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Abstract

Homomorphic Encryption yields deliberately malleable ciphertext, allowing operations on encrypted
data. We outline and implement a homomorphic encryption scheme as suggested by Zhou and Wornell
[1] that encrypts integer vectors to allow computation of arbitrary polynomials in the encrypted domain
with a bounded degree. This finds applications particularly in cloud computation, when one is interested
in learning low dimensional representations of the stored encrypted data.

With our optimizations to the scheme, we find that it is orders of magnitude faster than HELib, an
implementation of fully homomorphic encryption, but in turn a few orders of magnitude slower than
operations on unencrypted data. This makes the scheme nearly viable for practical use, which we give
basic implementations of such applications as search and classification on encrypted data.

1 Introduction

With more and more data available on the cloud, big data analysis becomes ever more promising. However,
for many applications, storing sensitive data in third-party sites raises privacy concerns. While clients can
store encrypted data remotely and pull a selection of the data when needed, network constrains often make
it infeasible for the clients to pull the entire data set from the cloud and perform the computation on their
own. Therefore, to fully harness the power of the cloud, the cloud must do more than merely storing the
data.

1.1 Motivation

While non-malleability is an important aspect for encryption for network security –that no one should
be able to feasibly modify ciphertexts to encrypt different but related data– many situations arise in which
performing computations on data in encrypted form is valuable, as in the case of cloud computing mentioned
above. In particular, for multiparty computation in which several parties cooperate to compute a function of
their data, it becomes useful to be able to maintain the secrecy of both the data involved and the function
being computed.

For instance, suppose we have stored our encrypted data on a third-party cloud storage site (“the cloud”),
and we want to compute a low-dimensional function of our data, such as search queries or obtaining features
of items. To avoid streaming the entire data set from the cloud, we need the ciphertext to be malleable,
so that the cloud can compute our lower-dimensional function and send us only the relevant information.
Homomorphic Encryption solves this problem elegantly.
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Homomorphic Encryption schemes give methods for encrypting plaintext so that operations on the ciphertext
translate into operations on the plaintext. That is, given ciphertext c for plaintext x and a function f(·),
we can find a new ciphertext c′ for some related plaintext f(x) without decrypting x. We shall discuss this
notion further in Section 2.

1.2 Our Contributions

In this paper, we examine the Homomorphic Encryption scheme given by Zhou and Wornell in [1], which
we have implemented and on top of which we built several real life applications, as we shall discuss. This
scheme allows the encryption of integer vectors whilst supporting vector addition, linear transformation, and
weighted inner products in the encrypted domain. The scheme provides a mechanism for switching secret
keys without revealing the old or new secret key, and uses this observation to implement the supported
operations. The infeasibility of recovering secret keys is based on the conjectured hardness of the Learning
with Errors (LWE) problem, as we shall discuss in Section 3.3.

In this scheme, the party describing the function to compute on the data needs to know its secret key,
while the party performing computations on the ciphertext only learns the types of operations in use: the
coefficients of the particular linear transformation or inner product weights are kept hidden. As such, the
scheme is suited to applications that involve a cloud server with a huge amount of data, and a client who
wants to make hidden queries on the data. The cloud will not learn the nature of the data or the particular
query, and network costs are minimized for repeated computation of the same function: the client can send
one description of the computation for the cloud to apply to all required data items, and the cloud need only
send the encrypted results back, which are typically low-dimensional.

In the following sections, we aim to (1) give a brief overview of current results in Homomorphic Encryption,
(2) an in-depth understanding of the scheme in [1], and (3) an analysis of the scheme in practice. We begin
with an overview of fully and partially homomorphic encryption schemes in Section 2. Next, in Section
3, we describe Zhou and Wornell’s approach and the methods for performing operations in the encrypted
domain. Section 4 then gives applications of the scheme. Finally, Section 5 describes our implementation
of the scheme and its performance, including optimizations for performing linear transformations and our
implementation of search and classification on encrypted data.

