
Hardened Dildo.io: A Cryptographically Secure,

Usable Matchmaking Service

Rajeev Parvathala, Jack Serrino, Douglas Chen, Siddharth Seethepalli
{rparvat,jserrino,dpchen,sidds}@mit.edu

May 12, 2016

Abstract

The website Dildo.io [1] has been used by many MIT students over the
last few months as a matchmaking service restricted to students at MIT.
However, such a service may have a key security flaw: all the information
is centralized, and some central server(s) have access to everyone’s pref-
erences. We wanted to set up a cryptographically secure matchmaking
service in which no central server has access to anyone’s preferences, and
we wanted to make it difficult for any client or the central server to learn
about preferences. In addition, many solutions to secure matchmaking
involve incredibly complex protocols, so we set out to make our system as
easy to use as possible.

1 Motivation

In the 21st century, online matchmaking services have become extremely popular
in America. From Tinder to Match.com to OkCupid, dozens of services have
popped up. However, in each of these services, a centrally controlled server
stores information about the matches of its users. Data breaches, like the one
that hit AshleyMadison in mid 2015[9], can reveal everyone’s private match and
preference information to external parties. Thus, there is certainly place in the
world for cryptographically secure matchmaking.

The fundamental motivation for our project was to create a system in which
no central server has access to information about individuals’ preferences. We
modeled our service after Dildo.io (shown in Figure 1), a popular service started
by an East Campus resident in 2016. It is an intra-MIT matchmaking service;
in particular, it restricts the set of users to all undergraduate students at MIT
and has approximately one thousand users [5]. To mimic this sort of user base,
we constructed our system to heavily use MIT’s Athena, and Athena’s Shared
File System known as AFS; because all users who have accounts on Athena can
access certain shared resources through AFS, we used this as a base in order to
ensure that public keys were accessible and data storage was persistent.

Fundamentally, our goals for inter-user security are as follows:

1

A Screenshot from Dildo.io

Figure 1: In Dildo.io, users can easily search and add preferences for other users.
Matches are shown on the left, and current preferences are shown as checks on
the right. Although has many features, every user’s preferences is available to
the server operator.

• Users are able to set preferences for other users, and the service will inform
each user if there is a match in preferences.

• Users learn the minimum amount about each other’s preferences required
to execute the protocol.

• Users should be uniquely capable of presenting match preferences for
themselves. The central server or any other party should not be able
to forge a “yes” message for a given user.

• If there is any wrongdoer in the system, a user who was subject to mali-
cious actions should be able to prove the wrongdoing, and use this proof
to ban the wrongdoer

• There should be no case in which only one user becomes aware of a match
or non-match.

In a peer to peer system with no authority controlling message flow between
users, all possible protocols have the property that for two users participating
in a potential match, one user learns the result before the other and must be
trusted to continue execution. This is in direct violation of our security goals,
so our protocol uses a server who acts as a sort of escrow for the participating
users.

2

Beyond our security concerns, our secondary goal is to maximize usability
and provide an optimal user experience. To achieve this, we limit the round trips
between users to one. Each user should be able to get the result of a potential
match from the server as soon as both users have submitted preferences.

2 Threat Model

For the initial design of our protocol, we assume an honest-but-curious server,
i.e. the server will execute our designed protocol correctly, but may try to learn
as much information as possible in the process. Thus the server is not totally
malicious: it will not drop messages, refuse to pass along messages, or try to
forge messages.

We do not assume anything about the users. Users may be totally malicious:
they can send arbitrary messages to other users, attempt to act on behalf of other
users/the server, and conduct man-in-the-middle (MITM) attacks. However, we
do assume that malicious users do not collude with the server.

Any other interested parties may do any kinds of attacks possible, and may
collude with either (1) any subset of the users, OR (2) the central server. For
all possible adversaries, we assume probabilistic polynomial computation time
bounds since a computationally unbounded adversary would render our public
key encryption schemes insecure. Furthermore, even if any other parties collude
with users AND the server, they can only learn about preferences and matches
submitted by and directed to the users they are colluding with.

