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1 Introduction

In our project we implemented a system from transferring money without us-
ing Proof-of-Work, but consensus algorithms. First we implemented it using
Paxos[11], that does not support Byzantine failures and needs a central au-
thority to decide which nodes participate on the agreements. Then we re-
implemented it using Stellar Consensus Protocol[2], that has no central author-
ity and allows Byzantine nodes, given that Safety and Liveness assumptions are
guarantee.

The actual Stellar Network has many features that we did not implement for
simplicity. While at Stellar Network anyone is allowed to be a gateway, entities
that can create their own coins, our system has only one gateway. This way,
there is no need to implement Distributed Exchange. Also, we only put one
transaction on each slot of our ledger.

This report is divided in 6 sections. Section 1 is this introduction. Section 2
gives an overview of existing models to implement a secure financial system with
support to transactions. In section 3 we give an overview at Byzantine Agree-
ments and Federated Byzantine Agreements. In section 4 we talk about how
the Stellar Consensus Protocol works. Section 5 is about our implementation.
Section 6 is the conclusion.

We will not prove any theorem of these systems. We recommend looking at
the references.

2 Cryptocurrency

In our course we saw how Bitcoin[1] gives us a new way to transfer money using
Proof-of-Work. The decentralized nature of Bitcoin is something desirable, but
this model has some issues such as wasting a huge amount of resources on mining
to assure security. Bitcoin is protected from 51% attacks because it is backed by
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a huge computing power, once it is the leading cryptocurrency, but smaller ones
have been victim of these kind of attacks [4] [5]. These 51% attacks are derived
from the fact that, in Proof-of-Work, the participants don’t have any other
choice than trust that 51% of the computational power will behave correctly,
i.e. it lacks flexible trust. Besides all this, Bitcoin has high latency: to put
one block on the chain, it can take up to 10 minutes, and to be sure that your
transaction will not be forgotten, the user has to wait up to 6 blocks on the
chain, what means waiting for 1 hour. It also lacks asymptotic security, because
it is possible to have computer power enough to break the system by doing 51%
attacks.

Some alternatives to Proof-of-Work have been proposed such as Proof of
Stake [6], Byzantine Agreement [9] and Tendermint [8]. We will not dive in
more details of each one of these schemes, but there are some features of these
system that are important to know.

Proof-of-Stake also lacks flexible trust. It is based on the fact that parties
that posted collateral with behave correctly, because they receive rewards for
doing so, but also because they can be penalized if they do not [7]. The parallel
of 51% attacks on this scheme are the ”nothing at stake” attacks, in which
parties that previously posted collateral spend their money then can reverse the
system to one state where they still had the money.

Byzantine Agreements seems to be a good solution. First, it solves the
problem of flexible trust: someone with few resources can play a major role on
ensuring the security of the system only because it was chosen to do so, not
because it has a lot of computing power or financial resources. Second, it solves
the problem of latency, once an agreement can be reached in a few seconds,
something closer to the actual financial system. Third, it has asymptotic se-
curity: even if an extremely powerful enemy will not be able to convince the
system of something unless it can break digital signatures. The problem is that
the participants of the system must be chosen by a central authority, what can
not be done in our actual financial system: there is no party trusted by everyone
to play this role. If you let it open to anyone to join, it may suffer Sybil attacks
[10], where an attacker can create a lot of peers to overrule the system, once,
in these systems, an agreement is reached when a certain amount of peers, that
constitutes a quorum, agrees on it.

Tendermint removes the central authority by tying Proof-of-Stake and Byzan-
tine Agreement. A party have its vote on the agreement proportional to the
collateral it has posted. The problem with this is that it lacks flexible trust
again.

Ripple came out with the idea of letting the participants on the agreement
to be able to agree on adding someone. It solve the problem of central author-
ity and keeps the features of Byzantine Agreement. However, in practice, the
participants were not willing to edit the list participants with fear of losing the
security assumptions.

In this context, David Mazières from Stellar Development Foundation came
with the idea of Federated Byzantine Agreement[2] in which we can have all
good points from Byzantine Agreements and also have no central authority
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to decide who participates on the system, without permitting Sybil attacks,
however, differently from Ripple, anyone can join the system. We will talk more
out SCP, that is an implementation o FBA, in section 3.

