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1 Introduction

Creating and maintaining a secure password is the largest problem in any
password-protected system. When trying to remember their password of at
least eight characters with one capital-letter and one punctuation, many users
simply write that password down on a sticky-note for any adversarial passerby
to see [8]. A different facet of this same problem can be seen in mobile devices
such as the iPhone, iPad, or any Android device which all also attempt to secure
the information that their users keep on the phone through password protec-
tion; however, unlike the sticky-note example, mobile devices face the added
difficulty of frequent access.

Mobile users can unlock their device as frequently as a few times a minute.
Many devices seek to fix this problem by allowing users the ability to set how
much time must elapse between each access before requiring a password; but,
from a security standpoint, prolonged periods of time where data remains com-
pletely unprotected on the device is unconscionable.

To find a balance between ease of access and security, most modern devices
have implemented biometric checks, usually in the way of a static fingerprint
scan, in addition to a password protocol. The hope with this ‘two-key’ system is
that by using the biometric check as a key for frequent access and the password
itself for administrative actions (like changing the password itself or adding
biometric data), the system will allow users to more conveniently set much
longer passwords without adding the hassle of having to frequently use that
password to access the device. The security of this system thus heavily depends
on the security of the biometric data. Given that most major mobile devices rely
on a fingerprint scanner for biometric verification of a user, this report seeks to
analyze the security of fingerprint verification, especially in comparison to short
4 digit passcodes that are standardy used in mobile devices.

2 Previous Work

Fingerprint scanners on cellphones have recently been targeted in attempts to
gain unauthorized access to a user’s phone. The most common type of attack
is called a spoof, which is the use of an artificial biometric input that copies the
biometric of an authorized user in order to gain access [2]. Creating a spoof of
a fingerprint requires both the acquisition of an authorized user’s fingerprint as
well as the construction of an artificial fingerprint.
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One potential method of obtaining the user’s fingerprint is by lifting prints
off of a physical surface, such as glass or the user’s phone itself. Another recently
developed method can obtain a user’s fingerprint by taking high definition im-
ages of a user’s fingerprint and using fingerprint identification software. This
attack was recently used to construct the fingerprint of German Defense Min-
ister Ursula von der Leyen. The attacker was able to construct the Defense
Minister’s fingerprints from photographs taken from 3 meters away [7].

Once an attacker obtains a user’s fingerprint, the attacker then must create
an artificial biometric that can provide the fingerprint input to the targeted
device. Simple household materials can be used in creating these artificial fin-
gerprints. A mold of the target’s fingerprint taken in Play-Doh can pass the
iPhone’s fingerprint sensor as being the target’s fingerprint [10]. In the demon-
stration of the attack that obtained a the German Defense Minister’s fingerprint
from photos used common molding materials, namely wood glue and plaster, to
create an artificial biometric with the target’s fingerprint that was able to be
recognized by a fingerprint scanner as the target’s fingerprint. While these arti-
ficial biometrics made from molding materials seem to be effective, they can be
somewhat costly to create, especially in terms of time. One alternative method
of creatng artificial fingerprints requires conductive ink and a special type of pa-
per, but using these materials and a household printer an artificial fingerprint
can be quickly created that will be accepted by many phone fingerprint scanners
[9].

Fingerprint authentication is widely used in many mobile devices by many
manufacturers. Interestingly, some attacks work only on certain manufacturer’s
sensors. Android seems to have a great deal more security issues with finger-
print scanners than Apple. Android phones have been found to be vulnerable
to an attack that remotely steal fingerprints from targeted phones. Addition-
ally, artificial fingerprints created using conductive ink and paper consistently
pass Android fingerprint verification whereas Apple’s Touch ID does not always
reliably verify the artificial fingerprint. While Apple’s Touch ID may be more
resistant to artificial fingerprint attacks, there are still attacks that work as
shown by the attacks mentioned previously. Fingerprint verification offers ben-
efits to users as it is easy to use and does not require the user to carry secrets,
however fingerprint verification is not considered resilient to a variety of attacks,
and may not outperform standard password verification [12].

3 System Overview

Before describing our threat model and relevant vulnerabilities, we describe the
details of how biometric security works currently in Apple iOS devices and well
as in Android devices.

3.1 Apple Touch ID

We now describe the key steps and components in Apple’s Touch ID verification.

