
Massachusetts Institute of Technology

Honey Encryption Applications
Implementation of an encryption scheme resilient to brute-force attacks

Authors:
Nirvan Tyagi [ntyagi]
Jessica Wang [jzwang]
Kevin Wen [kevinwen]
Daniel Zuo [dzuo]

6.857 Computer &
Network Security

Spring 2015

13 May 2015

Contents

1 Introduction 2

2 Previous Work 3
2.1 Honey Encryption Scheme Set-up 4

3 Implementation Approach 5
3.1 Message Space Implementation API 5
3.2 Distribution Transforming Encoder (DTE) 6

4 Message Space Construction 7
4.1 Generic Alphabet . 7

4.1.1 Generic Alphabet Implementation 7
4.2 Application - Credit Cards . 8

4.2.1 Motivation . 8
4.2.2 Credit Card Structure . 9
4.2.3 Message Space Construction 10
4.2.4 Credit Card Probability Functions API 10
4.2.5 Credit Card Results . 11

4.3 Application - Simple Messaging 11
4.3.1 Defining a Question and Answer 12
4.3.2 Generation of Message Space 12
4.3.3 Creation of Probability Distribution Function 13
4.3.4 Messaging Limitations . 13

5 Extension to Public-key Encryption Scheme 13

6 Application Results 14

7 Future Work 15
7.1 Credit Cards . 15
7.2 Messaging . 15

8 Conclusion 15

1

Abstract. Honey encryption is a new encryption scheme that provides re-
silience against brute force attacks by ensuring that messages decrypted with
invalid keys yield a valid-looking message. In this paper, we present our imple-
mentation of honey encryption and apply it to useful real-world scenarios such as
credit cards and basic text messaging. We also extend the basic honey encryp-
tion scheme to support public-key encryption. Finally, we discuss the limitations
we faced in our implementations and further requirements for strengthening our
applications.

1 Introduction

In the context of computer security, the term honey is used to describe a false
resource designed to deflect or counteract attacker attempts of a system. False
servers that are set up to distract attackers are known as honeypots. Honey-
words are false passwords stored in a hash table, that when stolen can help
detect an infiltration. In this project, we will be building on a message encryp-
tion scheme known as honey encryption.

Most current encryption schemes use an n-bit key, where the security of the en-
cryption increases with the size of the key. Although we consider these schemes
secure, with enough computational power they are vulnerable to brute-force
attacks. The decryption of a ciphertext through brute-force guessing of keys
can be confirmed with a valid-looking message output, but more importantly,
an invalid-looking output as confirmation of an unsuccessful attempt. Honey
encryption offers a solution to this vulnerability for certain types of messages.
A ciphertext that is honey-encrypted has the property that attempted decryp-
tions with invalid keys yield valid-looking output messages. Thus, attackers
employing a brute-force approach gain no information from guess and checking
of keys.

Juels and Ristenpart [4] proposed this concept of honey encryption specifically
in the context of passwords. After a leakage of millions of real user passwords, it
was observed that a significant number of people used weak, easily-predictable,
and repeated passwords. Password-based encryption (PBE) and hashing tech-
niques both carry the same vulnerabilities to brute-force guessing attacks due to
the predictability of user-generated passwords. By employing honey encryption
in lieu of traditional PBE, the certainty of an attacker for successful decryption
of a password is weakened.

The core innovation of the honey encryption scheme is the distribution-transforming
encoder (DTE), which maps the space of plain-text messages to a seed space
of n-bit strings. The DTE takes into account a probability distribution of the
message space and assigns a corresponding ratio of bit strings to the message.
The intuition lies in the fact that all potential decryptions, regardless of cor-
rectness, map to some message and since possible decryptions are assigned via

2

the expected probability distribution, the attacker gains no information. Con-
structing a suitable DTE for various applications of honey encryption requires
an understanding of the message space distribution.

The contributions of this project fall into two main categories. The first is
the implementation of the honey encryption scheme and its application to a va-
riety of message spaces. We describe our approach to handling message spaces
formed by a generic alphabet, credit card numbers, and simple text messag-
ing. The second part includes extending the basic honey encryption scheme to
support Public-key Encryption.