3 Federated Byzantine Agreements

In this section, we give some background to understanding the Stellar Consensus
Protocol, once it is an implementation of Federated Byzantine Agreements. We
start by explaining traditional Byzantine Agreements at section 3.1. In section
3.2 we show some important definitions in FBA and quickly discuss the security
assumptions.

3.1 Byzantine Agreements

In a Byzantine Agreement System with N nodes, any T nodes constitutes a
quorum. A quorum is a set of nodes that can reach consensus by themselves.
When a agreement is reached the nodes can externalize the value, in our context,
they can tell the users that their transactions are confirmed.

Differently from failures at Paxos, Byzantine failures can have random be-
havior, including lying. For example, one node can propose an invalid value,
such as containing double spending transactions.

To make this kind of system usable as a financial system, we must have Safety
and Liveness, described in sections 3.1.1 and 3.1.2. They limit the number of
Byzantines nodes we can have in our system. The Sybil attacks [10] break these
assumptions by inserting a lot of Byzantines nodes in the system.

3.1.1 Safety

To assure that two well behaved nodes will never externalize conflicting values,
such as conflicting transactions, we need any two quorums always to share one
good node. So the number of Byzantine failures has to be smaller than 2T-N.

3.1.2 Liveness

To assure that our system can always reach an agreement, i.e. will not be
blocked, we need at least one entirely honest quorum to exists. So the number
of Byzantine failures has to be at most N-T.

We can notice that there is a trade-off between Safety and Liveness by choos-
ing T. The algorithm from Miguel Castro and Barbara Liskov [3] chooses T to
be

⌊
n+1
3

⌋
so that it can tolerate

⌊
n−1
3

⌋
and still have both Safety and Liveness.
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3.2 Federated Byzantine Agreement

The main idea of Federated Byzantine Agreements are the definition of quorum
slices. Each node chooses its own quorum slices. If well behaved nodes chooses
mainly well behaved nodes to their quorum slices, Safety and Liveness can be
assured for all them. In this section we will give some definitions that are
important to understand Stellar Consensus Protocol.

3.2.1 Quorum slices

Each node v can have any number of quorum slices. Each quorum slice, basically,
is a set of nodes that v trust. When choosing its quorum slices, v has to keep in
mind the same idea that the traditional quorums from Byzantine Agreements:
once a quorum slice all agrees on something, v will can externalize it. Actually,
it’s not how it works, as we will see in the following sections, but if v keeps that
in mind, the Safety assumptions will be achieved.

3.2.2 Quorum in FBA

In a FBA system, a quorum is not defined by the number of nodes, as in
traditional Byzantine Agreements. Instead, a quorum is defined as a set of
nodes S such that ∀v ∈ S, ∃Q(v) such that Q(v) ⊂ S, where Q(v) is a quorum
slice of v.

3.2.3 Quorum intersection

Quorum intersection is a property of a set of nodes. Given a set of nodes S, for
any u, v ∈ S, if Q,P are quorums such that u ∈ P and v ∈ Q, then P and Q
share at least one node.

3.2.4 Safety

The definition of Safety is the same of Byzantine Agreements: two well be-
haved nodes will never externalize conflicting values. We also need the same
assumption: any two quorums always share one good node.

So, we need that after “deleting” all malicious nodes, we still have quorum
intersection.

3.2.5 Liveness

As in Safety, the definition of Liveness is the same as before: the system can
always reach an agreement. The assumption is the same too: at least one
entirely honest quorum exists.

It is important to note that to an entirely honest quorum exists, each honest
node needs at least one quorum slice only with honest nodes. As we will define
later on section 3.2.5, we can not have a v-blocking set of malicious nodes for
honest node v.
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3.2.6 v-blocking set

For any given node v, a v-blocking set is a set that contains at least one node in
each quorum slice of v. In other words, S is a v-blocking set if ∀Q(v) quorum
slice of v, ∃u ∈ S such that u ∈ Q(v).

4 Stellar Consensus Protocol

Given the definitions from section 3.2 we can now explain the SCP. First, we
will explain how a round of federated voting works. Second, we will discuss how
Ballots solve the situation in which the system can get stuck. Finally we explain
how the protocol really works and which messages it exchanges.

