
Iris: Third-Party Authentication Service

Akshay Padmanabha
akshayp@mit.edu

Kevin Chen
kyc2915@mit.edu

Surya Bhupatiraju
surya@mit.edu

Thomas Zhang
trzhang@mit.edu

ABSTRACT
Existing centralized identification systems, such as Facebook
or Google, offer convenient services for authentication and
storing user information that third-party services leverage to
reduce friction and streamline the process of creating user
profiles and logging in. However, these systems present con-
flict of interests, and users may be interested in a third-party
service that focuses exclusively on authentication. To this
end, we present Iris, a web-based, secure solution that re-
solves the single-point-of-failure concern and provides secure
protocols of data transmission and transparency of data us-
age.

Iris consists of two components: a database that holds
users’ information encrypted with their passphrases along
with a public API to retreive this data, and a client-side
browser extension that handles encryption and decryption
of the user’s information so that the passphrase never leaves
the user’s local computer. In this paper, we detail how us-
ing Iris reduces friction for the website and user, and how a
high level of security and authentication is achieved. In ad-
dition, we examine the potential threat model and present
directions for future work.

Keywords
Iris, Identification, Authentication, Encryption, End-to-End
Encryption, Cryptography

1. INTRODUCTION
Centralized identification systems, such as Facebook or

Google, offer convenient services for authentication and stor-
ing user information. Many web and mobile applications
leverage the wide availability of these services to streamline
the process of logging in and creating user profiles. However,
using these services on third-party services present conflicts
of interests, and for many reasons, users may have an aver-
sion to use these services to create user profiles.

Alternatively, users may be interested in using an unbi-
ased, third-party service that is focused exclusively on au-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.

thentication and providing a centralized identification sys-
tem. To this end, we propose Iris: a web-based, secure,
centralized system to allow users to fully control what in-
formation they expose to third-party services, and offer full
transparency as to what data is collected and how it is used.

2. PREVIOUS WORK
A notable example of work towards an unbiased, third-

party identification system is OpenID [6]. OpenID is a bold
attempt in this direction, but faced many problems. One of
the primary drawbacks include bad communication; it is not
clear to end users as to how OpenID works or how it is used.
This lack of understanding, along with poor implementation,
security vulenerabilities, and trust issues, eventually led to
OpenID becoming less and less popular.

Facebook Connect faces similar problems of trust and mis-
communication, where people are unsure if the third-party
service will post to their timeline, or reveal something per-
sonal to an unintended audience.

3. OVERVIEW
Iris consists of two main components. The first component

is a central database that stores personal information for
each user, encrypted with each user’s secret passphrase. A
public API allows anyone to retrieve data from the database,
but no one except for the user can decrypt his own personal
information.

The second component is a client-side browser extension.
The extension is responsible for handling encryption and
decryption of the user’s personal information, so that the
user’s passphrase never leaves his local machine.

4. GOALS
Iris is designed to meet the following goals.

1. Iris should clearly inform the user about what infor-
mation a service is requesting, and the user’s secret
passphrase and personal information not requested by
the service should never leave the user’s local machine.
Consequently, users do not need to trust any third-
party service to confidentally store their personal in-
formation.

2. The user needs to enter his personal information at
most once, after which all his data is stored on the Iris
database. This benefits the user as well as the service
(users will be more likely to sign up if they do not have
to enter a lot of information).



Figure 1: A popup appears to 1) indicate that the
website is compatible with Iris, 2) present which in-
formation the website is requesting of the user, and
3) prompt the user to login or sign up.

3. A service must be able to authenticate a user with-
out itself having to store a database with usernames
and passwords. Similarly, the central Iris server must
be able to authenticate a user who wishes to edit his
information.

5. SECURITY POLICY
Iris is a service both for users to send information to web-

sites safely and for websites to authenticate users securely.
Users and websites, however, have no reason to trust each
other. The central Iris server also cannot trust any users of
its API. In particular,

1. Anyone may use the Iris public API, with arbitrary
parameters.

2. Websites may contain arbitrary Javascript code and
request any information from the user.

3. Users can modify the code of their Iris browser exten-
sion, and the Javascript code on websites.

On the other hand, we assume that users trust the Iris
server to store their encrypted data safely; the Iris server has
no incentive for malpractice because it cannot decrypt any of
its contents. We also assume that information on the user’s

local machine is safe; for example, we do not consider key-
logging attacks or malware installed on the user’s machine.

