
Automated Testing against Timing Attacks

Justin Dove Victor Vasiliev

ABSTRACT
This paper provides an overview of a system which allows
to integrate detection of potential timing attack with a reg-
ular test suite. The authors examine previous approaches to
the problem and discuss their usefulness and fitness for the
purposes of automated testing. A developer-friendly system
for detecting timing issues using Valgrind is presented, and
integration with Google Test is discussed. An example of
how such test can detect vulnerabilities is provided, and the
limitations of the system are outlined.

1. INTRODUCTION
Side-channel attacks are attacks which compromise secu-
rity of communication by analyzing the information that is
not explicitly encoded in the channel. Such attacks rely
on various sources of information: consumption of time,
power, emission of electromagnetic radiation, and many oth-
ers. The timing attacks are the most common type of at-
tacks encountered at the software level, and thus we focus
on them.

Timing attacks exploit the difference in time that it takes
for a program to perform computation on private data. This
kind of attacks dates back to the mainframe days. In TENEX
operating system, the attacker could run a password check
on a carefully positioned fragment in memory and measure
the time it takes to check the password. If the password
string was positioned across a page boundary, the password
check would take longer. That was sufficient for the attack-
ers to determine how many characters in supplied password
was correct, and thus bruteforce the password in linear time
[10].

The performance of modern computers has dramatically in-
creased since TENEX days, making straightforward attacks
less feasible. However, the exposure surface is still there.
Previous research in this area has indicated that the timing
attacks are practical [4], and that there are numerous fea-
tures of modern CPU designs that make those attacks hard

static std::string target =

"Time is an illusion, lunchtime doubly so.";

bool BlackBoxCheck(const std::string &attempt) {

if (target.size() != attempt.size()) {

return false;

} else {

for (size_t i = 0; i < target.size(); i++) {

if (target[i] != attempt[i]) {

return false;

}

}

return true;

}

}

Figure 1: An example of a function insecure against
timing attacks.

to mitigate [3]. We will demonstrate our own measurement
showing to what extent it is indeed possible to perform a
timing attack on a modern Haswell Intel CPU, and suggest
a method of how to diagnose those issues.

2. FEASIBILITY OF TIMING ATTACKS
We have attempted to perform a timing attack on a simple
C++ function which checks the equality of a string with a
reference one in an unsafe manner: it returns as soon as it
discovers first mismatch (figure 1). The attack is as follows:

1. Use timing oracle to find the correct string length,
since the function returns immediately in case of length
mismatch.

2. Guess first letter three times in a row. If they yield a
consistent result, output it, otherwise continue.

3. Continue guessing until all the letters are guessed.

Note that this algorithm is not guaranteed to terminate.
In fact, it will not, if the timing oracle data is not distin-
guishable from noise. For the implementation of the timing
oracle, we use C++11’s built-in high resolution clock (which
on Linux is aliased to the system clock).

We have ran the algorithm on a i7-4770 desktop running
Debian, and got consistent results for an unoptimized build

! " # $ % & '

() * + , - . /

0 1 2 3 4 5 6 7

8 9 : ; < = > ?

@ A B C D E F G

H I J K L M N O

P Q R S T U V W

X Y Z [\] ^ _

` a b c d e f g

h i j k l m n o

p q r s t u v w

x y z { | } ~

Time is an ill???????????????????????????

0.8 ns

1.6 ns

2.4 ns

3.2 ns

4.0 ns

4.8 ns

5.6 ns

6.4 ns

7.2 ns

8.0 ns

Figure 2: Deviation from the median time for each
letter at i = 14

of the program and the communication with the oracle han-
dled via function call (figure 2). We have discovered that
it becomes harder to perform the attack if ran on laptop,
due to the aggressive power saving mechanisms which alter
the clock frequency dynamically. The test did not work reli-
ably over local Unix domain sockets, nor did it work with an
optimized build. By inserting a sleep in the middle of the
function, however, we’ve discovered that it still can work,
except the difference in the amount of instructions executed
should be an order of magnitude higher (which means we
would need at least 100 cycles to make difference). We be-
lieve that using RDTSC instruction would make a local timing
attack more powerful, as it has higher resolution than the
system clock.

Overall, this suggests that timing attacks are still viable,
especially in case of local or co-hosted attackers. An effective
remote timing attack has been performed at least as recent
as 2013 [2]. In addition, there exists amplification techniques
which we did not explore [12].

3. TESTING
Our conclusion so far is that timing attacks are, in fact,
a threat; this does not necessarily immediately imply that
defending against them is a worthwhile investment. Such
defense may be complex, and in many cases it comes at per-
formance penalty, severe enough to render many straight-
forward fixes impractical. Even when solving the problem
is feasible, it comes at a cost of increasing code complexity
and higher maintenance burden. While the body of litera-
ture on those attacks is considerable, there has been very
few high profile cases of security breaches achieved through
them. In fact, CVEs for timing attacks normally are marked
as having a fairly low level of severity, due to high level of

technical skills required to exploit them successfully.

