
PAuth: A Peer-to-peer Authentication Protocol

Zijing Gao, Thomas Lu, Anand Srinivasan

March 20, 2015

Abstract

PAuth is an authentication protocol in which users’ identities are veri-
fied by their peers, who subsequently report the results of the verification
to a central server or system. Our aim in designing PAuth was to defend
against both DoS attacks based on the computational cost of password ver-
ification and brute-force attacks on hashed passwords: servers that hash
passwords using a computationally expensive hash function are vulnerable
to the first attack, while servers that use a cheap one are vulnerable to the
second. PAuth completely obviates the need for servers to store hashed
passwords, but trades the decrease in computational responsibility for an
increase in communicative responsibility.

1

1 Introduction

Username-password is one of the most common ways to authenticate users to a
central service. Typically, on the server side, this involves storing storing pairs of
the form (U,H(P)), where U is the username, P is the password, and H is a one-
way, collision-resistant hash function. When a user submits an authentication
request with username U and password P ′, the server then checks if H(P ′) =
H(P). The hash function H prevents an attacker with access to the username-
password table from gaining access to users’ accounts. Another common practice
is to also include a pseudorandom salt S with each pair and store triplets of
the form (U, S,H(S|P)), where | denotes concatenation, and checking whether
H(S|P ′) = H(S|P) when a user submits an authentication request (U,P ′); this
provides additional protection against rainbow table attacks.

In most systems employing username-password authentication, a central
server (or centrally-controlled distributed system) performs all hashes for pass-
word checking. Thus there is a significant tradeoff to be made in the choice
of hash function. A computationally cheap hash function allows attackers to
perform brute-force attacks more quickly; according to [1], users choose pass-
words with 40.54 bits of security on average. If the SHA-256 hash function
were used to hash passwords, then using an AntMiner S5 ASIC machine, which
achieves 3.12 × 109 hashes per second [2], a well-mounted brute force attack
can theoretically crack the average password in 240.54/3.12× 109 = 512 seconds
on expectation (assuming good knowledge about password distributions). How-
ever, a computationally expensive hash function opens up an opportunity for
a denial-of-service attack: by sending many authentication requests, perhaps
using a botnet, an attacker can overwhelm the computational capability of the
system by forcing it to perform a large number of hashes. Such attacks have
been mounted against wireless sensor networks [3], and although it would be
difficult to perform a similar attack on a larger system, it is not unimaginable.

PAuth is an authentication protocol that obviates the need for the central
system to perform computational verification of a password. Instead, a user’s
identity is verified by his/her peers via zero-knowledge proofs. While PAuth
lightens the computational load on a system, it increases the communication
load; however, there is evidence that network communication is becoming less
costly in computer systems [4], and we are hopeful that our protocol can evolve
into a practical authentication scheme in the future.

Section 2 presents the protocol. Section 3 outlines some of the design de-
cisions that we made, and section 4 describe attacks that we considered and
possible enhancements we can make to mitigate their risks. Section 5 outlines
an estimation of good values for two key parameters in an actual large-scale
deployment of PAuth. Section 6 describes the current state of implementation,
and section 7 concludes.

2

2 Protocol

When a user registers an identity with a server running PAuth, the user gen-
erates a public/private key pair (PK,SK) and sends the public key PK to
the server along with any other necessary identification information (username,
etc.). The authentication protocol then proceeds as follows:

1. When the user wishes to authenticate, he/she sends PK to the central
server.

2. The server randomly selects k peers that are currently connected to the
server, and sends the networks addresses of these peers (IP1, IP2, . . . , IPk)
back to the user.

3. The authenticating user contacts each of these peers and sends PK to
them to begin a zero-knowledge proof of possesion of SK.

4. Each peer generates a random string Npeer, encrypts it with the public
key to get EPK(Npeer), and sends the result back to the authenticating
user.

5. The user replies to each peer with the decryption DSK(EPK(Npeer)).

6. Each peer checks if the user’s reply is equal to the original nonce, and
sends either (YES, PK) or (NO, PK) to the server accordingly.

7. If the server receives at least k′ replies of the form (YES, PK) within a
timeout period t, then the authentication attempt succeeds. Otherwise,
the authentication attempt fails.

