured that
n divides the order of g by computing the existence of

µ = (L(gλ (mod n2)))−1 (mod n)

where L(u) = u−1
n . If this property holds, the public key pk is then (n, g), and the private key sk is (λ, µ).

3



4.1.2 Encryption

Given a message m, generate a random number r ∈ Z∗n. The encrypted message is then computed as

c = gm · rn (mod n2)

4.1.3 Decryption

Given a ciphertext c ∈ Z∗n2 , the plaintext is simply

m = L(cλ (mod n2)) · µ (mod n)

4.2 Multi-Candidate Voting Scheme

We now specify the process of how voters convert their ballots to an integer. This scheme is taken from [5].
For an election with M candidates, we give each candidate a unique ID from 0 to M − 1. We assume that
there are fewer than N voters. To vote for candidate i, the voter encrypts the message N i.

After tallying all the encrypted votes, the decrypted result will be of the form

r =

M−1∑
i=0

viN
i

because the Paillier cryptosystem is additively homomorphic. After representing r in this form, vi represents
the number of votes received by candidate i. Furthermore, the message N i represents a vote for candidate
i since fewer than N people can vote for a candidate, so a vote meant for a particular candidate will never
be counted in another candidate’s vote count. It should be noted that during key generation, the modulus
n must be larger than NM for this scheme to work.

4.3 Zero-Knowledge Proofs

We make use of two zero-knowledge proofs (ZKPs) in our voting protocol. One is used to verify that an
encrypted vote is valid, while the other is for the election authority to prove that the final decryption was
performed correctly. Proofs for the validity of the following schemes can be found in [4].

4.3.1 Validity of Vote

When voters send their votes to the tallier, they must prove to the tallier their vote is an encryption of one
of {1, N,N2, . . . , NM−1}. To do this, a ZKP takes place between a voter and tallier. Suppose the voter
wishes to send a vote of Nk whose ciphertext is:

C = gN
k

· rn (mod n2)

Then the following protocol takes place:

1. The voter randomly generates e0, . . . , eM−1 from 1 to 2b and z0, . . . , zM−1 from 1 to N2 and computes,
for each i between 0 and M − 1:

ai = zni ·
(
C

gNi

)−ei
(mod n2)

2. The voter replaces ak with vn, where v is randomly chosen between 1 and n2.

4



3. The voter then sends a0, a1, . . . , aM−1 to the tallier.

4. The tallier sends a random number echall to the voter, generated randomly between 1 and 2b, where b
is the numbers of bits in

√
n.

5. The voter sets ek to satisfy
M−1∑
i=0

ei = echall (mod 2b)

and re-computes zk as
zk = v · rek (mod n2)

6. The voter then sends the numbers (a0, . . . , aM−1, e0, . . . , eM−1, z0, . . . , zM−1) to the tallier.

7. The tallier checks
M−1∑
i=0

ei = echall (mod 2b)

and for each i:

zni = ai ·
(
C

gNi

)ei
(mod n2)

4.3.2 Validity of Decryption

Once the talliers aggregate their votes, the election authority decrypts the result. Proof must be specified
that the election authority performed the decryption correctly. To do this, we make use of another ZKP.
Given a ciphertext c and a plaintext m, the following protocol is used:

1. A voter requests that the authority prove the decryption.

2. The authority generates a random number a between 1 and N2 and sends an to the voter.

3. The voter sends a random number echall to the authority, chosen between 1 and 2b.

4. The authority computes (r, s) as

s = c · g−m (mod n2)

r = sn
−1 (mod λ) (mod n2)

5. The authority sends z = a · rechall (mod n2) to the voter.

6. The voter checks

zn = an ·
(
c

gm

)echall
(mod n2)

5 Protocol

Our protocol has three distinct phases: election creation, election vote processing, and election termination.
These phases demarcate major changes in the state of our system modules.

5



5.1 Election Creation

To create an election, an election owner sends a list of voters V and candidates C to the registrar, corre-
sponding to the election. The registrar sends a request to the authority to generate the public/private keys.
The authority then publishes the public key pk for the election as well as an election ID Eid.

The registrar assigns registered talliers to the election greedily based on the amount of work already assigned
to them. The number of talliers is proportional to the product of the number of voters and candidates since
the amount of work performed to validate each vote grows linearly with the number of candidates due to
the aforementioned “Validity of Vote” ZKP. After the talliers accept the election, the registrar publishes V ,
C, and the list of talliers T . Once this process is complete, the election can begin. These interactions are
shown in Figure 1.