We also present an extension of our protocol to defend from malicious servers
that incorrectly execute the protocol and/or attempt to forge messages. How-
ever, we assume servers still do not collude with clients.

3 Design

3.1 Paillier Encryption Scheme

The Paillier cryptosystem [6] is an additively homomorphic asymmetric encryp-
tion algorithm. In particular, for any two plaintexts a and b, Dec(Enc(a)+Enc(b)) =
a+ b mod n for n.

For key generation, the Paillier cryptosystem requires two large, random
primes p, q. Let n = pq and λ = lcm(p− 1, q − 1). Then let g ∈ Z∗n2 , such that
µ = (L(gλ mod n2)−1) mod n exists. Then, the key pair is as follows:

• Public key: (n, g)

• Private key: (p, q, µ)

Encryption of a ciphertext is done using the public key, and decryption is
achieved using the private key. Paillier encryption is secure against chosen
plaintext attack (IND-CPA), although this is not too useful in our protocol
since we already add randomness to our plaintexts for other purposes.

3

We use Paillier encryption to allow the server to perform operations without
learning anything about the inputs. By submitting ciphertexts representing
preferences, users can allow the central server to perform computation on the
ciphertext and return results to involved users, each of which will be able to
decrypt the result and learn about the existence of a match.

3.2 Protocol Setup

In our protocol, the central server and all users know a large pre-generated prime
k, which is used later in the protocol. The central server and all users each have
public/private key RSA pairs for encrypting messages. We assume that the
public keys are always available on a trusted shared file system, i.e. AFS in
our case. The protocol can also use a certificate authority or other public-key
infrastructure. All clients and the server also share a global security parameter
λ. This security parameter is used for the length of various large primes, such
as in the RSA and Paillier public keys.

3.3 Key Generation

The first step of the protocol is key generation for future matching attempts.
These keys are generated when a user joins the Hardened Dildo.io system. Each
new user A downloads a list of every registered user from the central server, and
fetches the registered users’ public keys from AFS. For every registered user B,
the new user generates three large primes (each λ bits long) pq = n and c for
each other user. The primes p and q are used to generate a public, private
Paillier keypair (P, S)AB . A then encrypts (S, c)AB with B’s public key PB
to get EncPB

((S, c)AB). Finally, A sends EncPB
((S, c)AB), PAB to the server.

With PAB the server can perform computations on encrypted data for A and
B, but only A and B can decrypt the result.

When user B reconnects to the system, they download a list of new users
and the corresponding EncPB

((S, c)AB) values shared between the new users
and B from the server. B performs DecSB

(EncPB
((S, c)AB)) to get (S, c)AB

and checks that p, q and c are λ bits long, prime and distinct from each other
and k. If the values do not meet those conditions, B rejects them and continues
as if the new user had not joined. Figure 2 shows a this sign-up process.

3.4 Sending Preferences

In Dildo.io users indicate their preferences with a “yes” or “no” for other users.
In order to hide from the server which users are sending preferences to which
other users, users always submit preferences for all users simultaneously. If a
user has not explicitly specified a preference for another user, the Hardened
Dildo.io client automatically sends a “no” for that user. A matching result of
“yes” indicates both users submitted “yes.” Users may change their matching
preferences by using their client to resubmit all of their preferences simultane-
ously.

4

The Sign-up Process

Figure 2: When User D signs up in the protocol, he sends Paillier keypairs for
every other user already in the system. New keypairs are shown in red. While
new users incur a large start-up cost, incremental work done by existing users
is minimal.

Suppose user A wishes to submit preferences. First, for each user B, A
retrieves (S, c)AB from the Key Generation portion of the protocol and extracts
c. To submit a “yes”, user A picks a random integer s (different for each
preference submission) in the range [0, n) and computes the decision dAB = c+sp
mod n. To submit a “no”, user A computes a random dAB 6≡ c mod p as his
decision instead. User A then encrypts dAB with the Paillier public key n
previously shared between A and B and sends EncPAB

(dAB) to the server. To
hide which preferences are updated, ciphertexts are sent corresponding to each
user. When user B wants to submit a preference for user A, she does the
same thing except with different random values. We denote her decision as
dBA = c+ sp for “yes” and a random dBA 6≡ c mod p for “no.”

