
Defending Against Rogue Hard Disks

Anitha Gollamudi, Andres Perez

Ivan Tadeu Ferreira Antunes Filho, Ben Yuan

May 14, 2015

Abstract

Recent revelations as to the ability of APTs to embed code in hard disk firmware, as well as

the existence of prior public literature describing similar work, raise concerns as to the future

potential proliferation and weaponization of this technique. We describe previous work in this

domain, including both recent revelations and prior research, and then discuss our strategy

for mitigating the impact of similar techniques with the technology available today for us to

use. Specifically, we describe a procedure that sets up a Secure Boot hierarchy at install time,

which may be used to verify the integrity of an installed bootloader, and sets up full disk

encryption to protect kernel and user code and data. The combination of these two approaches

greatly increases the difficulty of a useful hard-disk-mediated attack; we describe the considerable

remaining room for improvement.

1 Introduction

In the past decade, computer security attacks have gotten very sophisticated. It is becoming more

and more important to not only have forms of security for all kinds of devices, but to also have

safety measures. Being able to determine when trusted firmware has been modified provides us

with an adequate safety.

Traditional hard drives have a dominant role in the market for persistent data storage. They

can store many classes of data, including program code, operating system code, and application

and user information. Modern hard drives implement a high degree of intelligence, from caching to

data encoding to hard- ware encryption, and much of this intelligent capability is implemented on

1

2 BACKGROUND

programmable micro-controllers, updatable using proprietary commands issued by vendor-supplied

tools.

The two general assumptions most people tend to have when dealing with hard disks is that only

trusted sources can modify the firmware, and that the firmware is doing what the manufacturer

has agree with. In other words, the firmware reads data that is actually on the hard disk, without

hiding any, and always writes data that the operating system has told it to write. But how can

we tell when the latter assumption no longer holds, and how can we tell that there is persistent

malware living in our hard disk firmware? In this paper we’ll discuss previous attacks on hard disk

firmware, and on how to detect when systems have been compromised.

2 Background

2.1 Previous work

One day in 2009, researchers were victims to one of the most sophisticated attacks to date. A

package containing a CD was intercepted by group now know as Equation Group, and it’s contents

were injected with malware.[1] Kaspersky lab decided to investigate this group’s attacks further

and discovered sophisticated malware that was able to change the firmware on many different types

of hard disks, like Samsung, Western Digital, Seagate and others.[1]

The allegations made by Kaspersky Lab regarding the development of advanced hard disk

programming capability [2] do not represent the first appearance of this technique in the literature;

prior work was undertaken by Jeroen Domburg (Sprite) on hard disks manufactured by Western

Digital [3]. This work involved extraction and reverse engineering of firmware from a hard disk

using hardware debugging and disassembly techniques. After six months of work, Domburg was

able to reverse-engineer the Western Digital firmware and update mechanism and add working

exploit code that modifies a Linux system password database on demand; a significant amount of

code from this effort is available for examination. Concurrently and independently, Zaddach et

al., [4] presented a practical data exfiltration backdoor for a SATA hard disk. The backdoor is

self-contained and is installable. Despite no implementation, the paper discusses applicable detec-

tion and defensive techniques (e.g., encryption of data at rest, signed firmware updates) as well as

their ramifications. Both Zaddach et al and Domburg dumped the firmware and relied heavily on

2

2.2 Full-disk encryption 2 BACKGROUND

debugging tools for reverse-engineering.

2.2 Full-disk encryption

Full-disk encryption, or FDE, refers to any scheme that aims to provide encryption of an entire hard

disk with minimal impact on performance. It is commonly used to protect data against retrieval

by offline attackers; to access a FDE-protected volume successfully, a user must have access to a

corresponding encryption key. With specialized operating system tools, full disk encryption can

even be applied to system volumes; a scheme with such support will install a specialized bootloader

and pre-boot environment capable of decrypting the system at boot time.