2 Homomorphic Encryption

The idea of Homomorphic Encryption was first introduced by Rivest et al. [4] in 1978. In the paper,
they presented an application of Homomorphic Encryption and posed the problem of creating a secure
Homomorphic Encryption scheme that supports a large set of operations. A Homomorphic Encryption
scheme is defined to be Fully Homomorphic if it supports computation of arbitrary functions in the encrypted
domain, while a Partially Homomorphic Encryption scheme only supports a limited subset of functions that
can be computed in the encrypted domain. Because of the complexity of Fully Homomorphic Encryption
schemes, Partially Homomorphic Encryption schemes are usually orders of magnitude faster than Fully
Homomorphic Encryption schemes. We shall now introduce examples of both types of schemes.

2.1 Partially Homomorphic Encryption

There are many Partially Homomorphic Encryption schemes adapted from popular Public-key cryptography
schemes. For example, Unpadded RSA [7] and ElGamal [8] are great examples of Partially Homomorphic
Encryption schemes. We present the adaptation of RSA and ElGamal below.
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2.1.1 Unpadded RSA

We show that the Unpadded RSA encryption scheme [7] can be used a Partially Homomorphic Encryption
scheme supporting multiplication in the encrypted domain. Given an RSA public key (n, e) and two plaintexts
x1 and x2 we observe,

Enc(x1) · Enc(x2) ≡ xe1 · xe2 mod n

≡ (x1 · x2)e mod n

≡ Enc(x1 · x2) mod n

Hence, to compute multiplication in the encrypted domain for RSA, we just need to multiply the ciphertexts
to obtain our new ciphertext.

2.1.2 ElGamal

We now show that the ElGamal encryption scheme [8] can also be used a Partially Homomorphic Encryp-
tion scheme supporting multiplication in the encrypted domain. Assume we have an ElGamal public key
(G, q, g, h) and secret key s where G is a cyclic group with order q, generator g and h = gs. For two plaintexts
x1, x2 ∈ G encrypted with random r1, r2 ∈ {0, 1, . . . , q − 1} we observe,

Enc(x1) · Enc(x2) = (gr1 , x1 · hr1) · (gr2 , x2 · hr2)

= (gr1+r2 , x1x2 · hr1+r2)

= Enc(x1 · x2)

Hence, to compute multiplication in the encrypted domain for ElGamal, we again just need to multiply the
ciphertexts to obtain our new ciphertext.

2.2 Fully Homomorphic Encryption

It was not until 2009 that a Fully Homomorphic Encryption scheme was first developed by Gentry [5]. The
secrecy behind most existing Fully Homomorphic Encryption schemes is based on the Learning with Errors
(LWE) problem, described in detail in Section 3.3. The scheme described in Gentry [5] supports addition
and multiplication. This allows the scheme to support arbitrary functions by converting the function into a
circuit of additions and multiplications. To ensure that error does not increase too much such that it affects
the correctness of decryption, the scheme will periodically perform a bootstrap operation to reset the error.
This is done by homomorphically applying the decrypt algorithm on the ciphertext. Hence, this procedure
enables the scheme to handle arbitrarily many additions and multiplications in the encrypted domain while
still maintaining correctness.

Figure 1 illustrates most Homomorphic Encryption schemes, including Gentry’s scheme. Since the function
we are interested in computing needs to be converted into a circuit, it is necessary that the function be
available to the cloud in unencrypted form.

Schemes based on LWE that do not support bootstrapping are called “Somewhat Homomorphic Encryption
schemes,” as they can only perform a limited number of operations before the error becomes too large. The
scheme examined in this paper is a Somewhat Homomorphic Encryption scheme.
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Figure 1: Most Homomorphic Encryption schemes: The cloud has access to the function f , and the client
sends encrypted x to the cloud for computation.

Figure 2: The scheme proposed by Zhou [1]. The cloud computes f(x) without knowing either x or f(·).

3 Homomorphic Encryption for Integer Vectors

As introduced in Section 1.2, the scheme proposed by Zhou and Wornell [1] allows for computation on en-
crypted data while maintaining the secrecy of the function, approaching Homomorphic Encryption differently
from schemes described with Figure 1. This new scheme is illustrated in Figure 2, where the client encrypts
both x and f(·), and the cloud computes f(x) without knowing either x or f(·).

We now present the scheme in full detail, describing the set of operations it supports as well as proving its
correctness. We first introduce some useful notations:

Definition 3.1. For a ∈ R, define dac to round a to the nearest integer.

Definition 3.2. For vector a ∈ Rn, define dac to round each entry ai of a to the nearest integer.