3.1.1 Touch ID Verification Process

The fingerprint scanner is only active when the capacitive steel ring that sur-
rounds the home button detects an object that has a capacitance similar to that
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of a human finger. The capacitance check then triggers an conductive imaging
array to scan the object currently over the fingerprint scanner. The resulting
raster scan image is temporarily stored in encrypted memory within the Secure
Enclave while it is vectorized for analysis, following which it is discarded. Only
a model of the fingerprint as a collection of nodes is stored permanently in the
encrypted memory of the Secure Enclave, and Apple claims that constructing
a user’s fingerprint from this model is not feasible [4]. Touch ID allows for five
unsuccessful attempts at fingerprint verification before Touch ID is disabled and
will no longer unlock the device.

3.1.2 The Secure Enclave

The Secure Enclave is a coprocessor with its own secure boot and personalized
software update separate from the application processor. All cryptographic
operations for key management are handled by the Secure Enclave, and the
Secure Enclave maintains the integrity of data protection even if the kernel
has been compromised [4]. The Secure Enclave comes with its own encrypted
memory, encrypted using a unique id that not even Apple knows for each device.
In the Touch ID system, the Secure Enclave is responsible for handling the
processing and ultimate verification of a fingerprint scan, as well as storing a
representation of fingerprints that can be used to unlock the phone.

3.1.3 Touch ID Implementation Details

Aside from the actual verification process, there are other facets of the Touch ID
system that are worth noting. First, Touch ID does not unlock the user’s phone
in all circumstances. Most notably, after the device has not been unlocked for
more than 48 hours or the device has been restarted, Touch ID will not provide
access to the phone, and instead a passcode is required. Additionally, Touch ID
can be disabled remotely using Apple’s Find My iPhone application [3]. Touch
ID allows for up to five fingerprints to be enrolled and allow access to the phone,
however the device’s passcode is required to enroll a new fingerprint in Touch ID
[4]. Touch ID can also be used for verification by third party applications. Third
party applications can use the system provided API to ask a user to authenticate
themselves via Touch ID.The application is only notified as to whether the Touch
ID authentication was successful or not, and the application cannot access Touch
ID or the data associated with the enrolled fingerprints. However, developers
of third party applications can set an option that requires that Touch ID API
operations do not fall back to a password or device passcode, meaning that a
user can have an unlimited number of Touch ID verification attempts with this
option [4].

3.2 Android Security

3.2.1 Architecture

The Android ecosystem is composed of an open source software project and
individual hardware implementations. Because the hardware and software is
separately controlled, the system architecture is not as tightly unified as it is
for Apple. Android provides a fingerprint hardware abstraction layer (HAL) as
an interface between hardware (sensors) and software (applications). Hardware
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Figure 1: This diagram shows how the different Android components and ser-
vices interact with eachother.

vendors are free to implement their own library that can communicate with the
fingerprint daemon. Applications use the FingerprintManager API to access the
services of the Fingerprint vendor library through the HAL.

3.2.2 Android Fingerprint Verification Process

An authenticate or enroll function call will trigger the fingerprint sensor to lis-
ten for a touch. The user then places their finger on the sensor and the vendor
library converts the sensed print into a template. If this was caused by an enroll
function call the template will be stored in a Trusted Execution Environment
(TEE). If this was caused by an authenticate function call the template will
be compared against the enrolled templates stored in the TEE. The results of
this comparison will be passed to the Fingerprint HAL by notifying the finger-
printd (the fingerprint daemon) [5]. Applications can access the results of the
fingerprint operation through the FingerprintManager API. The actual imple-
mentation and execution of enrollment and authentication is vendor specific.

3.2.3 Trusted Execution Environment

The Trusted Execution Environment (TEE) is a partitioned software environ-
ment with higher security. It is composed of an operating system running on a
processor that supports TEE, drivers for the Android (Linux) kernel for appli-
cations running on Trusty OS, and libraries that allow for the communication
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between applications inside and outside of the TEE [6]. TEE is the Android
equivalent of Apple’s Secure Enclave. Both the TEE and the Secure Enclave
work by isolating the authentication and storage of sensitive information away
from the rest of the general system. However, because Android is an open
source software platform there are variations in the actual implementation of
TEEs. The TEE OS is not required to run on a physically separate coproces-
sor. The Android specifications allow for the TEE OS to run on a sandboxed
virtualization of the main processor. This can work assuming that the memory,
registers, and fuses that the TEE OS can access are not accessible by general
Android processes. Any process running in the general Android OS that tries
to access these secret memory locations must delegate the operation to the TEE
OS. Allowing both the TEE and Android to run on the same physical hardware
presents a risk that improper implementation could lead to memory leaks.