Full-disk encryption solutions are generally symmetric-key schemes, protecting a symmetric

encryption key using one or more user passwords. This is done in such a way that the unprotected

symmetric key is never written to the disk; it can be derived from a password directly using a

password-based key derivation function, or it can itself be encrypted using such a password-derived

key and written in that form to a volume header.

Any encryption solution aims to provide confidentiality: it should be ”hard” for an adversary to

gain any information about the original plaintext without access to the encryption key. Additionally,

a good encryption solution will aim to provide non-malleability: it should be ”hard” for an adversary

to make changes to the ciphertext that map cleanly to changes in the plaintext. Understanding

the degree to which current solutions provide these properties in practice, and thus the degree of

protection they afford from a malicious hard disk, requires understanding the algorithms used and

their limitations.

2.2.1 Algorithms used

The block device environment is challenging for encryption due to the necessary support for random

access and the desired attribute of parallelizability, both for encryption and for decryption. Addi-

tionally, the nature of block devices as error-prone physical media raises an additional challenge,

namely in the limitation of error propagation to prevent single-bit errors from invalidating large

sections of a disk. Accordingly, block ciphers and cipher modes have to be designed and selected

with these constraints in mind.

3

2.2 Full-disk encryption 2 BACKGROUND

Figure 1: Diagram of the XTS encryption mode.

The current ”gold standard” supported by modern FDE solutions is AES-XTS, the well-

regarded AES block cipher using the XTS cipher mode. XTS, or ”XEX-based tweaked-codebook

mode with ciphertext stealing”, may be described as follows [5]:

• Two symmetric keys Key1 and Key2 are generated.

• Every disk sector (typically 512 bytes), partitionable into 16-byte blocks, receives an ini-

tialization vector i, assigned consecutively starting from an arbitrarily chosen non-negative

integer. This IV is encrypted using Key2 and multiplied j times by α, a primitive element of

GF
(
2128

)
, to compute a value Tj for block j of the sector.

• For encryption, the plaintext Pj for block j is first XORed with T ; the output is then encrypted

using Key1, and then XORed again with T to produce the ciphertext Cj .

• Decryption is the inverse of the above procedure.

• The technique of ciphertext stealing may be used to handle unevenly sized sectors. Consumer

hard disks generally have 512-byte or 4096-byte sectors, so this is generally not necessary.

While XTS provides effective parallelizable encryption and decryption, it does suffer from several

limitations. Because any given sector receives the same initialization vector, and because blocks

are independent of each other, any 16-byte plaintext present in the exact same location of the disk,

presuming the same keys are used, will necessarily encrypt to the same 16-byte ciphertext. While

not as problematic as ECB, which is location-invariant in this property, an attacker capable of

taking multiple disk snapshots over time can still observe data patterns over time. Additionally,

4

2.3 UEFI Secure Boot 2 BACKGROUND

XTS does afford a limited degree of malleability, contrary to our earlier desideratum; while it is

not known to be possible to do better than randomization of arbitrarily chosen 16-byte blocks,

16 bytes is unfortunately small in relation to the x86 instruction set. Arguably, it is possible to

introduce a security hole in existing code without introducing an outright crash [6], presuming that

an attacker knows where system code resides on the disk. While such attacks could be mitigated

by randomization of on-disk program location at install time, it is conceivable that disk access

patterns could reveal the location of code segments over time.

In terms of the actual protection afforded by current full-disk encryption solutions, then, AES-

XTS offers a significant amount of room for improvement. However, in terms of what is readily

deployable as of this paper, AES-XTS enjoys a broad spectrum of support matched only by the

significantly weaker AES-CBC-ESSIV, which exhibits bit-level malleability. We hence use AES-

XTS as our algorithm of choice, with the caution that separate methods are necessary to verify

code and data integrity.

The actual implementation we use for FDE is provided by the dm-crypt Linux kernel module,

using the LUKS (Linux Unified Key Setup) system to manage encryption keys [7]. LUKS generates

a master symmetric key used to encrypt the rest of the volume; this key is encrypted using a

user password and then stored in a key slot on disk. This approach enables changing the disk

password and allowing support for multiple passwords without needing to re-encrypt the entire

disk. dm-crypt enjoys native kernel support from Linux as well as well-developed support in the

Ubuntu boot sequence. Additionally, the GRUB boot loader also supports dm-crypt natively,

decreasing the amount of necessary plaintext exposure.