A graphical representation of this protocol is provided in Figure 1. The pa-
rameters k and k′ are adjustable to provide the best combination of security and
efficiency. We discuss possible values of these parameters and their implications
in section 5.

Note that the protocol requires at least k users to be connected to authenti-
cate any additional users. The first k users can be connected to the system using
other methods, or we can seed the user pool with a set of “initial peers” that
are deployed alongside the central server or system. This solves the problem of
initialization.

This protocol provides no security guarantees about any individual message.
Instead we rely on security in numbers, similar to the Bitcoin system. Just as
the security of Bitcoin depends on attackers being unable to mount a majority
of computational power [5], the security of our protocol depends on attackers
being unable to maintain a significant fraction of connections to the central
server. This issue is discussed further in section 5.

3

Figure 1: This is a graphical representation of the protocol described in section
2. For simplicity, only communication with one peer is depicted in the figure,
and only four peers are displayed. In an actual implementation, a client would
attempt to communicate with all peers named by the server, and the server
would name more than four peers.

4

3 Design Decisions

In the course of designing this protocol, we considered a number of possible
options for each part of the protocol. We present some of the more significant
decisions that we made and the reasons for these decisions.

3.1 Peer Contacting

In an earlier version of the protocol, communication with the peers of an authen-
ticating user was initiated by the server, and communication between authenti-
cating user and peers was initiated by the peers. This presented an opportunity
for a denial-of-service attack against users: by submitting a large number of bo-
gus authentication requests on behalf of a user to the server (this is easy to do, as
this simply involves sending the public key of that user), an attacker can cause
kr packets to be sent to the user by only sending r packets him/herself, easily
flooding the user’s network connection if k is modestly large. Rate-limiting by
machine could mitigate the influence of an attacker with a single machine, but
would not stop one in control of a botnet. Rate-limiting by user could protect
a user from network flooding by a distributed attacker, but also introduces a
method for attackers to deny opportunities for authentication to a user.

Instead, by shifting the responsibility of peer contacting to the authenticat-
ing user, we remove the possibility of a flooding attack employing PAuth. Users
can simply ignore peer lists that they did not expect to receive from the server,
and so the PAuth protocol makes it no easier for an attacker to flood a user’s
network.

3.2 Authentication Initialization

We considered a number of ways for users to contact the server to indicate
intent to authenticate. We initially wanted to find a scheme that would prevent
attackers from submitting bogus authentication requests on behalf of a user.
The alternative that we considered most seriously was the addition of another
secret “identity key” to the protocol that users would submit to the server to
indicate intent to authenticate. However, to minimize computational load on
the server (which is the ultimate intent of this protocol), the identity key would
have to be sent in cleartext, and could thus be stolen easily. We therefore
decided to indicate intent to authenticate using publicly available information,
and prevent or reject bogus requests using different methods (specifically, the
one described above).

4 Possible Attacks and Mitigations

In this section we discuss possible attacks against this protocol and steps that
we can take to mitigate the risks of these attacks. Not all of these measures
have been implemented, but it would not be difficult to do so.

5

4.1 Computational Overload of Peers

In the protocol described, a peer that is connected to the server and receives
a request to begin a zero-knowledge proof has no way of knowing whether the
request is legitimate. By sending a peer many requests of this form, we can force
the peer to generate and encrypt a large number of random nonces, possibly
overwhelming the computational capabilities of this peer. While it is unlikely
that an attacker will be able to overwhelm the entire network of peers in this
way (as the resources required to mount such an attack grows linearly with the
size of the network), it is still undesirable for attackers to be able to bring down
the CPUs of chosen peers.

To mitigate the risk of this attack, we can have the server contact peers with
the PK of the authenticating user when they are chosen as one of the k verifying
peers. Peers can then ignore requests to begin zero-knowledge proofs that they
were not expecting. Because the set of verifying peers is chosen randomly by
the server for each authentication attempt, it is thus unlikely that any one peer
would be overloaded.