Apple’s Secure Enclave provides a coprocessor specifically for fingerprint
authentication. Android’s TEE is more general and can conceivably run any
application that is developed for it. The TEE OS provides API’s for trusted ap-
plications to run on the TEE processor and general applications to use services
provided by the trusted applications. While there may be increased functional-
ity, this also presents the risk for software in the TEE to have access to privileges
that it doesn’t strictly need. The TEE should also be encrypted, but the choice
of TEE OS and implementation is determined by the vendor so there are no
guarantees on correct/consistent implementation.

One security feature that Android’s TEE has that Apple’s secure enclave
lacks is a validation of the TEE on every system boot. The bootloader signs
and verifies the TEE image on every boot. This prevents the modification of
the TEE between boots unless the bootloader is also modified.

3.2.4 Vulnerabilities

Despite the security features in Android’s Fingerprint specification there are
several vulnerabilities. The first are for timing attacks. The Android speci-
fications note that there will be time variations depending on the number of
templates stored on a single device [5]. There may also be time variations based
on how far through the matching process a template gets. This is likely device
specific as the actual implementation is vendor specific.

The second is for fingerprint backdoors [13]. The service that reports how
many templates are enrolled is separate from the authentication service in the
TEE. It is possible to display N enrolled templates to the user when in reality
greater than N templates are enrolled. The third is for fingerprint data storage.
While the Android specification has all sensitive data encrypted in the TEE,
in practice vendors may not implement encryption and store data in plain text
and outside the TEE [13].

The fourth is for fingerprint sensor exposure. The actual implementation of
sensing fingerprints, converting them into templates, and authenticating them
against enrolled templates is vendor specific. The Android specification has
all of this hidden in the TEE. However in practice vendors have used insecure
implementations with public API’s that allow general applications to scrape
data that should be hidden [13].

While Android has specifications for a secure system, ultimately the im-
plementation is up to the vendor which has been shown to result in insecure
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systems [11].

4 Security and Attack Models

To help understand potential threats for a biometrically-secured device we have
devised four different games that describe the different capabilities of an at-
tacker. In each game the attacker is considered successful if the biometrically-
secured device is easier to open than a device secured by a four digit passcode.

The first game we consider is the Physical Access Game. The Physical
Access Game is a two-stage game in which the adversary has physical access
to a finger that the fingerprint reader accepts. In the first stage, the examiner
provides physical access to the finger and the adversary is able to examine
the finger and make molds or take pictures. In the second stage of the game,
the examiner removes access to the finger. The adversary is allowed to use any
models or molds that were created in stage one. The adversary wins the Physical
Access Game if they are able to unlock the device with a higher probability than
randomly guessing a four digit passcode.

The next game we consider is the Full Visual Access Game. In the Full
Visual Access Game, the examiner provides high-resolution visual access to a
finger or access to high-quality fingerprints that can unlock the device. The
adversary can use any software (such as photo editing software or fingerprint
databases) or hardware (such as 3D or 2D printers) to create molds from visual
imagery of the finger. The adversary wins the Full Visual Access Game if given
full visual access, they are able to unlock the device with a higher probability
than randomly guessing a four digit passcode.

The third game we consider is the Partial Visual Access Game. In the Partial
Visual Access Game, the examiner provides partial fingerprints of a finger that
can unlock the device. The adversary can again use any software or hardware
to create molds from the partial visual imagery of the finger. The adversary
wins the Partial Visual Access Game if given access to partial fingerprints, they
are able to unlock the device with a higher probability than randomly guessing
a four digit passcode.

The last game we consider is the No Access Game. In the No Access Game
the adversary is given the device without any additional information about any
fingers that can unlock the device. The adversary wins the No Access Game
if they are able to unlock the device using the biometric sensor with a higher
probability than randomly guessing a four digit passcode.

We think that the appropriate game to choose depends on the application.
For example a company considering whether iPhones with biometric security are
secure enough for corporate phones with confidential data might only consider
devices that are unexploitable in the Partial Visual Access Game. On the other
hand consumers who might have financial information (such as Apple Pay) may
consider devices that are secure in the No Access Game satisfactory for their
needs.
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5 Attacks and Vulnerabilities

5.1 Adversarial Strategies to Proposed Games

We now describe potential attacks and strategies for the adversary to take in
each of the games that we described above. While the games described can
apply to any biometrically-secured device, in our discussion of attacks and vul-
nerabilities we focus on Apple and TouchID.

We first consider the Physical Access Game. In the physical access game
there are many documented attacks using molds using flour, wood glue, or play-
doh. We made several attempts to reproduce these attacks on both the iPhone
6 and the iPhone 6s but only our attempt on the iPhone 6s using wood glue
without a heat gun was successful. Current devices are definitely susceptible to
attacks where the adversary uses molds, and these attacks can be conducted by
an adversary at low cost. The refinement of checks to determine whether a real
finger is unlocking the phone, such as a temperature check, a finer conductivity
check, or an opacity check would limit the ability for an adversary to use common
materials as a mold.