Definition 3.3. For vector a = [a1, . . . , an]T ∈ Rn, define |a| := maxi{|ai|}.

Definition 3.4. For matrix A ∈ Rn×m, define |A| := maxi{|Aij |}.

Definition 3.5. For matrix A ∈ Rn×m, define vec(A) := [aT
1 , . . . ,a

T
m]T where ai is the ith column of A.

Now we are ready to present the scheme. For plaintext vector x ∈ Zm and a secret key S ∈ Zm×n, a
ciphertext c ∈ Zn is a vector that satisfies

Sc = wx + e (3.1)

where w is a large integer and e is an error term with elements smaller than w
2 . We further assume that

|S| � w. This will be important in keeping the error term small later when applying operations in the
encrypted domain.
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With knowledge of S, decryption is straightforward:

x =

⌈
Sc

w

⌋
(3.2)

An important concept used to implement the operations in the encrypted domain is key switching. Given S
and c, we want to change to new chosen secret key S′ and a corresponding ciphertext c′. Given a procedure to
do this, encryption becomes straightforward. We take wI to be a “secret key” and x to be the “ciphertext”,
as (wI)x = wx is of the required form with a zero error term. Then we can perform a key switch from wI
to some chosen S, and obtain our ciphertext.

We now describe how to perform key switching, and then how to perform the fundamental operations in the
encrypted domain: addition, linear transformation, and weighted inner products.

3.1 Key Switching

Key switching allows changing a secret-key–ciphertext pair to another one with a chosen secret key while still
encrypting the original plaintext. As we shall see, key switching simplifies the implementation and analysis
of many of our operations.

Suppose the plaintext x ∈ Zm is currently encrypted as c ∈ Zn with secret key S ∈ Zm×n, and we want a
new ciphertext c′ ∈ Zn′

with a new secret key S′ ∈ Zm×n′
such that

S′c′ = Sc (3.3)

We shall divide this into two step: converting c and S into an intermediate bit representation c∗ and S∗, then
switching the bit representation into the desired secret key. We note that by using the bit representation,
we keep the magnitude |c∗| := max{|ci|} to be 1. This will prevent the error term e′ from increasing too
much, which preserves the correctness of the decryption.

Step 1. We choose ` such that |c| < 2`. Then, we can write each ci in their bit representation bi =
[bi(`−1), . . . , bi1, bi0]T such that bik ∈ {−1, 0, 1}, and let

c∗ = [bT
1 , . . . ,b

T
n ]T (3.4)

For example, the vector c = [1,−3] will be written as c∗ = [0, 0, 1, 0,−1,−1] if ` = 3.

Next, we construct the matrix S∗ by changing each Sij in the original secret key into the vector

Bij = [2`−1Sij , . . . , 2Sij , Sij ] (3.5)

For example, a secret key

S =

[
1 2
5 4

]
will give

S∗ =

[
4 2 1 8 4 2
20 10 5 16 8 4

]
such that we preserve

S∗c∗ = Sc

Step 2. With the bit vector representation, we are now ready to convert this into the new secret-key–
ciphertext pair. We now construct the “key-switch matrix” M ∈ Zn′×n` which satisfies

S′M = S∗ + E (3.6)
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For ease of implementation, we limit our discussion to new secret keys in the form S′ = [I, T ], the
identity matrix concatenated with some matrix T . Hence, we take M such that

M =

[
S∗ − TA+ E

A

]
(3.7)

where A ∈ Z(n′−m)×n` is a random matrix and E ∈ Zm×n` is a random noise matrix. We then define

c′ = Mc∗ (3.8)

and we can see that
S′c′ = S∗c∗ + Ec∗

where Ec∗ = e′ is the new error with |e′| kept small, because |c∗| = 1 by construction and E can be
randomly generated with |E| small.

3.2 Operations

In addition to the three fundamental operations described above, we also supports three operations over the
encrypted domain, namely addition, linear transformation, and weighted inner product.