4.1 Federated voting

One important stage of SCP if the Federated voting, since it is compound of a
series of rounds of Federated voting. The Federated voting round if based on a
statement. Each node can vote for or against that statement. We will call the
statement a and its opposite ā.

Each Federated voting round has 4 states: voting, accepting, confirmed or
stuck. Lets discuss each one of them. The definitions below can found at [12]
and [2].

Figure 1: Possible states of a federated voting. Figure from [2]

4.1.1 Voting

Node v can vote for a or ā. If v is a well behaved node it will vote for a iff:

• a is valid and consistent with past statements v accepted

• v has never voted ā and promises it never will
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4.1.2 Accepting

If node v is a well behaved node it accept a iff:

• Each member of a v-blocking set claims to accept a, or

• A quorum containing v all either voted for or accepted a

4.1.3 Confirming

If node v is a well behaved node it confirm a iff:

• A quorum containing v all accepted a

4.1.4 Stuck

During one of the previous states, the system can get stuck. For example, if we
have only one quorum and some nodes accepted a and some nodes accepted ā.
That’s why SCP does not vote only on each transaction x.

Figure 2: A system can get stuck. Figure from [2]

4.2 Ballots

Ballots < n, x > are compound by a number n, equivalent to propose numbers
at Paxos[13], and a value x, that can be the value to be inserted at given slot of
the ledger history. SCP instantiate poll on the statements PREPARE < n, x >
and COMMIT < n, x >.

PREPARE < n, x > means abort all ballots < n′, x′ > such that n′ < n
and x′ 6= x. Well behaved nodes will only accept a commit at ballot b if it was
prepared before.

If the system get stuck while trying to prepare or commit a given ballot b,
the system just has to create a new ballot b′ with a larger n.

6



4.3 The Protocol

This section is much better described at the Stellar Consensus Protocol white
paper [2] at section 6.1. We strongly recommend you to read the original paper.
All information here as extracted from it.

The protocol is independent for each slot i of the ledger. So, all we will
discuss bellow if for only one slot. Each node stores 4 ballot b, p, p′andc and the
phase it is at the moment φ. b is the most recent ballot it has voted for prepare.
p and p′ are the most recent ballots with different values x that it has accepted.
And c is the ballot it has voted to commit. φ can be PREPARE, FINISH, or
EXTERNALIZE.

Each node also stores the most recent state it knows from each other node it
knows about. So that it can know the conditions to accept or confirm preparing
or confirming a ballot.

Note that, for a well behaved node, b, p, p′ and c will be non-decreasing.
The nodes will exchange messages sending their state to the other nodes and

will update their state with the following conditions:

1. If φ=PREPARE and a message allows v to accept that new ballots are pre-
pared by either of accept’s two criteria, then update p and p′ accordingly.
If afterwards c 6= 0 but p or p′ invalidate c, then set c = 0.

2. If b 6= c, b = p, φ=PREPARE, and v confirms b is prepared, then set
c = b.

3. If b = p = c, φ=PREPARE, and v accepts commit b, set φ=FINISH

4. If b = p = c and φ = FINISH and v confirms commit b, then set
φ=EXTERNALIZE and externalize the value in b. I.e. tell the user that
the transaction of b was done.

Many points were not clear on the paper [2]. For example, when the ballot
b can be accepted or confirmed. We figured out that, to confirm b, you have to
look at the b of each node in a quorum that you participates have the same b
as you. We discuss these issues in more details on section 5.3.

5 Implementation

We made two implementations: one using Paxos and another using SCP. Both
can be plugged at the ledger packager.

Comparing with the actual Stellar Network, we made some simplifications.
For example, the Stellar Network allows anyone node to be a gateway, i.e. can
create their own coins, so they have to implement a Distributed Exchange to
exchange these coins. In our systems we have only one entity that can insert
coins, as the Stellar coin, and all transactions are in this coin.

Our system uses unix RPC calls to exchange messages and to talk with the
client.

7



Figure 3: Meaning of the messages in SCP. Figure from [2]

Our code is hosted at GitHub and can be found at: https://github.com/

Andresnds/go-stellar

Figure 4: Basic architecture of our system. Each node has an instance of Ledger
that can plugged with either Paxos or SCP

5.1 Ledger

The package ledger has an implementation of Server and Client. A client send
RPC calls to with the transaction it wishes to make and the server uses the
plugged consensus protocol, either Paxos or SCP, to put it in the distributed
ledger. Each node verifies the signature and if that account has enough balance
to make that transaction, if not, it rejects the transaction.
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If the transaction seems valid but it was not possible to put it in a given slot
because another transaction was inserted before. It just tries on the next slot
and so on, until the transaction is inserted.