2 Previous Work

Many working systems in today’s world rely on user-inputted secrets, such as
password-based encryption (PBE). These secrets are inherently weak and of low
entropy due to a fundamental problem in how they are generated - users pick
easy-to-remember and thus weak passwords. Because of the drastically smaller
space these secret keys are being generated from, systems that rely on this type
of encryption are susceptible to brute-force guessing attacks. Honey encryption
[4] explores a new approach to providing security against brute force attacks.
Honey encryption aims to build a scheme where attackers gain no information
about the message, even after trying every possible password. When a cipher-
text is decoded with an invalid key, a seemingly valid message is produced. Not
only is the produced message valid, but the probability at which it is produced
is the same as its expected occurence. In this way, the honey encryption scheme
protects against low entropy passwords as well as low entropy message spaces.

Honey encryption comes from a class of schemes involving deception and de-
coys with the goal of luring adversaries. There have been a number of ”honey”
schemes proposed over the past 20 years. Honeytokens [7] are decoy objects
interspersed in a system that if used, signal a compromise. An example of
a honeytoken scheme is in honeywords [5]. Honeywords are decoy passwords
stored in a system’s password database. If a log-in attempt using a honeyword
is detected, the system infers that the password database has been compromised.
Honeypots [6] are full decoy computer systems/servers with the sole purpose of
being attacked. Once attacked, the use of the honeypot is to store information
about the attack which can be studied and prepared for in the future.

Honey encryption also has close to ties Format-Preserving Encryption (FPE)
[1] and Format-Transforming Encryption (FTE) [2]. Both of these encryption
schemes have specific restrictions for the message and ciphertext spaces. In
FPE, the ciphertext space is the same as the message space. In FTE, the
ciphertext space is specified and different from the message space. These en-
cryption schemes give similar security results to honey encryption when used
with uniform message spaces. However, honey encryption offers stronger secu-

3

rity for non-uniform message spaces since it is not bound to mappings between
two message spaces but uses a mapping between a message space and a much
larger seed space.

2.1 Honey Encryption Scheme Set-up

We now describe the original honey encryption scheme proposed by Juels and
Ristenpart. In this construction, we have a message space M which contains
all possible messages. We map these messages to a seed space S through the
use of a distribution-transforming encoder (DTE). The seed space is simply the
space of all n-bit binary strings for some predetermined n. Each message in
m ∈ M is mapped to a seed range in S. The size of the seed range of m is
directly proportional to how probable m is in the message space M . We require
some knowledge about the message space M in order for the DTE to map mes-
sages to seed ranges, specifically the DTE requires the cumulative distribution
function (CDF) of M and some information on the ordering of messages. Ad-
ditionally, the seed space must be large enough so that even the message with
smallest probability in the message space is assigned at least one seed. With
this information, we can find the cumulative probability range corresponding
the message m and map it to the same percentile seed range in S. We illustrate
the encryption process below with a basic example.

Figure 1: ...

Consider the simple example of encoding ice cream flavors in figure 1. Our
message space M consists of different flavors, M = {chocolate, mint, strawberry,

vanilla} . Through knowledge of some population’s preference of ice cream
flavors, probabilities are assigned to each flavor. Consider a seed space S of
3-bit strings. With these probabilities, we can then map each flavor to a seed
range. In this case, the flavors are ordered alphabetically. Note that this is an

4

arbitrary ordering and a different ordering would lead to a different mapping of
seeds.

Now consider the process of encrypting a message, say chocolate. Using the
DTE, we randomly select a seed in the corresponding seed range. This seed is
XORed with a shared secret key to produce the ciphertext.

Decryption is slightly harder. The ciphertext is XORed with the secret key
is return the seed. We know that the seed falls into a seed range that cor-
responds to a message’s CDF value. Here we run into a problem. For most
message spaces, the CDF is one-way and we cannot go back to a message given
a value in it’s CDF range. Instead, we use an inverse sampling table. Using a
precalculated table of sampled CDF values to messages from the message space,
we can run binary search on the inverse sampling table and then linear scan the
message space from there.

3 Implementation Approach

In this section, we outline the structure and design decisions made in imple-
menting the honey encryption scheme described above. The main observation
to make here is that the work the distribution-transforming encoder (DTE) does
is independent of the message space other than the need for a few functions de-
scribing the space. With this observation, we are able to code a DTE that
performs encoding and decoding for a message space given a set of functions
describing the message space. Applications for message spaces can be developed
independently and plugged into the DTE program with the proper API. The
language used for our implementation was Python.

3.1 Message Space Implementation API

To support the DTE implementation, we chose to require the following functions
as input to describe the message space. The functions are wrapped inside of
a class MessageSpaceProbabilityFxns. Subclasses implementing the required
functions can be made for each specific message space.