We believe that defending against all attacks known is the
only real way to achieve actual security of any system. Tim-
ing attacks, due to their nature, can easily go undetected,
so it is entirely possible that advanced threat actors have
beeen using them for quite a while without anyone noticing.
Hence, we believe that it is important to provide software
developers who engineer cryptographic solution with a set of
practical tools for defending software against those attacks.

3.1 Choice of mechanism
There are two aspects of defending against timing attacks.
One of them is devising techniques which make code con-
stant time; those vary from bit-level hacks to complete re-
placement of cryptographic algorithms, and are out of the
scope of this paper. Another is determining whether a code
has a timing vulnerability. There are two primary approaches
one can take: try attacking the code directly, or analyze the
program in order to detect operations that are insecure from
the timing standpoint. The first approach has an advantage
of being able to tell whether an attack is actually feasible.
Unfortunately, automating such tests is hard, since in many
cases those require carefully chosen input values to be no-
ticeable. While they can tell you whether you have a timing
discrepancy for different inputs, they will not tell you where
it comes from unless you carefully profile the code in ques-
tion. This makes debugging complicated, and in general
those tests are difficult to implement in practice.

An alternative would be to perform analysis of the code
for timing attacks by tracking the values and reporting an
error whenever data is possibly leaked through the timing
side-channel. A classic form of static analysis would be for-
mal verification against timing attack. The problem here is
that in its current forms formal verification is not practically
applicable in the production software, and is cumbersome,
especially in terms of actually modelling side-channels. An
alternative approach to static analysis would be to use a type
system of a programming language to enforce constant-time
constraints. Such methods were already proposed, both as a
domain-specific language [11], and as an extension to C++
programming language [8]. The latter proposal shows some
promise, although according to our understanding the level
of effort required to even fully state, yet alone implement
all the constraints within the framework of already highly
complex language, is yet to be fully seen.

Instead, we chose the paradigm of dynamic analysis. Our
approach is based on the idea of adapting Valgrind’s unini-
tialized value tracker for detecting behavior based on private
data, originally proposed by Adam Langley in [6]. Valgrind
marks uninitialized regions of memory as “poisoned”, and
poisons all the bits that depend on the already poisoned
ones. Then it reports errors whenever a poisoned value is
branched upon, passed to a system call or dereferenced as
an address in memory [9]. This encompasses most of the
cases which leak timing information.

3.2 Testing tool
Our implementation follows the original ctgrind tool, but
it does not require any modifications to Valgrind and is in-
tegrated with the test suite.

We have integrated Valgrind with Google Test framework in
order to produce the timing tests as one depicted on figure
3. We provide a macro to define a timing test, and a pair
of function TimingPrivateMark and TimingPrivateUnmark,
which allow to mark the data as private or public, as desired.

Here, equality_good is a timing-safe string comparison which
uses XOR on the bytes in each string; equality_bad, on
other hand, uses naive comparison, as described in figure 1.

When ran, the test for CompareTiming.Good will pass, while
CompareTiming.Bad will fail with the error showing in which
file and on which line exactly the violation of the rules has
happened (figure 4).

3.3 Testing on real implementations
We tested out our approach on some cryptographic code.
libseal1, an open source cryptographic library developed by
one of the authors, implements multiple cryptographic algo-
rithms and already uses gtest. We added some timing tests
into it, and were able to confirm that the SHA-1 implemen-
tation and Intel AES-NI did not have any timing attacks de-
tected, while plain-C reference implementation of AES was
clearly vulnerable to them.

4. LIMITATIONS
Despite having significant advantage in terms of ease of use
and rigor of validation, our approach naturally has some
inherent disadvantages.

4.1 Accuracy of the model
Any form of the timing attack vector detection done through
analysis of the code relies on the model of which operations
would cause timing being leaked on different input data, and
which would not. We stick to the model used in Valgrind for
uninitialized values, which is a very good fit for our purposes.
However, there exists an important omission: instructions
where the execution time depends on the input.

For Intel CPUs, the list is documented in Intel Optimization
Manual [1], and is well-known to contain, out of non-floating
point operations, integer multiplication and division. Such
gap has few discrete timings and in practice can be fixed by
multiplying the value by a large number, and then dividing
that number off [7].

We have prototyped a patch against Valgrind which would
trigger error on those (outlined in Appendix A). That does
not, however, actually address the issue fully. The first issue
is that the same list has to be aware about all problematic
instructions across all supported platforms. The second is-
sue is that the CPU manufacturers do not actually provide
any guarantees that the list of unsafe instructions will not
change.

In addition, there might be some cases where Valgrind model
might be too restrictive for us to use. For example, the
documentation suggests that parameters determining vector
permutations can cause errors, while in practice those might
be used to implemented timing-safe cryptographic primitives
[5].