2.3 UEFI Secure Boot

Though full-disk encryption offers protection for the kernel, initramfs, and user applications, it still

leaves the bootloader unencrypted. Secure boot solves this problem by offering us a way to detect

unsigned bootloaders.

Unified extensible hardware interface (UEFI[8]) is an abstract specification that defines interface

between operating system (OS) and platform hardware. It is the successor of Extensible Firmware

Interface (EFI). The interface is in the form of data tables that contain platform-related information,

boot and runtime service calls that are available to the OS loader. From [9], UEFI secure boot is

5

2.3 UEFI Secure Boot 2 BACKGROUND

a protocol that can secure the boot process by preventing the loading of drivers or OS loaders that

are not signed with an acceptable digital signature. In short, it verifies boot path sequence.

Figure 2: Secure Boot Overview

Figure 2 presents the overview

of secure boot. The de-

vice(hardware) comes with a

platform key secured in its non-

volatile memory. Once powered

on, after some setup, UEFI boot

manager verifies the signature of

bootloader using PK and loads it

if successful. The verified boot-

loader in turn verifies OS using

additional keys referred to as Key Exchange Keys stored in signature databases. UEFI binaries are

signed with KEKpriv and verified with KEKpub stored in databases. We describe this process in

detail in section 2.3.1. Once OS is verified, bootloader loads the OS which can inturn verify device

drivers. A signature mismatch at any stage during the booting leads to a failure.

2.3.1 Enrolling Keys

Figure 3: Secure Boot Modes

Secure boot uses 2 important keys - Platform

Key (PK) and Key Exchange Key (KEK).

• Platform Key: Establishes trust between

platform owner and firmware. Owner en-

rolls PKpub into the firmware and uses

PKpriv to authenticate any changes later

on. PK must be stored in non-volatile

storage which is tamper and delete resis-

tant

• Key Exchange Key: Establishes trust be-

tween operating system (OS) and the

6

2.3 UEFI Secure Boot 2 BACKGROUND

firmware. Each OS enrolls a KEKpub.

KEKs must be stored in non-volatile stor-

age which is tamper resistant.

A secure boot operates in 2 primary modes - setup and user. UEFI also specifies Audit and

Deployed modes which we skip for brevity. Figure 3 illustrates the mode transitions.

• When no PK is enrolled, setup mode is turned on. In this mode, no authentication is required

to updated PK. Once PK is enrolled, setup mode gets turned off.

• Until a platform key is cleared, user mode is turned on.

Figure 4: Adding a new signature by the OS

All secure boot keys are stored in

UEFI authenticated variables. Keys

can be updated in user mode only if

authentication step succeeds.

2.3.2 Enrolling Platform Key

(PK)

Platform Keys are enrolled by plat-

form owner using UEFI Boot Service

setVariable(). In setup mode, PKpub

is enrolled by signing it with its coun-

terpart PKpriv. In user mode, PKpub

must be signed by current PKpriv.

The platform vendor may provide a

default PKdefault which can be used

to transition from setup mode to user

mode.

7

3 OUR METHOD

2.3.3 Enrolling Key Exchange

Keys (KEKs)

KEKs can be written in setup mode

or in user mode. In setup mode it should comply to format of UEFI authenticated variable while

in user mode it needs to be signed by the current PKpriv.

2.3.4 Signature Database Update

Signature database can be updated in setup or user mode. In user mode, the provided variable is

signed with previously enrolled KEKpriv or PKpriv. OS can add new keys to the database. The

process is illustrated in figure 4 [8, figure 79 page 1800]

2.3.5 Pros and Cons

Secure boot can be used to detect tampered OS and bootloaders, altered boot sequences. It detects

rootkit attacks. When complemented with FDE, it can greatly limit the impact of malicious hard

disk firmware. There are few limitations as well.