• cumulative distr(message) - takes in a message and outputs cumulative
probability representing where in ordered message space the message lies

• probability distr(message) - takes in a message and outputs probabil-
ity of that single message

• next message(message) - takes in a message and outputs the next mes-
sage in ordered message space

• get inverse cumul distr samples() - returns list of pre-calculated sam-
pling of cumulative distribution values to messages

5

In choosing the above functions, we made a couple of design decisions. We
observe that the probability distribution function (PDF) can be created by
finding the difference between the current message’s cumulative distribution
function (CDF) and the next message’s CDF. However, we chose to include the
PDF since it is called often in the DTE. Because of this, it is important that it
is efficiently calculated. For many message spaces, there exists a simple way to
calculate the PDF instead of calculating the difference between CDFs.

Both the next message function and inverse sampling table function are used in
decryption for binary search of samples and then linear scan of message space.
There exists some room for optimization when generating the inverse sampling
table. Say we have a message space of n messages and choose to take m samples
for the table. The worst case running time of our decryption algorithm would
then be O(lgm+ n

m) where the first term comes from the binary search and the
second from linear scan. To optimize the running time, we set the two terms
equal to each other. After some algebra yielding:

m lgm = n

This is a transcendental equation and has no algebraic solution. We can use
numerical methods such Newton’s method to solve for an optimal inverse table
size with regards to running time. However, we realize that for many large
message spaces, there also exists a space trade-off. Therefore, we made the
design decision to allow the user to input the inverse sampling table to optimize
for whatever use case they may prefer.

3.2 Distribution Transforming Encoder (DTE)

The DTE maps a message space to a seed space given the above message space
functions and a seed space size (i.e 128, 256). We encode by using the CDF and
PDF to find a seed range for the message and then randomly selecting a seed
inside the range. The following pseudocode displays this process:

def encode(m):

get range of seed space to pick random string from

start = cumul_distr(m) * SEED_SPACE_SIZE

end = int(start + pfxns.prob_distr(m)*SEED_SPACE_SIZE) - 1

start = int(start)

pick random string from corresponding seed space

seed = random.random(range(start, end))

return seed

When decoding, we find the proportion of the seed within the seed space and
binary search for that value in the inverse sample table. This gives us a lower
starting point upon which we linear scan through the message space until we
find the correct message to return:

6

def decode(s, inverse_table):

seed_prop = float(s)/SEED_SPACE_SIZE

(prev_value, prev_msg) = binary_search(inverse_table, seed_prop)

next_msg = next_message(prev_msg)

next_value = cumul_distr(next_msg)

begin linear scan to find which range seed s falls in

while seed_loc >= next_value:

update prev and next

(prev_value, prev_msg) = (next_value, next_msg)

next_msg = next_message(prev_msg)

next_value = cumul_distr(next_msg)

return prev_msg

4 Message Space Construction

In this section, we discuss applications of honey encryption to various message
spaces and the development of the message space API for each application.

4.1 Generic Alphabet

The first message space we consider is the space of n length words of a generic
alphabet. Given an alphabet of valid letters Σ, a letter probability function ϕ
mapping letters to probabilities, and a message/word length n, we can construct
a probability distribution function (PDF) as well as the cumulative distribution
function (CDF) for the message space.

Figure 2: Message M of generic alphabet space consisting of letters x1 through
xn where each letter xi ∈ Σ

Although implementing a probability distribution could easily be done through
storage of large hash tables or lists, our approach instead takes advantage of the
fact that each letter is independent of the rest and generates message probabil-
ities more dynamically.

4.1.1 Generic Alphabet Implementation

In order to implement the generic alphabet message space, we define the func-
tions described in the probability function API as seen in section 3.1 - the PDF,
CDF, next message, and inverse sample table functions.

PDF

7

Because letters are independent of each other, the probability of a given mes-
sage M consisting of letters x0, x1, ..., xn is given as the product of the individual
probabilities of each letter.