6. USING IRIS
The browser extension is a Chrome extension that must

be installed on the user’s browser in order to use Iris. Se-
curely sending personal information to a website involves
the following steps:

1. The website makes a request to the extension with a
Javascript call,

2. The extension creates a popup asking for the user’s ID
and passphrase,

3. The extension locally decrypts the data retrieved from
the Iris database, and

4. The extension sends the requested data and a signature
to the website.

We describe each of these steps in detail below.

6.1 Website requests data
The extension injects a Javascript function definition

iris_request() into every website that the user visits, which
the website can call to request user data. The function sig-
nature is

iris_request(requested_data, callback),

where requested_data is a dictionary of the form {required:

[‘name’, ‘email’], optional: [‘home address’]}. The
user must provide all required attributes to use the service,
but users may choose to not reveal an optional attribute.

If the user confirms the request, then the callback func-
tion will be invoked with a dictionary of the user’s per-
sonal information, for example {name: ‘Kevin’, email:

‘kyc@mit.edu’, home address: ‘500 MIT Drive’}.

6.2 Popup
When the iris_request() function is invoked by the web-

site, the function arguments are passed through a Chrome
message to the browser extension, which creates a popup
window. The popup window is a simple GUI that clearly
shows what personal information the website is request-
ing, and prompts for the UserID and Passphrase. Figure
1 demonstrates the simple GUI and emphasizes the infor-
mation that the website is requesting.

With the highest security settings, a popup requesting ID
and Passphrase is created every time a user visits an Iris-
compatible website. However, users can select other settings
to cache data. For example, the extension can cache their
ID locally. The extension can also cache their personal in-
formation. In the latter case, the user does not need to en-
ter his/her passphrase, unless he/she wishes to edit his/her
information or customize the information sent to this par-
ticular website.

6.3 Data retrieval and decryption
As soon as the user enters his/her ID, the extension makes

an asynchronous call to the Iris server to retrieve the en-
crypted contents associated with this ID. Here is a sample
server response:



Figure 2: A user is able to edit his or her infor-
mation by clicking on the Iris extension icon. The
system recognizes the user after he or she types in
the password, and is able to edit and save the infor-
mation.

{

UserID: ‘kyc’,

Data: ‘[encrypted]’,

Encryption params: [json blob],

Auth: (e, n)

}

The Auth field is the RSA public key used by websites to
verify signatures. The field Data is encrypted and decrypted
with SJCL (Stanford Javascript Crypto Library), which uses
PBKDF2 to convert the user’s passphrase into an encryption
key and then uses 256-bit AES. The encryption parameters
(for example, the IV used for AES) are stored in plaintext
in the Encryption params field. The decryption is all per-
formed locally by the browser extension.

6.4 Sending requested data to the website
The decrypted data is a dictionary that looks like the

following:

{

name: ‘Kevin’,

email: ‘kyc@mit.edu’,

home address: ‘500 MIT Drive’,

SSN: ‘123-456-7890’,

services: {

[customized data for each website]

},

auth key: (p, q, d)

}

The data contains various user information. It also con-
tains the services field which contains customized data for
each website; for example, if a user wanted to use an email
for his/her LinkedIn account different from the email for
other accounts. Finally, the auth key field is the RSA pri-
vate key used to generate signatures. This is crucial in al-
lowing users to sign in to Iris from different devices - as
long as a user has his/her user ID and password, he/she can
generate signatures from any device, mobile or otherwise.

The browser extension filters only the fields requested by
the website. In particular, the extension always clears out
the sensitive services and auth key fields before sending
the data to the website. The extension also adds two addi-
tional fields: the user ID, and the RSA signature.

7. AUTHENTICATION
The previous section describes how the user can safely

send personal information to a website without revealing
his/her private passphrase to the website or any other third-
party service. We now describe how the user can authenti-
cate himself/herself to the website, so that the website can
trust his/her identity without its own username/password
database, as well as how the user can authenticate him-
self/herself to the Iris server, so that he/she can modify the
data stored on the server.

7.1 Authentication to websites
The argument to the callback function in iris_request

contains a signature field, which is a standard RSA signa-
ture md computed by the extension. The value m is a hash
of the message (the user’s requested personal information)
and the current time, to prevent replay attacks. The value
d is the RSA private key, which is known to the extension
because it is stored in the auth key field of the decrypted
data.

The website can authenticate the user with server side
code as follows: first, it retrieves the (e, n) public key from
the Iris server corresponding to the claimed user ID. Then
the website confirms the signature by computing (md)e.

These two steps are easily packaged into a library function
that the website can import on the server side. We wrote
a short library function and used it in our demo page to
authenticate the user. This allows websites to authenticate
users without a username/password database; instead they
just run a simple, stateless function.