3.2.1 Addition

For plaintexts x1,x2 and their corresponding ciphertexts c1, c2 that are encrypted with the same secret key
S, we observe that

S(c1 + c2) = w(x1 + x2) + (e1 + e2)

Hence to add to plaintexts x1,x2 in the encrypted domain, we add the original ciphertexts c1 and c2 given
that they are encrypted with the same secret key. Therefore, the new ciphertext is

c′ = c1 + c2 (3.9)

and the secret key remains the same. It is clear that the overhead for the addition operation is proportional
to the difference between the length of the ciphertext and the length of the plaintext. In our case, since the
secret key is going to be the identity concatenated with a thin column matrix T , the ciphertexts should only
be 1 bit longer than the plaintexts. This results in negligible overhead.

3.2.2 Linear Transformation

For plaintext x and its corresponding encryption c by secret key S, we can compute a linear transformation
Gx by an arbitrary G ∈ Zm′×n by observing that

(GS)c = wGx +Ge

Hence, we can treat c as an encryption of Gx by secret key GS. Then, the client can compute the key-switch
matrix M ∈ Z(m′+1)×(m′`) to switch the key from GS to an S′ ∈ Zm′×(m′+1) of their choice, and send M to
the cloud. The cloud computes

c′ = Mc (3.10)

This key-switch procedure reduces the dimension of the ciphertext to m′+ 1, reflecting the dimension of Gx.

The overhead in this calculating the linear transformation comes from the key switch operation, which has
an overhead of ` times the original cost, where ` is the number of bits used in the bit vectorization in key
switching.
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3.2.3 Weighted Inner Products

To perform weighted inner products, we need the following lemma that allows us to consider the operation
as the a matrix-vector product. Let vec(M) be a vectorized form of a matrix M , as defined in Definition
3.5, where we concatenate the columns of M into a vector with the same number of entries. Then we have
the following:

Lemma 3.6. For any vectors x,y and matrix M of matching dimensions,

xTMy = vec(M)T vec(xyT )

Proof. We expand out the right hand side to obtain

vec(M)T vec(xyT ) =
∑
i

∑
j

Mijxiyj

=
∑
j

(∑
i

xiMi

)
j

· yj

=
∑
j

(xTM)jyj

= xTMy

Now, suppose we have some x1 and x2 encrypted as c1 and c2 with secret keys S1 and S2. Specifically,
S1c1 = wx1 + e1 and S2c2 = wx2 + e2. We can compute a weighted inner product xT

1Hx2 in the encrypted
domain by the following proposition:

Proposition 3.7. Secret key S = vec(ST
1 HS2)T and ciphertext c =

⌈
vec(c1c

T
2 )

w

⌋
correspond to plaintext

x1Hx2. That is, for some new error term e:

vec(ST
1 HS2)T

⌈
vec(c1c

T
2 )

w

⌋
= wx1Hx2 + e

Proof. First, we will ignore the division by w and directly evaluate the product above. Using Lemma 3.6,

vec(ST
1 HS2)T vec(c1c

T
2 ) = cT1 S

T
1 HS2c2

= (S1c1)TH(S2c2)

= (wx1 + e1)TH(wx2 + e2)

= w2xT
1Hx2 + w(xT

1He2 + eT
1Hx2) + eT

1He2

By assumption, we can choose w large such that the sum of the entries of H is much less than w, so
eT
1He2 ≤ |e1||e2|

∑
Hij � w. Thus, dividing the whole expression by w and rounding gives us⌈

vec(ST
1 HS2)T vec(c1c

T
2 )

w

⌋
= wxT

1Hx2 + xT
1He2 + eT

1Hx2

= wxT
1Hx2 + e′ (3.11)

where e′ is an error term with |e′| � w because |x1|, |x2| � w.
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We now consider the left hand side of (3.11). Let a1, a2, · · · , ak ∈ Z and b1, b2, · · · , bk ∈ Z be such that
[a1, a2, · · · , ak]T = vec(ST

1 HS2) and [b1, b2, · · · , bk]T = vec(c1c
T
2 ). Then,⌈

vec(ST
1 HS2)T vec(c1c

T
2 )

w

⌋
=

⌈∑
i aibi
w

⌋
=

k∑
i=1

⌈
aibi
w

⌋
+ e′′ (3.12)

where e′′ is an error term with |e′′| ≤ k � w. Since the entries in S1, S2, and H are all � w, we can deduce
that ai � w for all i ∈ {1, 2, . . . , k}.