1. When UEFI secure boot is enabled, attempts to boot non-UEFI OS fail

2. Currently, some kernel level features like kprobe, kdump, kexec had to be disabled to comply

with the nature of secure boot

3. Can be politicised to discriminate and deter new market entrants.

2.3.6 Open Source Secure Boot Tools

[10] has a set of utilities for signing secure boot images and updating keys. In particular ”sbkeysync”

can be used to update signature databases from within an OS. In our project, we used these tools

to enroll PK and KEK enabling secure boot

3 Our method

We have a partially automated procedure tested in QEMU with OVMF, ”a project to enable UEFI

support for Virtual Machines”, that sets up full disk encryption and secure boot, offering protection

8

3 OUR METHOD

against offline attacks similar to those achievable by hard disk firmware.

Figure 5: Procedure Overview

• Create a primary partition and an EFI partition using parted.

• Format the EFI partition, the partiton where the unencrypted Grub standalone will reside.

• Set up LUKS, Linux Unified Key Setup, to encrypt our primary partition in AES-XTS mode.

• Set cryptodisk enabled in /etc/default/grub

• Install Ubuntu from the live CD. The install will fail, when it tries to install Grub, because

of the full disk encryption. This will copy all the other files necessary for a running system,

however.

• Write an entry for the main cryptodisk to /etc/crypttab, the list of encrypted devices that

are set up during boot.

• Make sure that GRUB ENABLE CRYPTODISK=y in /etc/default/grub and produce a stan-

dalone Grub boot loader using grub-mkstandalone, ensuring all necessary modules will be

linked into the main core.img file.

• Generate a key and a self-signed certificate using openssl. [11]

• Use sbsiglist to create an EFI SIGNATURE LIST signature database containing the certifi-

cate.

9

3 OUR METHOD

• Use sbvarsign to generate signed updates, i.e. authenticated variables, for the EFI signature

databases.

• Copy the keys and certificate to the standard locations in ”/etc/secureboot/keys/” , ”/etc/se-

cureboot/keys/PK/”, ”/etc/secureboot/keys/KEK/” and ”/etc/secureboot/keys/db/”, for

them to be found by sbkeysync.

• Use sbkeysync to add our keys to the firmware database.

• Use sbsign to sign the standalone Grub generated previously, as well as the Shim first-stage

bootloader and the kernel to boot. (In each case, ensure signing input is from the CD or the

live environment RAN disk; don’t try to directly sign what’s already on the disk.)

• Copy the signed Grub and Shim to the EFI partition.

• Add Shim to the EFI boot entry using efibootmgr.

Figure 6: Image of the Ubuntu setup process in the QEMU VM.

The only plain text that the hard drive ever sees is the Grub standalone image and Shim first-

stage bootloader; however, since they are signed, if they are modified it won’t run anymore. This

setup gives us a trusted boot path that we control completely, making future tampering by any

party much more difficult.

10

4 LIMITATIONS

4 Limitations

Our approach provides no real integrity assurances beyond the bootloader and kernel. It is very

hard for the disk drive to run code generated by itself, or for it to specifically choose programs to

run, since they are encrypted; however, it can still cause execution of randomly generated user-

space code. To protect against this, we would need filesystem-level signing and a security policy

denying unsigned file access, or something that provides similar functionality.

Key management becomes an important issue. Control over the file disk encryption key and

the secure boot keys implies control over the whole running system, and so careful risk assessment

becomes important in determining how those keys should be controlled. In an ideal world, one

would use a hardware security module, but these are expensive. One could save the keys in an

external USB storage device, but those have known issues, such as the BadUSB firmware exploit.

The current installation procedure still has a manual component, which makes execution dif-

ficult. To make the installation procedure more feasible, some extra development work would be

needed; the current procedure is strictly a proof-of-concept and makes many assumptions.