7.2 Authentication to Iris server
Now suppose the user wishes to edit his/her personal in-

formation. The user can do so by clicking on the browser
action button of the Iris extension, which reveals a profile
page. To edit data, the user modifies the desired field and
presses Save. Figure 2 illustrates the GUI and shows how
users can edit their information.

The Iris server has a POST call to edit the data for a given
user ID. However, since anyone can make a POST request,
the Iris server must have a mechanism to only allow a user
to edit his/her own entry.



In principle, a signature can be sent just as when authen-
ticating to a website. However, this is susceptible to relay
attacks: once a website receives a md signature, it can imme-
diately make a POST request to the central Iris server before
the time changes.

Because of this vulnerability, we use another approach to
authenticate POST requests: in addition to sending the new
data in the body of the POST request, the extension must
also send the (p, q) private key, as well as a new (e, n)

public key. The server can authenticate the request if and
only if pq = n, and relay attacks are prevented because the
private key changes with every request.

POST({old auth key: (p, q), new auth: (e, n),

new data: [encrypted]})

8. THREAT MODEL
There are two main deficiencies in our current system.

The first is that no authority exists for initially creating
users. The Iris server supports a public PUT request to cre-
ate a user entry, but it can be overloaded. Such an authority
is outside the scope of our project, but is necessary if this
system is to be put into widespread use in the future. Ad-
ditionally, our current implementation cannot prevent dis-
tributed denial-of-service attacks, but this is again outside
the scope of our project.

The second consists of the various ways sensitive infor-
mation can be revealed. For example, if a user’s computer
was compromised by a keylogger, our system cannot pre-
vent the user’s password from being revealed. Furthermore,
if malware changes the extension to record user IDs and
passwords, a user’s information is again compromised. Fi-
nally, if a website poses as a legitimate website, it could trick
users and Iris into giving it a user’s information.

9. FUTURE WORK
At its current state, the application is ready to be de-

ployed to machines and used by websites to streamline the
login process. However, there are multiple directions to in-
crease functionality and availability of the service. Namely,
we’d like to create extensions for all popular web browsers to
become the de facto method of authentication and to greatly
improve the UI of the application, as it was not the focus
of this project. Along these lines, we would like to support
more clear use cases of authenticating on multiple devices,
as this was also outside the scope of our current project.
However, both of these features are easily extendable with
the current modular design.

In addition, we would like to be able to protect against
some of the common attacks as detailed in Section 8, such
as implementing features to detect large amounts of network
traffic to prevent DDoS attacks, and to store a list of trusted
websites to prevent phishing from malicious websites.

10. ACKNOWLEDGMENTS
We would like to thank Professor Ronald Rivest and TA

William Cyr for providing helpful advice and directions for
our project.

11. REFERENCES
[1] Serge Egelman. 2013. My profile is my password, verify

me!: the privacy/convenience tradeoff of facebook

connect. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’13).
ACM, New York, NY, USA, 2369-2378.
DOI=10.1145/2470654.2481328
http://doi.acm.org/10.1145/2470654.2481328

[2] Thomas Groβ. 2003. Security Analysis of the SAML
Single Sign-on Browser/Artifact Profile. In Proceedings
of the 19th Annual Computer Security Applications
Conference (ACSAC ’03). IEEE Computer Society,
Washington, DC, USA, 298-.

[3] Khan, R.H.; Ylitalo, J.; Ahmed, A.S., ”OpenID
authentication as a service in OpenStack,” Information
Assurance and Security (IAS), 2011 7th International
Conference on , vol., no., pp.372,377, 5-8 Dec. 2011.
DOI=10.1109/ISIAS.2011.6122782

[4] David Recordon and Drummond Reed. 2006. OpenID
2.0: a platform for user-centric identity management.
In Proceedings of the second ACM workshop on Digital
identity management (DIM ’06). ACM, New York, NY,
USA, 11-16. DOI=10.1145/1179529.1179532
http://doi.acm.org/10.1145/1179529.1179532

[5] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh,
and John Mitchell. 2005. Stronger Password
Authentication Using Browser Extensions. In
Proceedings of Usenix security
http://crypto.stanford.edu/ dabo/abstracts/pwdhash.html

[6] San-Tsai Sun, Eric Pospisil, Ildar Muslukhov, Nuray
Dindar, Kirstie Hawkey, and Konstantin Beznosov.
2011. What makes users refuse web single sign-on?: an
empirical investigation of OpenID. In Proceedings of the
Seventh Symposium on Usable Privacy and Security
(SOUPS ’11). ACM, New York, NY, USA, , Article 4 ,
20 pages. DOI=10.1145/2078827.2078833
http://doi.acm.org/10.1145/2078827.2078833