We now consider potential attacks an adversary can make in the Full Visual
Access Game. While we were not available to procure conductive ink or similar
materials used in practice, there have been several documented attacks done by
security researchers. In order to fake a fingerprint from a high-resolution image
researchers are able to print the image using either conductive ink or graphene
dust to make a conductive cast that can be used to trick the sensor.

Depending on the quality of the partial prints, in the Partial Visual Access
Game an adversary can perform similar attacks that are possible in the Full
Visual Access Game.For example an adversary might be able to stitch together
partial imagery of a fingerprint using photo editing software to create an image
of a complete fingerprint. However, if this is not the case we consider new
vulnerabilities based on the underlying nature of human fingerprints.

Apple reports that with one fingerprint stored on a device, there is a 1 in
50,000 chance that a random fingerprint that is not the stored fingerprint will
pass verification by Touch ID [4]. However, there are many different types of
fingerprints, with the major three types being arch, loop, and whorl. Addition-
ally, according to Apple the categorization of fingerprint scan as one of these
three basic types is a part of the analysis of a fingerprint by Touch ID [3]. Thus,
we propose that the security of Touch ID is reduced when the type of the stored
fingerprint is known, as it would be if we had access to partial fingerprints such
as in the Partial Visual Access Game.

In the global population, it is estimated that 41% of people have a whorl
fingerprint, 53% of people have a loop fingerprint, and 6% of people have an arch
fingerprint [1]. Thus if the chance of a random fingerprint passing verification is
1 in 50,000, then reducing the candidates to randomly select from to only be the
fingerprints that are of the same type as the stored fingerprint will increase the
chance of the selected fingerprint passing verification. If the stored fingerprint
is an arch, then there is a 1 in 3000 chance of a random arch candidate passing
verification. Similarly, whorl candidates for a whorl stored fingerprint have a 1
in 20500 chance of passing verification, and loop candidates for a loop stored
fingerprint have a 1 in 26500 chance of passing verification. In all three cases, the
security of Touch ID is greatly reduced by knowing the type of fingerprint. For
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stored fingerprints of type arch, the chance of a random guess passing verification
is greater than the chance of a random guess passing verification for a four digit
passcode.

5.2 Other Types of Attacks

We now consider new attacks that can be used to weaken the security of
biometrically-secured devices.

5.2.1 Proposal for a Timing Attack to Determine Fingerprint Type

We propose an attack that could potentially reveal information about a stored
fingerprint given no knowledge of the fingerprint is provided to the attacker,
the same scenario as the No Access Game. For the purposes of this attack
we assume there is only one stored fingerprint. The fingerprint verification by
Touch ID uses the categorization of a fingerprint into one of the three major
types of arch, loop, and whorl, to determine if a scanned fingerprint is a viable
match to a stored fingerprint [3]. The full details of the verification algorithm
are private, as Apple has not released the verification algorithm to the public.
However, given that categorizing a fingerprint to a type is likely less computa-
tionally difficult than matching a full print, we propose that it may be possible
to determine the fingerprint type of the stored fingerprint by examining the
verification return times for failed matches. The core idea of this timing attack
is that if a fingerprint scan is not of the same fingerprint type as the stored
fingerprint, then the verification process will return a failure faster than if the
scan matches the type of the stored fingerprint. Given that an attacker has
five attempts to pass verification using Touch ID, it is feasible for the attacker
to test each of the three major types of fingerprints as this would require only
three attempts. Additionally, if the timing attack is successful in revealing the
type of the stored fingerprint, then the attacker’s chances of randomly selecting
a match go up significantly, as discussed above.

5.2.2 Timing Attack Results and Discussion

In attempting this timing attack, we used an iPhone 6 with the latest software
version, version 9.3.1, always with one stored fingerprint. We had three volun-
teers each with one of the three major different fingerprint types. We ran three
rounds of testing such that each fingerprint type was used for the stored finger-
print in a round. In each round we placed a non-matching print of each type
of fingerprint on the scanner and recorded the phone display at thirty frames
per second. The phone displays a visual indicator of four dots filling with color
when the fingerprint is scanned, and the words “Try Again” appear when the
verification process returns as a failure. In every test in all of the rounds seven
frames, or approximately 0.233 seconds, elapsed from the visual indicator of
fingerprint scanning to the visual indicator of verification failure. Our proposed
timing attack was unsuccessful with our setup. Future attempts at this timing
attack could be performed by recording at a higher frame rate to determine if
there is a noticeable difference in return time at the higher frame rates, which
may be possible.
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5.2.3 Shared Memory Attack