3.5 Matching

Once both users A,B in a pair have submitted their encrypted preferences
EncPAB

(dAB) and EncPAB
(dBA) to the server, the server performs matching by

computing a random encrypted linear combination of dA and dB . In particular,
the server computes m = (r · dAB + (k − r) · dBA mod n)PAB

for a random
r uniformly selected in the range [0, n). To compute this value efficiently, the
server computes 2xdAB∀x : 1 ≤ 2x ≤ r through repeated addition and adds
the required values. A similar sequence of steps is taken for dBA. The server
then delivers m to A and B if they are online, or enqueues them for later
delivery if they are not. These queues are not emptied even if users change
their preferences. This discourages a user from sending a “yes” preference and
then immediately changing it to a “no” preference in order to determine other
users’ preferences for them since the other users will be notified of the match
and subsequent un-match.

When users A or B receives their encrypted match result m, they decrypt

5

it to find t = rdAB + (k − r)dBA mod n. If A and B both submitted a “yes”
preference for each other, t will be equal to kc modulo p since r(c + sAp) +
(k − r)(c + sBp) ≡ rc + (k − r)c ≡ kc mod p. Hence, to determine whether
there was a match A and B each check whether t ≡ kc mod p. Otherwise, with
very high probability t will appear to be a pseudorandom number modulo n,
depending on r, sA and sB , indicating that there was no match. Furthermore,
if A submitted a “no” preference, A will not be able to compute B’s preference
dB with very high probability. You can see a timeline of submitted preferences
and results in Figure 3.

Timeline of Preferences and Results

Figure 3: Preferences for a user can be submitted at any time. Once the server
has both users’ preferences, it computes and sends match results back. From
then on, if a user sends another preference, a result can be recomputed easily.
If User B changes his preference before User A comes back online, User A will
still be notified of both B’s preferences.

3.6 Proof of Preference Hiding

We will first show that as long as dAB 6≡ dBA mod p and dAB 6≡ dBA mod q,
user A cannot compute user B’s preference. We will then show that with very
high probability, user A cannot discover user B’s preference if user A submits
a “no” preference.

We will first consider solving t = rdAB + (k − r)dBA for r modulo p. We
have:

r ≡ (dAB − dBA)−1(t− k · dBA)

Since p is prime, the inverse (dAB − dBA)−1 exists if and only if dAB 6≡
dBA mod p. But by assumption dAB 6≡ dBA mod p, so the inverse exists
and a unique value of r mod p exists corresponding to the pair (dAB , dBA).
Furthermore, changing dAB (but making sure the assumption still holds) always

6

changes r mod p as well, since multiplicative inverses are unique. By symmetry,
changing dBA also changes r mod p if we instead think about solving for k− r
mod p rather than r mod p directly.

An identical argument holds modulo q, since q is also prime and a divisor
of n and we have assumed dAB 6≡ dBA mod q as well. Then by the Chinese
remainder theorem, there exists a r mod n for each pair (dAB , dBA). Further-
more, for each distinct dBA 6≡ dAB mod p the value for r is distinct. Then
since r is chosen uniformly at random, the posterior probability distribution for
dBA given t and dAB (excluding values equal to dAB modulo p, q) is uniform as
well. Hence user A cannot compute user B’s preference.

We will now show that if user A submitted a “no” preference, dAB and dBA
are not equal modulo p, q with very high probability.

Consider the dAB and dBA modulo p. Suppose user B submitted a “yes”
preference. Then dAB and dBA are guaranteed to be different, since otherwise
dAB ≡ c mod p, contradicting the assumption that user A submitted a “no.”
If user B submitted a “no” preference, then dBA mod p is uniformly random
modulo p. In particular, dBA mod p is unknown to A. The best A can do is
guess, with a 1/p ≈ 2−λ probability of correctly guessing a dAB ≡ dBA mod p.

Now consider dAB and dBA modulo q. In the case that user B submits
“yes”, dBA = c + sBp is uniformly random modulo q since gcd(p, q) = 1 and
sB is uniformly random over [0, n). If user B submits “no”, then dBA is also
uniformly random modulo q. In both cases A does not know what dBA mod q
is. Again, user A can only guess with success probability 1/q = 2−λ.