Owner Registrar Authority

Tallier

Tallier Tallier

3 pk, Eid5 V , C, T

1 V , C 2 Gen Keys

4

Figure 1: The election creation process.

5.2 Election Process

Once an election has begun, voters send their votes using the following scheme. First, a voter encrypts his
or her vote using the Paillier encryption algorithm with the published public keys. The encrypted vote E(v)
is then sent to the registrar, which stores E(v) for the associated user. The voter then randomly selects a
tallier and sends E(v) to it. The voter also partakes in the “Validity of Vote” ZKP with the tallier.

Once the tallier verifies the vote, it queries the registrar for whether voter’s E(v) is legitimate. The registrar
responds positively if and only if the voter has not already voted and E(v) is equivalent to the one submitted
by the voter. Once the tallier acknowledges a positive response, the registrar marks the voter has having
voted, and the tallier adds E(v) to its running tally. Finally, the voter receives a response indicating that
his or her vote was successfully processed or was invalid. This protocol is outlined in Figure 2.

6



Voter Registrar

Tallier Tallier

1 E(v)

2
E(v), ZKP

5
“valid”

3 E(v) 4 “ok”

Figure 2: The election vote processing protocol.

5.3 Election Termination

During election termination, results are computed and published. Afterwards, voters can verify the end-to-
end election integrity.

5.3.1 Computing Election Results

Owner Registrar

Tallier

Tallier

Tallier

4
∑

E(v)

4
∑

E(v)

4
∑

E(v)

Aggregate
Tallier

Authority

7 V ′, E(v) List

6 m

1 Eid

3 Eid

5 c =
∑

E(v)

2
E
id

Figure 3: Computation of election results.

To end an election, the owner sends an “end election” request with Eid to the registrar. The registrar then
requests the authority to compute the election result. The authority in turn asks the aggregate tallier to
compute the total encrypted election tally. The aggregate tallier computes this value by first asking all
talliers to stop servicing the election and send in their local encrypted tallies. The aggregate tallier simply

7



computes the aggregate tally c by homomorphically adding the associated encrypted tallies and sends c back
to the authority. The authority decrypts the encrypted tally and publishes the election results m. The
registrar publishes a randomized, anonymous list of all encrypted votes as well as a list of participating
voters V ′. The protocol is shown in Figure 3.

5.3.2 Voter–Election Verification

The voter verifies the election’s integrity by first checking that their encrypted vote is on the list of published
encrypted votes. The voter also checks that he or she is in V ′ and that the number of voters in V ′ is equal to
the number of encrypted votes. This ensures that the voter’s vote was not tampered with and that additional
malicious votes were not added to the list of encrypted votes without corresponding participants.

The voter computes the aggregate encrypted tally c by multiplying all the encrypted votes. The voter then
engages in the “Validity of Decryption” ZKP with the authority to ensure that the computed election result
m is a valid decryption of c. This concludes the end-to-end election validation phase.

6 Implementation

Apollo was implemented in Python 3.5 as a Flask web application hosted on Heroku. The source code
can be found at https://github.mit.edu/vmohan/Apollo, and an example election running on the Apollo
platform can be found at https://apollo-voting.herokuapp.com; note that a valid MIT certificate is
required to use the site. The client-side encryption of the vote and ZKPs were written in JavaScript using
the jsbn library [9]. The Paillier cryptosystem was implemented using cryptographic primitives defined in
Python’s pycrypto library [10].

Figure 4: The voting page for a sample election held using Apollo from the perspective of the election owner.

The above figure shows a screenshot of an example election between the three remaining candidates of major

8

https://github.mit.edu/vmohan/Apollo
https://apollo-voting.herokuapp.com


political parties in the 2016 U.S. presidential election. To view this page, a voter must have an MIT certificate
matching a username in a preset list of voters. The voter’s Kerberos username, which is provided by the
certificate, is displayed on the top right of the page. The procedure to vote is as follows:

1. The voter clicks on one of the candidates. A check mark then appears, indicating that the specified
candidate was selected.

2. The voter clicks on the “Submit Vote” button. An encrypted version of the vote and parameters for
the first ZKP are calculated client-side using JavaScript and sent to the registrar and a tallier. If both
the registrar and the tallier accept the vote, the button turns green and displays “Vote Submitted”.
The encrypted vote is then stored as a cookie on the client for the second ZKP. However, if the vote
was rejected, the button turns red and displays “Invalid Vote”.