Pr[M] =

n∏
i=1

ϕ(xi)

CDF
The cumulative probability of a given message is calculated by iterating through
the message starting at the least significant letter. Each letter has an individual
CDF which splits the previous letter’s PDF. Let us define letter-cumul(l) to
be the CDF of letter l. Similarly, we define letter-prob(l) to be the PDF of
letter l. For message M of length n, we calculate CDF (M) as follows:

def cumul(m):

sum of each index cumulative contribution

value = 0

for i in range(1, msg_len)[::-1]:

value += letter_cumul[m[i]]

value *= letter_prob[m[i-1]]

return value

Next message
The next message after a given message in the CDF is found by simply incre-
menting the order of the last letter of the given message. This is because we
sort the messages in alphabetical order as given by the order of Σ.

4.2 Application - Credit Cards

As discussed in section 1, honey encryption works well in applications where
the message space is highly structured. We explored the domain of credit card
numbers and developed a working implementation of a honey encryption scheme
on the space of credit cards.

4.2.1 Motivation

Measures to protect personal credit card numbers are motivated by the fact that
card numbers are highly sensitive information. For the purposes of simplicity of
terminology, we refer to all payment cards in this paper as credit cards, though
in the real world, card numbers can represent a variety of card types. The vast
majority of people own one or more debit or credit cards; these numbers hold a
direct gateway to an individual’s personal finances. Therefore, measures taken
to protect the security of such card numbers are of high interest to both the
owner of the card and to many other involved parties such as card issuers and
banks.

8

Furthermore, credit card numbers consist solely of numerics 0-9. Thus, tra-
ditional encryption methods are susceptible to brute-force attacks because a de-
cryption attempt with a guessed invalid key will likely yield immediate feedback
about the correctness of the guess if the returned message contains characters
other than numbers.

4.2.2 Credit Card Structure

A credit card number has the following properties. These are illustrated in
Figure 3.

• 12-19 digits in length

• Consists only of numbers chosen from 0-9

• First digit is Major Industry Identifier Digit

• First 6 digits are the Issuer Identification Number (IIN)

• Rest of digits save for last digit are individual account identifier numbers

• Last digit is checksum digit calculated according to the Luhn algorithm

Figure 3: Example credit card number with card structure

In our implementation of a credit card message space, we focus on utilizing
the Issuer Identification Number (IIN) and the card number length as sources of
non-uniformity to map card numbers to probabilities. This is because these first
six digits vary based on card issuer, whereas the individual account identifier
numbers are randomly generated and distributed, and the remaining checksum
digit is completely deterministic. We will refer to the IIN as a prefix.

The checksum digit is used as a form of verification regarding the validity of
a given credit card number. We use it in our implementation to ensure that
any credit card numbers used anywhere in our system is at all times valid. It is
calculated according to the Luhn algorithm:

9

Definition. The Luhn algorithm states that the checksum digit is equivalent
to nine times the sum all previous digits, taken modulo 10.

A specific card issuer may be assigned either a single prefix, or a range of
prefixes. For example, Visa is given the domain of prefixes ranging from 400000
to 499999, which it can then in turn redistribute to smaller card distributers,
e.g. MetaBank, which is assigned the prefix 460005. We will denote a range of
prefixes using the asterisk * notation, e.g. 4*****, indicating that those digits
can be any digit from 0-9.

4.2.3 Message Space Construction

To construct our message space, we first gathered data on valid credit card
numbers and scraped 2039 prefixes from the web [12]. Then, we compared
these prefixes against tables of credit card lengths based on major issuer (e.g.
Visa, Mastercard) and assigned each prefix a card length ranging from 12 to 19
[13]. The most common card length is 16 digits [13].

As described in section 4.2.2, larger card issuers are often assigned a range
of prefixes. If more specific prefixes exist within such ranges, we utilize the spe-
cific prefix instead such that our message space is as granular as possible and
represents the widest range of individual card issuers.

The data was stored as a Python dictionary with entries in the following form:

prefix: [degree of range, card length, weight]

The degree of range indicates the number of asterisks in a prefix, i.e. the number
of unique prefixes defined by the designated range. For instance, a prefix of
6428** is given a degree of range of 2, as there are 102 prefixes in its range
from 642800 to 642899. The card length is the length of the credit card number
designated by the card provider, and is thus entirely dependent on the prefix.
Finally, the weight is the number of representations that the prefix holds - a
prefix of 6428** has a weight of 100, whereas a prefix of 642854 has a weight of
1.

4.2.4 Credit Card Probability Functions API

Having researched the properties of the credit card message space, we then im-
plemented the probability functions required by the DTE to map messages to
seeds in the seed space.