The security of the memory shared by the secure enclave and the application
processor is unspecified. While the full communication structure between these
two processors is not fully disclosed by Apple, it is stated that the two pro-
cessors only communicate through this shared memory and an interrupt-driven
mailbox [4]. Given that Touch ID can be used by applications on the phone
for verification, such as by banking applications, and that these applications
do not have direct access to the Secure Enclave, it must be that the Touch ID
verification result is communicated to the application processor via this shared
memory. A malicious third party program could potentially gain access to this
shared memory and overwrite the actual verification result such that Touch ID
verification would behave improperly. Given that the security of the shared
memory is unspecified, it is even theoretically possible that navigating to a
web page using a mobile browser on the device could allow for an attacker to
manipulate the shared memory, bypassing the need for the Apple account and
password of the owner of the phone to install new software. This attack was
not implemented as part of this paper as it would require modifying a device
to the point of voiding the warranty in order to fully explore the security of the
shared memory.

5.2.4 Third Party Vulnerability

Third party applications are allowed to use an API provided by Apple for using
Touch ID to allow the phone’s owner to sign in to their accounts with the third
party application. However, the option of limiting the number of unsuccessful
fingerprint verification attempts before requiring a password is left to the de-
velopers of the third party application. This creates a potential vulnerability in
Touch ID’s security as now the security promised by Touch ID’s limited number
of guess attempts is now dependent on the choice of a third party developer.
Additionally, if an adversary were to gain access to an unlocked device for a
brief period of time with a third party application that did not limit the num-
ber of Touch ID attempts already installed on the device, then the attacker
would be able to brute force test many random fingerprints until finding a print
that matches the device owner’s. This would then provide the attacker with
full access to the phone at all times, even after the initial window of permitted
access ended.

6 Conclusions

While in recent years Apple and other companies have embraced biometric
security as a more usable password, we believe there are serious security concerns
that inhibit biometric security from being deployed in a widespread manner
as the systems are implemented currently. Users can be compromised if an
attacker that has a high resolution camera and can get within three feet of
a target. Unlike traditional passwords once a user’s biometric credentials are
compromised, they are compromised forever.

Apple’s approach to biometric security introduced Touch ID. With Touch
ID, Apple began requiring longer passwords of at least six digits instead of the
default four digit passcode length that existed previously. The use of touchID
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maintains ease of access to the device for the device owner, because users can
unlock their phones with a quick tap of the finger; however, this introduction
of fingerprint verification opened up new potential vulnerabilities that weaken
security for Apple devices, to the point where the device may be less secure than
if it was guarded by a four digit passcode.

Having any knowledge of a fingerprint has the potential to allow an attacker
to gain access to the phone or at least have a better chance than 1 in 50,000
of unlocking the phone through fingerprint verification. Additionally, the de-
signs published by Apple are very vague at best and lack specifics, thus there
are potentially unaddressed security concerns such as the security of the shared
memory between the Secure Enclave and application processor. Given the avail-
able information on Touch ID and the vulnerabilities proposed and tested in this
project, it is clear that the inclusion of Touch ID poses security risks and opens
up the potential for new attacks.

Apple attempts to mediate these risks via protocols for disabling Touch
ID, disabling access through fingerprint verification after 48 hours of the phone
being locked, after five failed access attempts, or after a remote signal to disable
Touch ID that a user can send if they have lost their phone. Full analysis on the
security provided by Apple’s Touch ID faces challenges due to Apple’s restriction
of information such that key parts of the design are private to Apple, such as the
actual fingerprint verification algorithm. Full disclosure of these system design
details would allow for a thorough evaluation of the actual security provided by
Touch ID.

Android devices have also turned to using biometric checks in many of the
phones currently on the market. Like their Apple counterpart, the systems used
to implement these biometric checks are vulnerable to a user with any knowledge
of the device owner’s finger, and, even without this, Android’s own specs note
the time variations in their system opening the door for timing attacks.

Biometric security, at its best, allows for mobile device users to quickly and
securely access their device without the constant hassle of having to input a
long password. In current systems, however, this best case just simply doesn’t
happen. With the myriad of vulnerabilities seen in both Apple and Android
devices related to how their biometric checks are implemented, current mobile
systems only accomplish the bare minimum of what is possible with this tech-
nology, but perhaps they pave the way for the best case to be something we see
in the future.
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