3. If the voter is the election owner, an orange “End Election” button is displayed. When the election
owner presses this button, the talliers aggregate their votes and send the results to the authority to be
decrypted. On the other hand, if the voter is not the election owner, the button is not displayed, and
he or she need only wait for the election to end to see the results.

Once the election has been terminated by the election owner, the application updates with the results of the
election, as shown in Figure 5.

Figure 5: The results page for the election shown in Figure 4, which can be accessed once the election has
ended by refreshing the voting page.

9



This page ranks the candidates by the number of votes they received and also displays each candidate’s
vote totals and percentages. Voters can also verify the election using the “Verify Election” button, which
performs the second ZKP. If the client determines that the election is valid, the button turns green and
displays “Valid Election”; otherwise, it turns red and displays “Invalid Election”.

7 Discussion

Apollo is much simpler in comparison to most other end-to-end verifiable voting schemes. As such, it does
not provide exactly the same set of guarantees as other protocols and is vulnerable to a different set of
threats.

7.1 Evaluation

In this section we revisit our three design goals and discuss how Apollo achieves each of them.

• Distributed : Apollo’s tallying system is distributed across multiple machines which improves both
security and performance.

• Anonymous: Apollo accomplishes voter anonymity through the use of the Paillier cryptosystem, which
prevents any module from ever seeing a voter’s ballot in plaintext.

• End-to-end auditable: This is accomplished through the use of ZKPs as discussed above. Any individual
voter can verify both that his or her vote was counted in the final result, and that the result published
by the authority is accurate. Note that any action that would result in a change in the election outcome
by any of the modules will be detected by the end-to-end integrity check.

7.2 Security Threats

Browser Cryptography: Recall that a client’s ballot is encrypted in JavaScript running in the client’s
web browser before it is sent to a tallier. This operation must be done client-side to preserve guarantees
about voter anonymity even in the case of malicious or curious talliers. However, cryptography implemented
in client-side JavaScript confers a number of significant risks [8]. Namely, the server-client connection is
subject to man-in-the-middle attacks that replace the client’s JavaScript with malicious code that performs
the encryption incorrectly. Apollo addresses this by using HTTPS for all connections between the client and
server. Furthermore, Apollo allows more security-minded clients to perform encryption themselves using
whatever combination of languages and libraries they choose and send their votes through a POST request
to our API.

Another significant critique of JavaScript cryptography is the lack of a cryptographically secure psuedo-
random number generator (PRNG). As mentioned above, Apollo avoids JavaScript’s default PRNG, using
the generator defined in the jsbn libary instead.

Malicious Collusion: Recall that the authority is the only module with access to an election’s decryption
keys. As such, any collusion that compromises voter anonymity (without breaking the underlying cryptog-
raphy) must involve the authority. If the authority compromises or colludes with an individual tallier while
the election is running, then the authority can decrypt and read all the votes sent to that tallier, associating
them with the voter who sent in the ballot. Assuming that the election utilizes a large number of talliers,
the corresponding attack surface is relatively small.

In contrast, if the authority manages to compromise or collude with the registrar while the election is running,
the authority can decrypt and read every ballot in the election and correspond them with the voter who sent
it. Note that we can alleviate this attack by ensuring that the registrar is a trusted third party. Nevertheless,

10



the possibility of some vulnerability with the registrar server is significant, and as such this possibility is
a considerable weakness in Apollo’s protocol. However, to anyone other than the authority, or indeed the
registrar itself, the encrypted votes contain no information that could compromise voter anonymity.

Threats to Integrity: Apollo provides strong integrity guarantees (as discussed above) as long as a sig-
nificant fraction of voters bother verifying the election result. If none, or very few voters do this, attacks
by various modules could potentially add or remove votes without detection. For example, a tallier could
choose not to send or tally a particular voter’s ballot, and if the voter does not verify the election after it is
terminated, this change in outcome will go undetected. By making the difficulty of verifying the election as
low as possible (one click of a button), we will hopefully increase the proportion of users verifying election
integrity to acceptably high levels.

Threats Beyond Model: Like Helios, Apollo cannot and does not try to prevent attacks that involve
malware, DDoS, or voter coercion. Assuming that Apollo will be used for elections with lowered-stakes,
these threats are outside our model, and are not addressed.

7.3 Extensions

Apollo currently does not support write-in candidates, but they can be integrated into the system without
too much difficulty. Namely, the election owner can set a maximum number of candidates for the election
greater than the number of registered candidates at the beginning of the election. Voters can then submit
write-in votes and add new candidates to the election, who other voters can vote for.