PDF
In this implementation, we assign each unique 6-digit prefix uniform probability.
Thus, the probability of a given message is dependent only on the length of the
postfix. If the postfix has d digits (including a final check digit), then there are
d − 1 random digits and the message has probability 10−(d−1), scaled by the

10

sum of all prefix weights such that the total sum of all message probabilities is 1.

CDF
Using an arbitrary ordering of the scraped prefixes, we first precalculate the
cumulative probailities for each prefix. Then, to calculate the cumulative prob-
ability of a given message, we first extract its prefix and look up the cumulative
range for this prefix. Within each prefix range, we order all messages numeri-
cally, and since each message within this prefix range is of the same length and
thus equally likely, we can easily calculate the offset probability from the prefix
cumulative distribution.

Next message
As mentioned previously, within each prefix range we order all messages numer-
ically. The next function, then, is easy; we simply strip the check digit from
our message, increment by one, and then append the recalculated check digit.
Note that here we make the simplifying assumption that we will never call next
message on the last message in a prefix range, which we can enforce by creating
a sufficiently large inverse sampling table.

4.2.5 Credit Card Results

Using the described functions, we implemented a symmetric key honey encryp-
tion scheme for credit cards. Using a secret key, our implementation is able
to both encode valid credit cards into ciphertexts and decode ciphertexts back
to the correct plaintext messages. Furthermore, using an incorrectly guessed
key, our implementation produces a incorrect plaintext message which is a valid
message in our credit card space.

Note that we make an important assumption in this implementation: that
the frequency of specific prefixes is dependent on the range of prefixes that
card issuer is assigned. In reality, we do not have knowledge of how accurate
this assumption is with the real-world distribution. Credit card information
is highly sensitive, and thus little-to-no public information is available about
distributional trends in card numbers.

4.3 Application - Simple Messaging

Generating a message space that covers the entire spectrum of the English lan-
guage is infeasible, mainly because of two factors - size and complexity. Even
when sentences or phrases are limited to a 140 character tweet, there exists
roughly 2154 = 2 ∗ 1046 different meaningful messages [8]. At this magnitude,
honey encryption becomes impractical due to the sheer number of possible mes-
sages, and implementing this algorithm would take an incredibly long time.
Furthermore, the English language requires a lot of dependencies and must fol-
low many grammatical rules. Generating a complete set of contextually and
grammatically correct messages is very difficult for the scope of our project.

11

Therefore, we turn to a subset of the messaging space that follows a simple
structure, namely questions and answers.

4.3.1 Defining a Question and Answer

Questions are an ideal subset of messaging to implement honey encryption on
because people tend to ask them using very similar structures. We focus on sim-
ple yes-no questions: questions that don’t require answers other than a ”yes”
or a ”no”. This simplifies the message space of the answer to just those two
responses. Most simple questions begin with a verb, a subject, a predicate,
and optionally, a direct object. A simple question may be: ”Is he eating the
potato?” Listed below are several question structures that we use [9].

1. [is/was] + [he/she] + [verb (prog. tense)] + [d. object]

2. [are/were] + [you/we/they] + [verb (prog. tense)] + [d. object]

3. [does/did/will/would] + [he/she] + [verb (present tense)]+ [d. object]

4. [do/did/will/would] + [you/we/they] + [verb (present tense)]+ [d. object]

5. [has/have/had] + [he/she/you/we/they] + [verb (past tense)] + [d. object]

We may convert these simple questions into interrogative questions that require
a more detailed response by inserting one of the five W’s as the first word of
every sentence. An example would be: ”Why is he eating the potato?”

Figure 4: Basic structure of a question

4.3.2 Generation of Message Space

With the structures of the questions laid out, we proceed to fill up the mes-
sage space by automatically parsing through and generating our questions. The
Natural Language Toolkit (nltk) provides a module that generates all possible
sentences given a context-free grammar. We use a list of the 300 most common

12

nouns [10] and verbs [11] to generate the message space. The python packages
Nodebox Linguistics and Inflect both automatically convert verbs and nouns to
their correct form.

While it is possible to implement honey encryptions in previous schemes with-
out using data tables due to the rigid structure of numbers and letters, it is very
difficult to implement English messages without data tables. The structure of
language is just too complex. Therefore, we generate every single message with
its probability distribution in a csv file. Although this trivializes the process of
defining the four functions in the probability function API, it is limited by the
amount of time and space needed to generate such a file.