By the union bound, the probability that A can select dAB ≡ dBA modulo
p or q without submitting “yes” is no greater than 2 · 2−λ. This is a negligibly
small probability. Therefore user B’s preference is hidden from user A with very
high probability.

4 Extension: Malicious Server

So far when describing the protocol, we have assumed that the server is honest-
but-curious. However, this may not always be the case - the server could become
malicious through compromise by an adversary or Byzantine failure. We can
continue to protect users through a few simple modifications to our protocol.
We are primarily concerned about the case in which the server attempts to forge
a match when one or more of the participants has sent a “no” preference, as this
could have unfortunate consequences for the users. In our original protocol the
server can do this fairly easily by guessing if a user submitted a “yes” preference,
and using that as the input for both users in the protocol. The case in which
the server attempts to forge the absence of a match is not very interesting as
the server can always prevent users from matching through a denial of service.

Since users have a secure medium for public key exchange (AFS in our
implementation), user message authentication can be accomplished through a
simple signature scheme. Message signatures can also be used to prove that a
server is behaving badly. This proof can be posted to a public message board or

7

distribution service to expose the malicious server, and should generally deter
adversaries from operating malicious servers. These signatures allow a single
client to prove that a server is malicious, but also prevent malicious clients from
framing an honest server. For signing, each user and the server has a separate
set of RSA key pairs also published on AFS, which we will denote with (P ′A, S

′
A)

for a user A.

4.1 Key Generation Modifications

Since the purpose of unknown c 6= 0 is to prevent server forgeries, this is no
longer necessary for the modified protocol. Instead for each other client B,
A sends (EncPB

(SAB),SignS′
A

(EncPB
(SAB)), PAB ,SignS′

A
(PAB)) to the server.

After B connects, the server sends (EncPB
(SAB),SignS′

A
(EncPB

(SAB)) to B,
who then verifies that the signature is valid before proceeding.

4.2 Sending Preferences Modifications

The preference creation portion of the protocol operates the same as before with
the change c = 0. However, when A is sending the server his preference for B,
he sends (EncPAB

(dAB), IAB) where IAB = SignS′
A

(EncPAB
(dAB)).

4.3 Matching Modifications

The matching protocol remains identical except that the server sends A the
value (m,OAB) where OAB = SignS′

Server
(m||IAB)), proving that the server

acknowledges the input from A and the result m. User A verifies that the
signature presented by the server is valid before proceeding with the rest of the
protocol to determine the match result.

4.4 Detecting Malicious Servers

Now suppose user A matches with user B despite submitting a “no” preference,
indicating malicious behavior by the server. Then user A can post the shared
Paillier private key SAB , his encrypted preference EncPAB

(dAB), the input sig-
nature IAB , the output m and the output signature OAB to a public location.
Anyone can verify that the server incorrectly output a “yes” by verifying OAB
and then decrypting m to find a value equal to kc ≡ 0 mod p. They can also
verify that user A correctly submitted a “no” by verifying the input signature
IAB against the encrypted preference and checking that A’s preference is not
c ≡ 0 mod p.

4.5 Protecting Honest Servers

Under this scheme, two malicious clients cannot frame an honest server because
the will not be able to generate valid OAB . Since OAB is dependent on both
the output m and the input signature IAB (which depends on the input dAB),

8

OAB shows to any observer that the server computed the correct output from
the inputs.

5 Evaluation

To evaluate our protocol, we revisit our design goals.

5.1 Security goals

• Users are able to set preferences for other users, and the service will inform
each user if there is a match in preferences

By executing the protocol, we fulfill this goal.

• Users learn the minimum amount about each other’s preferences required
to execute the protocol

With high probability, user A only learns user B’s preference for A, if A
submitted “yes” for B. Note that this is a property of the matchmaking
problem and it is impossible to do better.

• Users should be uniquely capable of presenting match preferences for
themselves. The central server or any other party should not be able
to forge a “yes” message for a given user

With the extension mentioned above, the server is prevented from forging
a match for two users and preferences are signed with each user’s private
key, preventing forgery.