4.2 Communication Overload of Server

While our protocol is designed to defend against a CPU-overloading DoS at-
tack on the server, it does little by itself to defend against a DoS attack that
overloads the server’s communication capabilities. Because this protocol mul-
tiplies by a factor of k the number of packets that a server must process for
each authentication request, it becomes much easier for an attacker in control
of many user identies to mount such an attack. Unfortunately, we have thus far
been unable to devise novel methods for defending against such attacks other
than those which already exist (traffic filtering, second authentication steps for
suspicious access patterns, etc.).

4.3 Malicious YES/NO Responses

In the last step of our protocol, when peers send (YES/NO, PK) back to the
server for a client, there is no mechanism to stop the peer from sending an ar-
bitrary value, regardless of the outcome of the zero-knowledge proof. Malicious
peers can either send “YES” to enable unauthorized access to an account or
“NO” to deny service to a user.

There are two ways that we can defend against this type of attack. The
first is by selecting a sufficiently large k and a suitable value of k′; this will be
discussed in greater depth in the following section. The second is by blacklisting
peers who return authentication decisions that contradict the server’s decision.
The second method, however, can be catastrophic if an attacker is able to, at
any point, mount a majority of connections to the central server, as the attacker
can subsequently cause a large number of “good” peers to be blacklisted and
therefore increase the proportion of malicious peers. A refinement could be to
blacklist all peers after every authentication for a length of time proportional

6

to the number of fellow peers on the same authentication who disagreed with
them. This would, at the very least, slow the progress of an attacker with a
modest majority of connections, possibly enough for human intervention.

5 Selecting Values of k and k′

Selecting suitable values of k and k′ is crucial to any actual deployment of PAuth
on a real system. However, because PAuth is designed to be used as part of a
large system with many millions of users connected to it at any given moment,
it is difficult to conduct actual field tests to optimize the values of k and k′:
we would have to either deploy PAuth on or create a service that attracts such
a volume of users and a significant number of attackers. We thus use data on
an existing system and current knowledge about botnets to derive estimates for
good values of k and k′.

We will use Facebook as our example system system in this section to de-
rive our estimates of reasonable values of k and k′. Facebook has 936 million
daily active users [6]. We estimate conservatively that at any given point in
time, about 20% of them, or around 180 million, have active connections with
Facebook. Given that many users are connected almost 24/7 via their mobile
phones, we believe that this is a conservative estimate. According to [7], the
BredoLab botnet is the largest botnet ever created, with an estimated 30 million
bots. Assuming that all of these bots were constantly connected to Facebook,
they would comprise 1/7 of the total connections to Facebook (we assume that
the previous 180 million users are not colluding with any botnets).

An attacker can deny service to a user by controlling at least k − k′ + 1
of a set of k selected peers, or grant unauthorized access to a user’s account
by controlling at least k′ of k selected peers. We can approximate the number
of malicious peers in a set of k selected peers as a binomial distribution with
p = 1/7. Let U denote the event that an attacker gains unauthorized access,
and D denote the event that an attacker is able to deny service to a user. In
selecting our values of k and k′, we wish to achieve the following goals:

1. We wish to make P (U) as small as practically possible without compro-
mising the ability for users to log in at all, or making k unreasonably
large. This is the most important goal, as allowing attackers to access
users’ accounts would be catastrophic.

2. We wish to make P (D) reasonably small, but this is of lower priority,
as authentication can be retried with a different set of randomly selected
peers (and it is possible to code a retry loop into the client-side software
so that the process is invisible to users).

3. We wish to keep k at a reasonable number (less than 20) to minimize
communication load on the server. However, if this is unachievable while
providing low probabilities P (U) and P (D), we can increase k.

7

k k′ P (U) P (D)
10 7 9.77× 10−5 4.27× 10−2

10 9 2.16× 10−7 0.429
15 10 5.31× 10−6 1.33× 10−2

15 13 8.15× 10−10 0.365
18 12 5.75× 10−7 9.07× 10−3

18 14 2.55× 10−9 0.103
19 15 4.60× 10−10 0.124

Table 1: Some of the pairs (k, k′) that we considered and the associated prob-
abilities of unauthorized access (P (U)) and denial-of-service (P (D)). We see
that k = 19, k′ = 15 provides good probabilities while keeping k at a reasonable
value.