Let q1, q2, . . . , qk ∈ Z and r1, r2, . . . , rk ∈ Z be such that bi = qiw+ri with 0 ≤ ri < w for all i ∈ {1, 2, . . . , k}.
Hence, we have

k∑
i=1

⌈
aibi
w

⌋
=

k∑
i=1

⌈
ai(qiw + ri)

w

⌋

=

k∑
i=1

(
aiqi +

⌈airi
w

⌋)
=

k∑
i=1

aiqi + e′′′

=

k∑
i=1

ai

⌈
bi
w

⌋
+ e′′′ (3.13)

where e′′′ is an error term with |e′′′| <
∑

i ai � w. Combining (3.11), (3.12), and (3.13),

wxT
1Hx2 =

⌈
vec(ST

1 HS2)T vec(c1c
T
2 )

w

⌋
− e′

=

k∑
i=1

⌈
aibi
w

⌋
+ e′′ − e′

=

k∑
i=1

ai

⌈
bi
w

⌋
+ e′′′ + e′′ − e′

= vec(ST
1 HS2)T

⌈
vec(c1c

T
2 )

w

⌋
− e

where e = e′ − e′′ − e′′′ is the new error term, with |e| ≤ |e′| + |e′′| + |e′′′| � w by the triangle inequality.
Hence, the smallness of the error term is satisfied, and the following holds:

vec(ST
1 HS2)T

⌈
vec(c1c

T
2 )

w

⌋
= wxT

1Hx2 + e

Since vec(ST
1 HS2)T is a row vector, we can group m′ such row vectors, each with different H’s, into a matrix

S′, and we can calculate multiple inner products with different weight matrices {Hj}m
′

j=1 with one operation.
The height m′ of the secret key S′ is thus the number of different weighted inner products we are interested
in computing, and the width of S′ is n2 because of the vectorize operation.

Taking the weighted inner product of two vectors increases the dimension of the the ciphertext from n to
n2. However, we can use the key-switching technique to bring the dimension down to a more manageable
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size, eg. m′ + 1. Thus, the client can compute the key-switch matrix M ∈ Zn2×(m′+1) which switches from
secret key S′ to some S′′, making the final ciphertext

c′′ = M

⌈
vec(c1c

T
2 )

w

⌋
(3.14)

with secret key S′′ ∈ Zm′×(m′+1).

The runtime of the operation is is O(n2m′`) for both the client and the cloud, where ` is the number of bits
needed to represent the ciphertext and m′ is the number of different weight matrices we are considering.
This runtime corresponds to an ` time overhead, the same as that of linear transformation.

3.2.4 Polynomial

The three fundamental operations (addition, linear transformation, weighted inner product) are sufficient
to produce arbitrary polynomials of our choice. The key component to synthesizing polynomials is the
weighted inner product operation, which we shall apply with a slight modification to allow for polynomials
with inhomogeneous degrees. Consider the plaintext vector x = [x1, · · · , xn]T , which we extend to x′ =
[1, x1, · · · , xn]T . This new plain text correspond to the new ciphertext

c′ := [w, cT ]T

with secret key

S′ :=

[
1 0
0 S

]

Hence, to calculate polynomials of degree 2, we simply need to take the inner product

(x′)TH(x′)

for appropriately chosen H, and we can operate on with minimal modifications the the existing data, the
method for which is described above. For example, calculating the polynomial f(x) = x22+3x1x2−2x1+x2+3
can bre expressed as an weighted inner product (x′)TH(x′) with x′ = [1, x1, x2] and

H =

3 −2 1
0 0 3
0 0 1


Further, to calculate a polynomial of degree d, the cloud can parallelize the operations, taking O(log d · n3)
time for n variables.

We note that the overhead of this operation comes mainly from calculating the key-switch matrices on
the client side for each of the inner products, proportional to the degree of the polynomial. However, the
key-switch matrices only needed to be calculated once for each secret key, and subsequently the cloud can
operate with the same matrices on different vectors. Thus, this client-side overhead is justifiable if the same
polynomial is to be evaluated on many different values.