4.3.3 Creation of Probability Distribution Function

The list of nouns and verbs that we use to generate the messages also contains
the relative frequency of each word, generally ranging from 0 to 1,000. We create
a weight function based on those two frequencies to determine the probability
of a sentence. First, we normalize both sets of data such that each list has a
frequency range from exactly 0 to 1,000. Second, because nouns tend to be
more numerous and more specific than verbs, common verbs tend to be used
more frequently than common nouns. We multiply the frequency of the verb by
3, giving it more weight. Finally, we take the sum of the value of the verb and
noun used in each sentence to give the sentence a final score.

4.3.4 Messaging Limitations

We are able to generate over a hundred million different sentences using context-
free grammar and our list of nouns and verbs. Although these questions, with
the help of Nodebox Linguistics and Inflect, are all grammatically correct, a large
portion of these questions may not make sense in the context of our language.
Because our probability distribution function is independent to the noun-verb
pair that we use, we do not account for lowering the probability of unusual
sentences. For example, although the sentence ”did you eat the potato?” is
common, the sentence ”did you eat the professor?” is asked a lot more rarely,
even though the word ”professor” is used more often than the word ”potato”.
Mapping common verbs towards their associative nouns would improve the va-
lidity of our message space. However, this is a complicated problem that is
outside the scope of this project.

5 Extension to Public-key Encryption Scheme

Thus far in our discussion of honey encryption, we have used a symmetric en-
cyption scheme to produce a ciphertext C from a given seed S. As always
with symmetric key schemes, this assumes that both parties have the architec-
ture to store secret keys securely and exchange keys without risk of interception.

13

To this end, we introduce an extension to the current honey encryption con-
struction which utilizes public key encryption instead of this symmetric encryp-
tion. We will first describe how PKE can be applied to the HE process, and we
will then show that the security bounds proved by Juels and Ristenpart [4] as
the basis of the HE scheme still hold.

Just as before, we let DTE = (encode, decode) be a DTE scheme which out-
puts seeds in the space S = {0, 1}s, and let PKE = (enc, dec) be a conven-
tional public key encryption scheme with message space S and some ciphertext
space C. For our purposes, we can assume a canonical PKE such as RSA.

We can now define HE[DTE,PKE] = (HEnc, HDec) as a DTE-then-Encrypt
scheme, which first applies the DTE encoding and then encrypts the seed under
PKE. To decrypt, simply reverse this order, first decrypting under PKE and
then decoding under the DTE. Just as with symmetric encyption, it is easy
to see that this scheme is semantically secure if the PKE used is semantically
secure.

We claim that this PKE-based honey encryption scheme shares exactly the
same security bounds as shown by Juels and Ristenpart for symmetric based
honey encryption [4]. To show why, note that the only assumption Juels and
Ristenpart make about the SE scheme is that encrypting uniform messages gives
uniform ciphertexts. More precisely, we assume that s ← S; c ← enc(k, s) and
c ← C; s ← dec(k, c) yield identical distributions for all k ∈ K. In addition
to holding for block ciphers in CTR and CBC mode, as described by Juels and
Ristenpart, this assumption also holds for many PKE schemes, and so we can
use any of these and arrive at identical security bounds as honey encryption
schemes with symmetric keys.

This extension to standard honey encryption schemes allows clients to much
more easily pass and store encrypted information, without the need for a se-
cure channel of key communication or key storage mechanisms, at the cost of
slower and more complex implementations, a tradeoff that could prove useful in
a variety of applications.

6 Application Results

We were able to build working implementations of the generic alphabet, credit
card, and messaging applications, in accordance to the methodology discussed
throughout this paper, as well as demos of the first two.

Our implementation of these message spaces resides at https://github.com/

danielzuot/honeyencryption.

14

https://github.com/danielzuot/honeyencryption
https://github.com/danielzuot/honeyencryption

7 Future Work

7.1 Credit Cards

The credit card message space could be further refined by including information
about the last four digits of cards, which is considered semi-public information.
For example, many online applications can reveal these digits as a form of iden-
tity verification. Utilizing these digits allows us to more accurately map specific
credit card numbers to probabilities. However, obtaining this information poses
a significant challenge, as large public databases of such information likely do
not exist due to the sensitive nature of credit card numbers as a whole.