• If there is any wrongdoer in the system, a user who was subject to mali-
cious actions should be able to prove the wrongdoing, and use this proof
to ban the wrongdoer.

The extension above allows the users to determine if the server is commit-
ing harmful malicious actions and present a proof to other users.

• There should be no case in which only one user becomes aware of a match
or non-match.

With an honest-but-curious server, the server sends results to both parties
simultaneously (or on next login). With a malcious server, we cannot
ensure that both parties receive the match result, but we believe this is
not possible in general as the distributing party can always legitimately
crash during distribution.

5.2 Usability Goals

For a system in which users are only online a very small fraction of the time,
a protocol requiring many round trips between users would significantly limit
convenience, as two users log in many times over several days before obtaining

9

the result of a match. We considered this trade-off when opting for our proto-
col over a multi-party computation scheme requiring multiple round trips that
might provide better security guarantees. Since our scheme generates a result
immediately after both users have submitted preferences, it performs optimally
in this regard.

From a scalablity perspective, our system produces load quadratic in the
number of users on the central server and linear in the number of users on each
user. Clearly, this imposes strict limitations in terms of the potential scale of
the service. However, Dildo.io is only available to the student body at MIT, and
a Hardened Dildo.io server is easily able to serve the needs of a few thousand
users. To allow for scaling to larger groups, the protocol will have to be modified,
potentially by reducing the number of users to whom each user sends messages.

6 Implementation

On any MIT Athena workstation, one can run the following commands to try
our proof of concept.

$ add d i l d o
$ d i l d o

The proof of concept is written in Python, and does not include the Exten-
sion from section 4. The source code for our system is available on GitHub[2],
and a screenshot of the program is visible in Figure 4.

The User Interface of Hardened Dildo.io

Figure 4: Text-based commands are entered into Hardened Dildo.io to add and
save preferences, as well as see matches. Protocol details are entirely hidden
from the user, providing better user experience.

10

Upon first start, it generates a public and private key pair, and makes the
public key available on AFS. Then, as a small feature, the user is asked whether
or not she wants to encrypt her private local data on AFS. Although this is
somewhat outside the scope of our threat model, this prevents an attacker from
viewing the user’s preferences should the user’s Athena account be compromised.

In normal operation, the experience of the system is smooth - one can add

and remove preferences easily via commands, and they only become public
upon a save command, or program exit. Protocol details are hidden from the
user - the downloading/verification of Paillier keys, sending of preferences, and
execution of matches are all done upon the execution of a save. In addition,
the program continually checks for new matches in the background, notifying
the user as they occur. Should someone match and unmatch the user in a short
period of time, the user is notified - otherwise, unmatches are generally silent.

We believe this proof of concept highlights the usability of our system. Be-
cause of the few round-trips of our protocol, users are generally notified immedi-
ately of new matches. In addition, since most of the initialization work is done
at user registration, regular use of the system incurs small additional cost.

7 Related Work

Several protocols have been developed in the past for cryptographic matchmak-
ing. These protocols focus on determining whether two parties share a secret
(called a wish), and jointly notifying and authenticating them if they do. How-
ever, the parties remain anonymous before they match. For example, a company
and a job-seeker might to match based on some shared criteria, which would be
encoded into the wish. However, the job-seeker wishes to remain anonymous
until the match has happened, to avoid angering his current employer. The
first protocol to do this was Baldwin and Gramlich’s protocol [3]; however, this
protocol is vulnerable to simple man-in-the-middle attacks [11] and requires a
fully trusted matchmaker. Meadows published another protocol [4] that only
requires a trusted third party during the initialization step when users join,
and mutually authenticates two users if their secret credentials the same. More
recently, Shin and Gilgor published another protocol [7] that improves on the
previous protocols in several respects, including user anonymity and resistance
to offline dictionary attacks against wishes.

We could have used matchmaking protocols to implement Hardened Dildo.io,
using wishes consisting of pairs of user identifiers to encode “yes” preferences
and empty wishes to encode “no.” However, these protocols (especially Shin
and Gilgor’s) are very complex because they solve a more general problem than
Hardened Dildo.io’s simple “yes” and “no” preference matching. They require
numerous messages and round trips, which would significantly decrease the us-
ability of our system. Furthermore, anonymity in these protocols is not useful
to us because preferences already include the user’s identity.