In order to provide kernel verification capability to GRUB, we install the Shim first-stage

bootloader, which exposes an API for this purpose to GRUB. The version of Shim that ships with

the current Ubuntu installer has the Canonical signing public key embedded, and the disk does

not appear to ship with sufficient prerequisites to compile a new Shim. Adding the necessary

ingredients to the Ubuntu live CD would patch up this potential security concern.

The version of GRUB shipped with Ubuntu appears to happily boot unsigned kernels under

certain conditions - for instance, if a signed kernel has failed to boot and an unsigned kernel happens

to reside in the /boot directory. This is an obvious security hole, allowing (at minimum) a disk

drive to present an unsigned kernel that has ever been legitimately written to the /boot directory.

Further work would require patching GRUB so as not to allow this behavior. Other distributions

may ship versions of GRUB that do not have this behavior; we suspect the Ubuntu decision was

made on the grounds of general usability due to its particular target audience, to avoid breaking

the boot process in case Secure Boot was applied incorrectly.

11

REFERENCES REFERENCES

References

[1] Arstechnica, How ’omnipotent’ hackers tied to the NSA hid for 14 years- and were found

at last, [Online; accessed 11-May-2015]. [Online]. Available: http://arstechnica.com/

security/2015/02/how-omnipotent-hackers-tied-to-the-nsa-hid-for-14-years-

and-were-found-at-last/.

[2] Kaspersky Lab, “Equation group: Questions and answers,” Kaspersky Lab, Tech. Rep., 2015.

[3] J. Domburg, Hard disk hacking. [Online]. Available: http : / / spritesmods . com / ?art =

hddhack.

[4] J. Zaddach, A. Kurmus, D. Balzarotti, E. O. Blass, A. Francillon, T. Goodspeed, M. Gupta,

and I. Koltsidas, “Implementation and implications of a stealth hard-drive backdoor,” in AC-

SAC 2013, 29th Annual Computer Security Applications Conference, December 9-13, 2013,

New Orleans, Louisiana, USA, New Orleans, UNITED STATES, Dec. 2013. doi: http:

//dx.doi.org/10.1145/2523649.2523661. [Online]. Available: http://www.eurecom.fr/

publication/4131.

[5] “IEEE standard for cryptographic protection of data on block-oriented storage devices,” IEEE

Std 1619-2007, pp. c1–32, Apr. 2008. doi: 10.1109/IEEESTD.2008.4493450.

[6] Public comments on the XTS-AES mode, Sep. 2008. [Online]. Available: http://csrc.nist.

gov/groups/ST/toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf.

[7] C. Fruhwirth, LUKS on-disk format specification, Oct. 2011. [Online]. Available: https:

//gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf.

[8] Unified extensible firmware interface specification, version 2.5, Apr. 2015. [Online]. Available:

http://www.uefi.org/sites/default/files/resources/UEFI%202_5.pdf.

[9] Wikipedia, Unified extensible firmware interface — Wikipedia, the free encyclopedia, [On-

line; accessed 10-May-2015], 2004. [Online]. Available: http://en.wikipedia.org/wiki/

Unified_Extensible_Firmware_Interface#Secure_boot.

[10] Secure boot signing tools. [Online]. Available: https://launchpad.net/sbtools/.

12

http://arstechnica.com/security/2015/02/how-omnipotent-hackers-tied-to-the-nsa-hid-for-14-years-and-were-found-at-last/
http://arstechnica.com/security/2015/02/how-omnipotent-hackers-tied-to-the-nsa-hid-for-14-years-and-were-found-at-last/
http://arstechnica.com/security/2015/02/how-omnipotent-hackers-tied-to-the-nsa-hid-for-14-years-and-were-found-at-last/
http://spritesmods.com/?art=hddhack
http://spritesmods.com/?art=hddhack
http://dx.doi.org/http://dx.doi.org/10.1145/2523649.2523661
http://dx.doi.org/http://dx.doi.org/10.1145/2523649.2523661
http://www.eurecom.fr/publication/4131
http://www.eurecom.fr/publication/4131
http://dx.doi.org/10.1109/IEEESTD.2008.4493450
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%202_5.pdf
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface#Secure_boot
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface#Secure_boot
https://launchpad.net/sbtools/

A CODE USED AND TESTING PROTOCOL

[11] J. Kerr, Sbkeysync & maintaining uefi key databases, Aug. 2012. [Online]. Available: http:

//jk.ozlabs.org/docs/sbkeysync-maintaing-uefi-key-databases/.