Each transaction is encoded as an operation that will be applied to the ledger
sequentially, as a state machine.

When the client wants to query the balance of a given account, an get
operation is also created, so that the ledger can be updated if it was not.

The account, as in Bitcoin [1], is defined by the public key used to verify its
signatures.

5.2 Paxos

When creating a paxos instance, we need to pass all other server that are par-
ticipating on the agreement. That’s when we are playing the role of the central
authority that defines the participants.

Each Paxos instance has an interface to be used by the server. It has methods
to initiate reaching and agreement at a given slot and to get the status on a
given moment. The server should wait until the status of a given slot is Decided.

5.3 SCP

The goal of using the SCP is the same as of the paxos: reaching a consensus
on each slot of the ledger. But with SCP we have the advantages we already
described earlier on this paper. The main challenge of implementing the Stellar
Consensus Protocol, is the lack of information, given that it is a brand new
algorithm and it’s white paper is still a draft [2]. The procedure described in
the paper fails to address many details, that are of utmost importance for the
algorithm.

The major point that we had to figure out was how to send the messages.
In a paxos-like algorithm, we have a proposer in charge of sending the messages
to it’s peers, but in SCP we concluded that it has a quite different style of
communication: the messages are propagated, like in a chain reaction, until the
messages starts fading when the nodes reach the commit point (which means,
reaching φ=EXTERNALIZE). So basically in our implementation the proposer
sends a message to it’s peers, and for each peer that changes a state, they also
send a message to all it’s peers. When a node reaches the commit point, the
behavior changes and it only replies to whoever sends him a message, instead of
broadcasting that to everybody. With that, we are able to ensure that the pro-
poser will eventually reach an agreement, and also that the messages exchanged
will reach zero eventually.

Another important point that the paper does not explain is when and how
update b. In the description of the SCP, we have 4 steps, which are described
is section 4.3. If the reader is attentive, he will notice that at no moment it
describes when the value of b would be updated. With that we created what
we called the step 0, to fill this hole. We set b as the highest ballot seen, but
compatible with c, so we maintain the invariance b c.
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Also, for the steps 1 and 2, which are the steps in which we update p and
c, it is not explained how they are updated. Given the definition of prepare,
which is to abort any ballot less and not compatible, we could think about some
optimizations, as the definitions of voting/accepting prepare cover more cases
than that of voting/accepting to commit. In the end however, we noticed that
the author expected for us to treat prepare as if it was a new statement in which
we are voting, and that is one of the great ideas that he had, so we basically have
two rounds of federated voting, while actually voting to abort various ballots
and commit one. Given this conclusion, we proceed with the step 1 and 2 just
like the step 3 and 4.

Another point that we needed to handle was when to propose a new ballot.
For that we took an easy route: a timeout. So we have a goroutine that proposes
a new ballot after a interval without reaching agreement.

In our implementation we could have more than one node proposing for the
same slot on the ledger, but in they will all reach agreement on the same ballot,
given that we meet the safe criteria.

6 Conclusion

Implementing SCP was a challenge, since the paper [2] was not clear in many
points. We looked at the Stellar Foundation source code at github, but they
made a lot of optimizations that we did not implement for simplicity, so that
we ended up not really using it. We had to make ours own assumptions given
what we read about SCP, but we are confident they are correct.

However, we were able to implement both consensus protocols and make
transactions between accounts in each of them, that was the objective of this
project.

6.1 Future work

We plan to create some malicious implementations of SCP nodes and see if the
security assumptions hold in their presence. For example, they could accept
any ballot and propose invalid ballots, like transactions with invalid signatures
or from account with insufficient balance. If these transaction are externalized
in good nodes, our attack will be successful.

6.2 Stellar

While preparing for this project, we had to read and understand a lot about
the Stellar Network, and we are really hoping that it becomes very popular. A
common misconception about Stellar is that it is a cryptocurrency to substitute
Bitcoin, but we think it can be a bridge between Bitcoin and our actual financial
system that can help Bitcoin to become more useful.
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