Secure multiparty computation [10] is also related to cryptographic match-
making. It is a much more general primitive, allowing two or more parties to

11

compute a function. Each party contributes an input to the function, and all
parties receive the output; however, no party learns about other party’s input.
It is also possible to do secure two-party computation covertly, ie. without no-
tifying the other party that the computation is happening at all unless they are
participating [8]. It would be easy to implement Hardened Dildo.io using these
protocols by computing the logical AND of two users’ preferences. However,
these protocols also require numerous round trips, and are even more general
and difficult to implement compared to cryptographic matchmaking protocols.

8 Conclusion

Our system, Hardened Dildo.io, allows users to engage in cryptographically se-
cure matchmaking, providing protection from the regular data breaches that
plague similar existing services. In doing so, we take care to maintain similar
levels of usability, since users are often willing to trade security for convenience.
Our protocol is also highly implementable compared to the complex protocols
developed so far and can be integrated into a web service with slight modifica-
tions. After it is thoroughly vetted, if it is found to be secure, we hope that our
design will be adopted and improved upon by future developers of matchmaking
services.

9 Acknowledgments

We would like to thank our TA Kevin King for helping us formulate and refine
many aspects of this project. We would also like to thank Professor Ron Rivest
and the rest of the 6.857 staff for running a very interesting and practical class.
We’d also like to thank Max Justicz for creating the original Dildo.io.

References
[1] http://dildo.io.

[2] https://github.com/Detry322/hardened-dildo.

[3] Baldwin, R. W., and Gramlich, W. C. Cryptographic protocol for trustable match
making. IEEE, p. 92.

[4] Meadows, C. A more efficient cryptographic matchmaking protocol for use in the absence
of a continuously available third party. In Security and Privacy, 1986 IEEE Symposium
on (1986), IEEE, pp. 134–134.

[5] Navarre, W. 20% of students have used dildo.io. http://thetech.com/2016/04/21/

site-to-help-students-find-sexual-partners.

[6] Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In
Advances in cryptology–EUROCRYPT99 (1999), Springer, pp. 223–238.

[7] Shin, J. S., and Gligor, V. D. A new privacy-enhanced matchmaking protocol. IEICE
Transactions on Communications 96, 8 (2013), 2049–2059.

[8] Von Ahn, L., Hopper, N., and Langford, J. Covert two-party computation. In Pro-
ceedings of the thirty-seventh annual ACM symposium on Theory of computing (2005),
ACM, pp. 513–522.

12

http://dildo.io
https://github.com/Detry322/hardened-dildo
http://thetech.com/2016/04/21/site-to-help-students-find-sexual-partners
http://thetech.com/2016/04/21/site-to-help-students-find-sexual-partners

[9] Weldon, D. Ashley madison breach shows hackers may be get-
ting personal. http://www.cio.com/article/2987830/online-security/

ashley-madison-breach-shows-hackers-may-be-getting-personal.html.

[10] Yao, A. C. Protocols for secure computations. In Foundations of Computer Science,
1982. SFCS’08. 23rd Annual Symposium on (1982), IEEE, pp. 160–164.

[11] Zhang, K., and Needham, R. A private matchmaking protocol, 2001.

13

http://www.cio.com/article/2987830/online-security/ashley-madison-breach-shows-hackers-may-be-getting-personal.html
http://www.cio.com/article/2987830/online-security/ashley-madison-breach-shows-hackers-may-be-getting-personal.html

	Motivation
	Threat Model
	Design
	Paillier Encryption Scheme
	Protocol Setup
	Key Generation
	Sending Preferences
	Matching
	Proof of Preference Hiding

	Extension: Malicious Server
	Key Generation Modifications
	Sending Preferences Modifications
	Matching Modifications
	Detecting Malicious Servers
	Protecting Honest Servers

	Evaluation
	Security goals
	Usability Goals

	Implementation
	Related Work
	Conclusion
	Acknowledgments