A Code used and testing protocol

All code provided here assumes:

• The target machine begins in ’setup mode’ with respect to Secure Boot.

• The target physical disk is located at /dev/sda and the auxiliary key storage disk is located

at /dev/sdb. Both disks are overwritten in their entirety during the install procedure.

• No mistakes are made during the manual prompts.

• ubiquity is launched with the -b flag, which prevents bootloader installation.

• The scripts themselves are loaded in /usr/local/etc on the live CD filesystem, and

are run as root.

An example qemu invocation might be:

sudo qemu-system-x86 64 -enable-kvm -m 2048 -hda test.img -hdb extern storage.img

-pflash OVMF.fd -cdrom /path/to/ubuntu-custom.iso -show-cursor

assuming that the relevant disk and firmware images are in the current directory.

The overall installation procedure from a user perspective:

1. Load the appropriately modified Ubuntu live environment. Open a terminal.

2. Run sudo /usr/local/etc/preinstall.sh. Follow all prompts.

3. Run the Ubiquity installer with the -b flag. For partitioning, choose ”something else”. Set

the mount point for the /dev/mapper/cryptoroot virtual device as /. Follow all prompts.

4. When Ubiquity finishes, choose ”continue testing”.

5. Run sudo /usr/local/etc/postinstall.sh. Follow all prompts.

6. Restart the computer. Marvel at the secureness of the boot path.

13

http://jk.ozlabs.org/docs/sbkeysync-maintaing-uefi-key-databases/
http://jk.ozlabs.org/docs/sbkeysync-maintaing-uefi-key-databases/

A.1 /usr/local/etc/preinstall.sh A CODE USED AND TESTING PROTOCOL

We verified that this procedure worked. We also verified that introducing bit errors into the

plaintext of an otherwise signed kernel would cause GRUB to refuse to boot the kernel (due to

’invalid signature’).

Figure 7: What happens when your kernel is bit-flipped.

As of May 2015, the modified install disk we created may be found at

http://link.csail.mit.edu/scratch/ubuntu-custom.iso.

A.1 /usr/local/etc/preinstall.sh

1 #!/bin/bash

2

3 parted /dev/sda mklabel gpt

4 parted /dev/sda mkpart ESP fat32 1MiB 513 MiB

5 parted /dev/sda set 1 boot on

6 parted /dev/sda mkpart primary 513 MiB 100%

7

8

9 # format the EFI system partition

10 mkfs.vfat -F32 /dev/sda1

11

12 # wipe the primary container

13 cryptsetup open --type plain /dev/sda2 container

14 dd if=/dev/zero of=/dev/mapper/container

15 cryptsetup close container

14

A.2 /usr/local/etc/postinstall.sh A CODE USED AND TESTING PROTOCOL

16

17 # setup LUKS

18 # on current arch this sets up aes -xts -plain64 just fine

19 cryptsetup -y -v luksFormat /dev/sda2

20 cryptsetup open /dev/sda2 cryptoroot

21 mkfs -t ext4 /dev/mapper/cryptoroot

22 mount -t ext4 /dev/mapper/cryptoroot /mnt

A.2 /usr/local/etc/postinstall.sh

1 #!/bin/bash

2 parted /dev/sdb mklabel gpt

3 parted -a optimal /dev/sdb mkpart primary 0% 100%

4 mkfs.ext4 /dev/sdb1

5

6 mount /dev/sdb1 /mnt

7

8 cd /tmp

9

10 openssl genrsa -out test -key.rsa 2048

11 openssl req -new -x509 -sha256 -subj ’/CN=test -key ’ -key test -key.rsa -out test -

cert.pem

12 openssl x509 -in test -cert.pem -inform PEM -out test -cert.der -outform DER

13

14 guid=$(uuidgen)