In addition, applying weighted inner products operations causes the biggest increase in the error term which
needs to have magnitude less than w

2 in order for successful decryption. Because of the lack of an error
resetting operation, this scheme does not allow for arbitrarily many operations on the data. Hence, we have
shown that we are able to compose arbitrary polynomials using a the three fundamental operation that this
scheme supports. However, w needs to be chosen to be sufficiently large taking into account the number of
weighted inner product operations required for the application.
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3.3 Secrecy

An important feature of the homomorphic encryption scheme we are considering is the secrecy of f , the
function that the clients send to the cloud. As we have seen, the encryption of the function f is the
key-switch matrix M that the client sends to the cloud, and it is important that M does not reveal any
information of the coefficients of the linear transformation or the weighted inner product, other than their
degree. The secrecy of the scheme relies on the conjectured hardness of an open problem called “Learning
with Errors” [6], which we shall formulate now.

Definition 3.8. Learning with Errors (LWE) Problem.
Given polynomially many samples of (ai, bi) ∈ Zm

q × Zq with

bi = vTai + εi (3.15)

where the error term εi ∈ Zq is drawn from some probability distribution χ, it is infeasible to recover the
vector v ∈ Zm

q with non-negligible probability.

Theorem 3.9. If Learning with Errors (LWE) is hard, then it is infeasible to recover S′ from Equation 3.6

S′M = S∗ + E

given access to M and S∗.

Proof. We shall reduce this problem to LWE. Suppose that we have a solver for (3.6). We treat each of the
elements in the matrices, which are in Z, to be elements of Zq for some prime q � max{|S′|, |M |, |S∗|, |E|}.
Then, consider the special case when S′ = (s′)T is a row vector with dimension n, meaning S∗ = s∗ and
E = e are also row vectors of dimension n. Then translates to having access to mi and s∗ in

(s′)Tmi = s∗ + e

ie. we have access to n samples of (mi, s
∗
i ) in

s∗i = (s′)Tmi − ei (3.16)

Then, we can apply our solver to solve (3.16) for s′, which is equivalent to solving (3.15) for v.

Hence, if LWE is hard, solving (3.6) for S′ is also hard.

Therefore, given the conjectured hardness of LWE, it is infeasible to recover the new secret key S′ with
the key-switch matrix M . Thus the cloud, as well as any adversaries who intercepted our communications
with the cloud, will not be able to recover the secret key S, the plaintext x, as well the G of our linear
transformation or the H of our weighted inner products. This completes the proof of the secrecy of the
scheme.

4 Applications

We now introduce a few application scenarios of this scheme. The basic format we use is that there is a
client who stores data on the cloud in the form of integer vectors, as illustrated in Figure 2. The client then
wants to know some function of the vectors without revealing the function to the cloud. This is directly
supported by the fundamental operations of the scheme. Further, the data on the cloud can be encrypted
with a secret key known only to the client such as in cloud storage applications, thereby hiding user data
from third parties. We shall now look at three such applications.
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4.1 Classification

A scenario for which this scheme is useful is when the client stores encrypted integer vectors on the cloud and
would like to perform a classification task. The client is then able apply polynomial classifiers using weighted
inner products as described in Section 3.2.4. Using this scheme, we are able to support some of the most
popular machine learning algorithms such as Naive Bayes or Support Vector Machines with a polynomial
kernel.

4.2 Search

Another scenario would be that the client stores encrypted integer vectors representing features of documents
on the cloud. In addition, the client has a relevance function that is a polynomial in each vector which they
send to the cloud for computation. This way, the client’s search query remains hidden from the cloud as it
evaluates it on each document.

4.3 Feature Extraction

We can generalize classification to give a low dimensional representation of data vectors, which will conserve
bandwidth over simply querying all the files. For example, the client stores encrypted long vectors repre-
senting images on the cloud and would like to get a feature of the image. The client could then perform
a linear transformation on the data using a feature matrix. This allows them to learn a low dimensional
representation of the data while not letting the cloud know anything about the data or the feature that they
are interested in.

5 Implementation

To examine how applicable the scheme of [1] is to real-world applications, we implemented a library in
C++ that handles the described operations in the encrypted domain: addition, linear transformation, and
weighted inner products. We used the NTL library for linear algebraic operations, coupled with GMP for
large integer arithmetic. We will give performance analysis of the operations in practice, and describe our
implementation of two applications on top of the scheme: search and classification. A copy of our code is
available on https://github.com/jamespayor/vector-homomorphic-encryption for reference.

5.1 Performance

In evaluating the performance of the scheme, we were primarily interested in the overhead that operations
on ciphertext introduces over operations on plaintext, and how this overhead compares to that of fully
homomorphic encryption. We will start with a brief theoretical analysis, and then give results of our tests.