Apollo does not currently have a publicly-accessible interface for creating elections. This should be relatively
simple to add to our application.

Another possible extension is to use non-interactive ZKPs via the FiatShamir heuristic [11]. This simplifies
the communication required to establish proofs of knowledge while maintaining the same security guarantees.

8 Conclusion

We have presented the design of Apollo, a platform that can be used to create and run trustworthy Internet
elections. Apollo provides voter anonymity and end-to-end integrity while avoiding much of the complexity
of other systems such as Helios. We hope that Apollo will prove useful, both as an example of a relatively
simple end-to-end auditable voting system, and as a secure voting application for the MIT community.

9 Acknowledgements

We would like to thank Ronald L. Rivest and Kevin C. King for their many insights that influenced the
design and implementation of Apollo.

References

[1] Lawrence Norden and Christopher Famighetti. America’s Voting Machines At Risk. Brennan Center
For Justice (2015).

[2] Ben Adida. Helios: Web-based Open-Audit Voting. 17th USENIX Security Symposium (2008).

[3] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. EURO-
CRYPT (1999).

11



[4] Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplification and Some Applications of Paillier’s
Probabilistic Public-Key System. Public-Key Cryptography (2001).

[5] Andreas Steffen. E-Voting Simulator based on the Paillier Cryptosystem. MSE Seminar on E-Voting
(2010).

[6] David Chaum, Richard T. Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc, Ronald L.
Rivest, Peter Y. A. Ryan, Emily Shen, Alan T. Sherman, and Poorvi L. Vora. Scantegrity II: End-to-
End Verifiability by Voters of Optical Scan Elections Through Confirmation Codes. IEEE Transactions
on Information Forensics and Security (2009).

[7] Niko Farhi and Amnon Ta-Shma. An Implementation of Dual (Paper and Cryptograhic [sic]) Voting
System. http://www.cs.tau.ac.il/~amnon/Students/niko.farhi.pdf (2013).

[8] Thomas Ptacek. Javascript Cryptography Considered Harmful. https://www.nccgroup.trust/

us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-

harmful/ (2011).

[9] Tom Wu. RSA and ECC in JavaScript. http://www-cs-students.stanford.edu/~tjw/jsbn/ (2009).

[10] Dwayne Litzenberger. PyCrypto - The Python Cryptography Toolkit. https://www.dlitz.net/

software/pycrypto/ (2013).

[11] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature
Problems. CRYPTO (1986).

[12] Wikipedia. End-to-end auditable voting systems. https://en.wikipedia.org/wiki/End-to-end_

auditable_voting_systems (2016).

[13] U.S. Vote Foundation. The Future of Voting. https://www.usvotefoundation.org/sites/default/
files/E2EVIV_full_report.pdf (2015).

[14] Ronald Rivest. Auditability and Verifiability of Elections. http://courses.csail.mit.edu/6.857/

2016/files/L20-Auditability-and-Verifiablity-of-Elections-slides.pdf (2016).

[15] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach. Analysis of an Electronic
Voting System. http://avirubin.com/vote.pdf (2004).

12

http://www.cs.tau.ac.il/~amnon/Students/niko.farhi.pdf
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
http://www-cs-students.stanford.edu/~tjw/jsbn/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://en.wikipedia.org/wiki/End-to-end_auditable_voting_systems
https://en.wikipedia.org/wiki/End-to-end_auditable_voting_systems
https://www.usvotefoundation.org/sites/default/files/E2EVIV_full_report.pdf
https://www.usvotefoundation.org/sites/default/files/E2EVIV_full_report.pdf
http://courses.csail.mit.edu/6.857/2016/files/L20-Auditability-and-Verifiablity-of-Elections-slides.pdf
http://courses.csail.mit.edu/6.857/2016/files/L20-Auditability-and-Verifiablity-of-Elections-slides.pdf
http://avirubin.com/vote.pdf

	Introduction
	Design Goals
	Modules
	Cryptographic Security
	Paillier Encryption
	Key Generation
	Encryption
	Decryption

	Multi-Candidate Voting Scheme
	Zero-Knowledge Proofs
	Validity of Vote
	Validity of Decryption


	Protocol
	Election Creation
	Election Process
	Election Termination
	Computing Election Results
	Voter–Election Verification


	Implementation
	Discussion
	Evaluation
	Security Threats
	Extensions

	Conclusion
	Acknowledgements