15

16 sbsiglist --owner $guid --type x509 --output test -cert.der.siglist test -cert.der

17

18 for n in PK KEK db

19 do

20 sbvarsign --key test -key.rsa --cert test -cert.pem --output test -cert.der.

siglist.$n.signed $n test -cert.der.siglist

21 done

22

23 sudo mkdir -p /mnt/secureboot/keys/{PK,KEK ,db,dbx ,private}

24 sudo cp *.PK.signed /mnt/secureboot/keys/PK/

25 sudo cp *.KEK.signed /mnt/secureboot/keys/KEK/

15

A.3 /usr/local/etc/chroot-postinstall.shA CODE USED AND TESTING PROTOCOL

26 sudo cp *.db.signed /mnt/secureboot/keys/db/

27 sudo cp test* /mnt/secureboot/keys/private

28

29 sbkeysync --verbose --pk --keystore /mnt/secureboot/keys --no -default -keystores

30

31 mount /dev/mapper/cryptoroot /target

32 chroot /target bash /usr/local/etc/chroot -postinstall.sh

33

34 sbsign --key test -key.rsa --cert test -cert.pem --output /tmp/grubx64.efi /target/

tmp/grubx64.efi

35 sbsign --key test -key.rsa --cert test -cert.pem --output /tmp/bootx64.efi /target/

usr/lib/shim/shim.efi

36 sbsign --key test -key.rsa --cert test -cert.pem --output /target/boot/vmlinuz -‘

uname -r‘.efi.signed /cdrom/casper/vmlinuz.efi

37

38 mkdir /efi

39 mount /dev/sda1 /efi

40 mkdir -p /efi/efi/boot

41 cp /tmp/grubx64.efi /efi/efi/boot/grubx64.efi

42 cp /tmp/bootx64.efi /efi/efi/boot/bootx64.efi

A.3 /usr/local/etc/chroot-postinstall.sh

1 #!/bin/bash

2 mount /sys

3 mount /dev

4 mount /proc

5 mount -t tmpfs tmpfs /tmp

6

7 mount /dev/sr0 /cdrom

8

9 echo "cryptoroot /dev/sda2 none luks" > /etc/crypttab

10

11 dpkg -reconfigure cryptsetup

12

13 dpkg -r grub -gfxpayload -lists grub -pc

16

A.3 /usr/local/etc/chroot-postinstall.shA CODE USED AND TESTING PROTOCOL

14 dpkg -i /cdrom/pool/main/e/efibootmgr/efibootmgr* /cdrom/pool/main/g/grub2/grub -

efi -amd64* /cdrom/pool/main/s/shim/shim*

15

16 echo "GRUB_TERMINAL=console" >> /etc/default/grub

17 echo "GRUB_CMDLINE_LINUX =\"cryptdevice :/dev/sda2:cryptoroot\"" >> /etc/default/

grub

18

19 cd /tmp

20 grub -mkconfig -o grub.cfg

21

22 grub -mkstandalone -d /usr/lib/grub/x86_64 -efi/ -O x86_64 -efi -o grubx64.efi "boot/

grub/grub.cfg=/tmp/grub.cfg" --modules="acpi boot cat configfile cryptodisk

datetime echo elf ext2 fshelp gcry_rijndael gcry_sha1 gettext gzio halt help

linuxefi linux loadenv ls lsefi luks lvm msdospart multiboot normal part_gpt

probe read reboot search sleep terminal test"

17

	Introduction
	Background
	Previous work
	Full-disk encryption
	Algorithms used

	UEFI Secure Boot
	Enrolling Keys
	Enrolling Platform Key (PK)
	Enrolling Key Exchange Keys (KEKs)
	Signature Database Update
	Pros and Cons
	Open Source Secure Boot Tools

	Our method
	Limitations
	Code used and testing protocol
	/usr/local/etc/preinstall.sh
	/usr/local/etc/postinstall.sh
	/usr/local/etc/chroot-postinstall.sh