5.1.1 Theoretical Overhead

When describing each of the operations, we noted that the ciphertext can be just slightly larger than the
plaintext (e.g. one or two entries larger), and that key-switch matrices force us to use matrices that are a
factor of ` larger for linear transformation and inner products. So after the key-switch matrices required for
a series of operations are computed, we should expect an O(`) slowdown over operations on plaintext (and
no slowdown for addition).
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Computing the key-switch matrices is another matter entirely though. To perform an n× n linear transfor-
mation G in the encrypted domain, we need to find the new secret key GS through matrix multiplication,
which cannot be done in better time than Ω(n2.8) in practice at the moment. Similarly, to compute the key-
switch matrix for a weighted inner product xT

1Hx2, we need to find ST
1 HS2. So if we deal with dimension

in the thousands, we should expect at least two orders of magnitude of slowdown in computing key-switch
matrices (over just performing the computation on plaintext).

In practical applications, a series of key-switch matrices for a series of operations can be reused to apply the
same operations to many different ciphertext vectors. For instance, we ran the operations on 200 different
vectors in the applications we implemented, and we can expect this number to be much higher in realistic
cloud applications. Referencing the view of the scheme of Figure 2, the key-switch overheads are paid as a
one-off cost by the client, and then the cloud pays the factor of ` overhead for each linear transformation or
inner product operation it executes. This division of work should be kept in mind in designing applications,
but note that the key-switch overhead is quickly amortized away as the number of ciphertext vectors processed
by the cloud increases.

5.1.2 Test Results

First, note that we found that addition introduces negligible overhead, and that the time to perform an
inner product was virtually equivalent to linear transformation by a square matrix. Bearing this in mind,
we examine the performance of applying an n × n linear transformation to an n-dimensional vector to
characterize the performance of our implementation.

As discussed before, we will typically use a single key-switch matrix to apply an operation to several ciphertext
vectors in practice, so to replicate this we consider the time that the vector encryption scheme takes to
generate a key-switch matrix for a linear transformation and to apply it to 50 ciphertext vectors. So we
amortize the initial overhead over 50 operations in the following analysis. In practice we would expect to be
dealing with at least hundreds of ciphertext vectors, so the assumption is reasonable.

To test the relative performance of our somewhat homomorphic scheme against fully homomorphic encryp-
tion, we tried comparing our running times to that of HElib, a library hosted on Github that implements the
BGV scheme [9] with optimizations, as well as optimized primitive operations. HElib uses NTL and GMP
internally (open source numeric libraries), as does our implementation.

It was very difficult to tailor the size of the vectors of HElib (as this depended implicitly on the group
parameters given as inputs), and the largest size we could achieve was 88 element vectors. (HElib is far from
practical applications, but does give an interesting reference point to fully homomorphic encryption.) The
parameters we gave to HElib allowed for plaintext size of 4 bits, and the security parameters were low. To
compare to Zhou’s scheme, we set w = 212 and ` = 16, and bounded the error matrix entries to be 0 − 1.
The performance comparison is given in Figure 3, in which we compare the time to apply random n × n
linear transformations using each scheme.

We were also interested in the overhead our scheme introduces over operations on plaintext. This comparison
is given in Figure 4, where we compare the time that an n× n linear transformation takes NTL to compute
against operations in the encrypted domain (which also use NTL for linear algebra). We give times for
parameters that support 4-bit and 32-bit plaintext. To handle 32-bit plaintext values, we used w = 240 and
` = 100, with error matrix entries at most 10. We expected to take O(`) longer in the encrypted domain
(100 times longer for 32-bit numbers, and 16 times longer for 4-bit numbers), so we give the same plot scaled
by the relevant values of ` in Figure 5.

As shown, we found that HElib has much poorer constant factors than our implementation, appearing to be
roughly an order of magnitude slower (assuming it would scale quadratically if we could work out how to
have larger vectors). Further, our implementation takes almost exactly ` times longer to perform operations
in the encrypted domain than it would take to perform them on plaintext.
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Figure 3: Performance comparison of matrix-vector multiplication in the encrypted domain for HElib and
the Vector Encryption scheme.