7.2 Messaging

Although it is very easy to generate a large number of grammatically correct
sentences, our message space was limited by the number of contextually accu-
rate sentences that we could generate. In order for this messaging system to
work at its highest level, more work needs to be done in creating a probability
distribution function between all possible verb/noun pairs. A first step would be
to give classifications to nouns that describe them, such as ”food”, ”abstract”,
”concrete”, etc. and assign each verb a probability distribution function when
it is referring to different classes of nouns. However, this would require an im-
mense amount of manual work in order to tag the thousands of nouns and verbs
commonly used in the English language. Once this is established, we can ex-
plore more complex question and statement structures and expand our message
space.

8 Conclusion

The recent development of honey encryption offers many password based secu-
rity schemes resilience to brute force offline attacks by yielding plausible plain-
texts under decryption by invalid keys. In this paper, we have presented our
implementation of a honey encryption scheme and its application to a variety of
use cases, ranging from generic alphabets to credit card numbers to text messag-
ing. Specifically, we addressed the key challenge of generating plausible honey
messages for each of these spaces by researching the probabilistic distribution
of the message spaces and constructing good DTEs for each. We also extended
the base honey encryption scheme to support public key encryption, and showed
that this extension preserves honey encryption’s security features.

References

[1] Bellare, Mihir, Thomas Ristenpart, Phillip Rogaway, and Till Stegers.
”Format-preserving encryption.” In Selected Areas in Cryptography, pp.
295-312. Springer Berlin Heidelberg, 2009.

15

[2] Dyer, Kevin P., Scott E. Coull, Thomas Ristenpart, and Thomas Shrimp-
ton. ”Protocol misidentification made easy with format-transforming encryp-
tion.” InProceedings of the 2013 ACM SIGSAC conference on Computer
communications security, pp. 61-72. ACM, 2013.

[3] Juels, A.; Ristenpart, T., ”Honey Encryption: Encryption beyond the Brute-
Force Barrier,” Security Privacy, IEEE , vol.12, no.4, pp.59,62, July-Aug.
2014

[4] Juels, Ari, and Thomas Ristenpart. ”Honey encryption: Security beyond the
brute-force bound.” Advances in Cryptology–EUROCRYPT 2014. Springer
Berlin Heidelberg, 2014. 293-310.

[5] Juels, A., Rivest, R.: Honeywords: Making password-cracking detectable.
In: ACM Conference on Computer and Communications Security, CCS
2013, pp. 145–160. ACM (2013)

[6] Spitzner, Lance. Honeypots: tracking hackers. Vol. 1. Reading: Addison-
Wesley, 2003.

[7] Spitzner, Lance. ”Honeytokens: The other honeypot.” (2003).

[8] Monroe, Randall. ”Twitter.” Twitter. Xkcd, n.d. Web. 13 May 2015.

[9] Zamora, Antonio. ”Interrogative Sentences.” Basic En-
glish Structure. Scientific Psychic, n.d. Web. 13 May 2015.
¡http://www.scientificpsychic.com/grammar/enggram7.html¿.

[10] ”Top 1500 Nouns.” TalkEnglish, n.d. Web. 13 May 2015.
¡http://www.talkenglish.com/Vocabulary/Top-1500-Nouns.aspx¿.

[11] Albright, Adam, and Bruce Hayes. ”English Verbs.” Materials on
Automated Phonology Learning. UCLA, n.d. Web. 13 May 2015.
¡http://www.linguistics.ucla.edu/people/hayes/learning/english.xls¿.

[12] ”List of Bank Identification Numbers” Web. 13 May 2015.
¡http://www.stevemorse.org/ssn/List of Bank Identification Numbers.html¿.

[13] ISO, ”ISO/IEC 7812-1:2006 Identification cards – Identifica-
tion of issuers – Part 1: Numbering system”, October 2006,
¡http://www.iso.org/iso/isocatalogue/cataloguetc/cataloguedetail.htm?csnumber =
39698 > .

16

	Introduction
	Previous Work
	Honey Encryption Scheme Set-up

	Implementation Approach
	Message Space Implementation API
	Distribution Transforming Encoder (DTE)

	Message Space Construction
	Generic Alphabet
	Generic Alphabet Implementation

	Application - Credit Cards
	Motivation
	Credit Card Structure
	Message Space Construction
	Credit Card Probability Functions API
	Credit Card Results

	Application - Simple Messaging
	Defining a Question and Answer
	Generation of Message Space
	Creation of Probability Distribution Function
	Messaging Limitations

	Extension to Public-key Encryption Scheme
	Application Results
	Future Work
	Credit Cards
	Messaging

	Conclusion