Table 1 shows some of the values (k, k′) that we considered and the associated
probabilities P (U) and P (D) that we computed. We see that k = 19, k′ = 15
yields the probabilities P (U) = 4.60 × 10−10 and P (D) = 0.124. We believe
that this is an acceptable value of k and that these probabilities are acceptably
low. An attacker attempting to gain unauthorized access would have to make
over 2 billion attempts on expectation to actually authenticate successfully, and
a legitimate user would be able to authenticate successfully in one try 88% of
the time. Furthermore, note that these probabilities were calculated assuming
the bare-bones protocol described in section 2 is used with no modifications. If
instead we implement the modification described in 4.3 as well, these probabil-
ities will be even lower as we take down increasingly many attacker-controlled
peers.

6 Implementation

Our cryptographic implementation of our distributed authentication system was
built on top of the popular Stanford Javascript Cryptography Library (https://
crypto.stanford.edu/sjcl/). The SJCL is a NSF-funded, time-tested library
in common use in the field. Our software used the SJCL default-provided RSA
implementation as its signature scheme.

As we were using the SJCL, we implemented both our client and server using
node.js, a fast and lightweight Javascript platform, with a simple MongoDB
database keeping track of the server-maintained peer list. Because node.js is a
high-visibility open source platform in production use at many large companies,
we expect that it should be as secure as any other easy choice for an initial
implementation. Our current server implementation would already easily be
deployable to cloud web-hosting platforms such as Heroku, and is fully modular
as a node.js package, so can be integrated into other projects rather easily.

We were unable to deploy our implementation on a massive scale on different
networks, so we collected no scalability data, but the implementation functioned

8

as expected. As we chose to implement quite a small proof of concept, both the
client and server combined took about 1000 lines of written code, with many
more files that were autogenerated. The code was used to define a client and
server such that:

• the client had a keypair and could:

– request a peer list through login

– open a WebSocket to listen for successful auth (WS)

– join a peer list

– authenticate with another peer

∗ receive challenges and respond

∗ generate challenges for peers upon request for authentication

– forward authentication messages to the server upon verification

• the server had an account system and a peerlist and could:

– give a random subset of the peer list to a client upon login request
(GET)

– receive authentication certificates (POST)

– give an authentication token to a successful login (WS)

We chose (k, k′) = (19, 15), as determined in the previous section.

7 Conclusion

We have presented PAuth, an authentication protocol that utilizes the compu-
tational power of a system’s users to authenticate other users; our goal was to
obviate the need for these systems to perform computationally expensive hash
functions on submitted passwords when authenticating users. PAuth achieves
this by greatly increasing the communication costs incurred by servers when
authenticating users, but we hope that the protocol can be refined and that
network communication will become cheaper in the future. We have presented
vulnerabilities that our protocol introduces and have given methods that we
devised to counter them. PAuth is still in a very early proof-of-concept stage,
and we hope that it will one day evolve into a deployable mechanism.

9

References

[1] Florencio D, Herley C. 2007. A Large-Scale Study of Web Password Habits.
Proceedings of the World Wide Web Conference Committee.

[2] Mining hardware comparison [Internet]. [updated 2015 Apr 1]. The Bitcoin
Wiki; [cited 2015 May 12]. Available from https://en.bitcoin.it/wiki/

Mining_hardware_comparison

[3] Ning P, Liu A. 2008. Mitigating DoS Attacks against Broadcast Authenti-
cation in Wireless Sensor Networks. ACM Journals 4(20):1-31.

[4] Nightingale EB, Elson J, Fan J, Hoffman O, Howell J, Suzue Y. 2012.
Flat Datacenter Storage. Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12); 2012 Oct 7-10;
Hollywood.

[5] Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System. Avaiable
from https://bitcoin.org/bitcoin.pdf

[6] Facebook Reports First Quarter 2015 Results [Internet]. [updated 2015 Apr
22]. Facebook; [cited 2015 May 12]. Available from http://investor.fb.

com/releasedetail.cfm?ReleaseID=908022

[7] Botnet [Internet]. [updated 2015 Apr 24]. Wikipedia; [cited 2015 May 12].
Available from http://en.wikipedia.org/wiki/Botnet

10