Figure 4: Performance comparison of matrix-vector multiplication in the encrypted domain with in the
unencrypted domain.
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Figure 5: Performance comparison of encrypted versus unencrypted operations, scaled by `, the theoretical
overhead.

5.2 Search and Classification Applications

Having implemented the operations of the scheme, we built two applications on top of it: email search and
spam classification. We used the Enron email dataset, storing on our cloud server encrypted email and
encrypted feature vectors (integer vector representations of each email), with the client holding the secret
keys. We allowed the client to query the server for functions of the feature vectors, and built example query
functions for search relevance and spam classification. The client was also able to query the server for raw
email data, to be able to act on results it finds.

To choose a feature vector representation of emails, we need to choose features that can effectively be used
in polynomial models (so that we can make use of them with the allowed operations), and we also need them
to be low-dimensional, due to the quadratic dependence the operations have in dimension. We made use
of simple linear models, and so chose feature vectors to have the relative word counts of the most common
3000 words (that were not “stop words” like “and”). (This is a TF-IDF representation, and we scaled up
the values to be integers in [0, 1000].)

Although having 3000-dimensional feature vectors made it expensive to compute key-switch matrices on
the client side, we were able to keep the final key-switch matrices small in size because we only needed
low-dimensional output. The overall network traffic in each application was around 5 integers per email on
the server. It takes the client somewhere between 10 and 20 seconds to generate the key-switch matrices for
its query, and then the server around the same time to apply them to all of the feature vectors sequentially.
(The server allowed queries on 200 emails.)

To compute search rankings, for each email we added together the weighted counts of words in our search
query, implemented with a 1 × 3000 linear transformation. (This is equivalent to a naive-bayes theoretical
model.) The client takes a given query, computes the key-switch matrix necessary to apply the transforma-
tion, and sends this to the server. The server applies the transformation to all feature vectors, sending back
a list of the low-dimensional results, which the client decrypts. The client then has scores for each document,
and can proceed to show the user the ordering or make further queries. More complicated query functions
are possible, but this worked nicely.
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For spam classification, we took a similar approach, training a linear model (again theoretically equivalent
to naive-bayes) to find likelihoods that a given feature vector corresponds to a legitimate or spam email.
This was sufficient to correctly classify 95% of spam, but in instances where a linear model is not enough we
can begin to rely on precomputed features, or on machine learning methods that learn polynomial models
instead (e.g. using a polynomial kernel for a SVM).

We learn from implementing these applications that given good models which do not require large feature
vectors, it is feasible to run queries on encrypted data in practice. Any realistic cloud application will
particularly benefit from evaluating queries in parallel, allowing the server to run the desired operations
on many items, and also benefit from the ability to train stronger models that can tolerate an order of
magnitude fewer dimensions than ours, so we can expect faster query times than in our implementation.
It is also interesting to note is that in addition to the server being unable to learn about the data or the
specifics of the queries, it cannot even distinguish between search and spam queries - all the server can learn
is the degree of the polynomial being evaluated.

6 Conclusion

The ability to compute on encrypted data holds the future of cloud computing. By taking advantage of the
conjectured hardness of the Learning with Errors problem, Zhou and Wornell [1] have devised a “Somewhat
Homomorphic Encryption scheme” that enables computation of encrypted functions on encrypted data.

The approach of the scheme naturally lends itself to modern cloud storage, where we expect users to have
their data stored across servers and to want to be able to make private queries. The viability of this
scheme, hiding both queries and data whilst being almost feasible in practice, certainly warrants further
investigation. That this scheme can achieve orders of magnitude less slowdown than Fully Homomorphic
Encryption highlights an interesting point about the trade-off between performance and the computation
supported. It seems likely that when Fully Homomorphic Encryption is not strictly required in practice, it
may be more effective to rely on restricted schemes, like the “Somewhat Homormophic” examined in this
paper. It is certainly the case that a lot in practice can be achieved just with the operations supported. Even
with just support for linear transformations we can achieve viable search and classification over encrypted
data, and we can imagine using more complicated models that rely on more general polynomial computation
using this scheme.

It would be interesting to see Zhou’s scheme improved to have better dependence on `, currently having a
linear slowdown in the number of bits, and it would be exciting if this scheme could be extended to support
Fully Homomorphic Encryption, for the scheme is definitely a promising candidate for real-world application
of Homomorphic Encryption.
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