1https://github.com/vasilvv/libseal

// An example of a good check

bool equality_good(const std::string &a,

const std::string &b) {

if (a.size() != b.size()) {

return false;

}

uint8_t result = 0;

for (size_t i = 0; i < a.size(); i++) {

result |= (a[i] ^ b[i]);

}

return !result;

}

// equality_bad works the same way

// as BlackBoxCheck

TEST(CompareValidity, Basic) {

ASSERT_TRUE(equality_bad("test", "test"));

ASSERT_TRUE(equality_good("test", "test"));

ASSERT_FALSE(equality_bad("text", "test"));

ASSERT_FALSE(equality_good("text", "test"));

ASSERT_FALSE(equality_bad("test+", "test"));

ASSERT_FALSE(equality_good("test+", "test"));

}

TIMING_TEST(CompareTiming, Good) {

std::string input1 = "test";

std::string input2 = "text";

TimingPrivateMark(input1);

TimingPrivateMark(input2);

equality_good(input1, input2);

}

TIMING_TEST(CompareTiming, Bad) {

std::string input1 = "test";

std::string input2 = "text";

TimingPrivateMark(input1);

TimingPrivateMark(input2);

equality_bad(input1, input2);

}

Figure 3: An example of timing attack test. Observe
how it naturally fits within the same idioms that the
regular tests use.

https://github.com/vasilvv/libseal

[RUN] CompareTiming.Bad

/home/vvv/final-project/testing/tests.cc:30: Failure

Death test: CompareTiming_Bad_fork()

Result: died but not with expected exit code:

Exited with exit status 57

Actual msg:

[DEATH] 50

[DEATH] ==10865== Memcheck, a memory error detector

[DEATH] ==10865== Copyright (C) 2002-2013, and GNU GPL’d, by Julian Seward et al.

[DEATH] ==10865== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info

[DEATH] ==10865== Command: /home/vvv/final-project/testing/build/timing_tests --gtest_filter=CompareTiming.Bad

[DEATH] ==10865==

[DEATH] ==10865== Conditional jump or move depends on uninitialised value(s)

[DEATH] ==10865== at 0x4143B3: equality_bad(std::string const&, std::string const&) (compare.cc:9)

[DEATH] ==10865== by 0x4147C5: CompareTiming_Bad_core() (tests.cc:37)

[DEATH] ==10865== by 0x416CD3: CompareTiming_Bad_Test::TestBody() (tests.cc:30)

[...]

Figure 4: Error shown when a timing issue is discovered.

4.2 False positives
Another issue with using this tool is that you have to be
careful to explicitly state when your private data becomes
public. That sounds obvious, but there are plenty of subtle
cases. A common example would be RSA blinding, or the
integer multiplication trick above: the data is still private in
its nature, but for the purposes of the side channel attacks, it
is secure. In those cases, you would have to manually mark
the data as public before performing an insecure operation,
and then manually mark it as private again. The latter
is dangerous, as in many cases the data, even in “blinded”
form, is still private, and unblinding it may not cause it to
automatically be marked as private.

5. CONCLUSIONS
This paper presented an approach of testing against pres-
ence of timing attack which is suitable for use in produc-
tion cryptographic software. We believe that should it be
adopted, it can make a profound impact on the amount of
timing attacks in widely developed cryptographic software.

We are currently looking into implementing a full-scale test
suite for one of widely used cryptographic libraries, with a
hope of submitting it upstream.

6. ACKNOWLEDGMENTS
We thank Madars Virza for his advice and feedback on
this paper. We are also grateful to Nickolai Zeldovich and
David Lazar for their feedback on the original Decor idea,
which helped us to choose the approach for designing our
test mechanism. We thank Alex Chernyakhovsky for help-
ful discussion on the original Decor design draft and the
practicalities of implementing it. We are grateful to David
Benjamin for discussion on many real instances of timing
attacks, which was a huge inspiration behind this project.

7. REFERENCES
[1] Intel 64 and IA-32 architectures optimization reference

manual. https://www-ssl.intel.com/content/www/
us/en/architecture-and-technology/

64-ia-32-architectures-optimization-manual.

html, 2014.

[2] N. AlFardan and K. Paterson. Lucky 13: Breaking the
TLS and DTLS record protocols. In IEEE Symposium
on Security and Privacy, 2013.

[3] D. J. Bernstein. Cache-timing attacks on AES, 2005.

[4] D. Brumley and D. Boneh. Remote timing attacks are
practical. Computer Networks, 48(5):701–716, 2005.

[5] M. Hamburg. Accelerating AES with vector permute
instructions. In Workshop on Cryptographic Hardware
and Embedded Systems, 2009.

[6] A. Langley. ctgrind: Checking that functions are
constant time with Valgrind.
https://github.com/agl/ctgrind, 2010.

[7] A. Langley. Lucky Thirteen attack on TLS CBC.
https://www.imperialviolet.org/2013/02/04/

luckythirteen.html, 2013.

[8] J. Maurer. N4314: Data-invariant functions.
http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2014/n4314.html, 2014.

[9] J. Seward and N. Nethercote. Using Valgrind to detect
undefined value errors with bit-precision. In USENIX
Annual Technical Conference, General Track, pages
17–30, 2005.

[10] A. S. Tanenbaum. Modern Operating Systems.
Prentice-Hall, 2001.

[11] V. Vasiliev. Decor: a DSL secure against timing
attacks. https://github.com/vasilvv/decor/blob/
master/SUMMARY.md, 2014.

[12] Y. Yarom and K. E. Falkner. Flush+ reload: a high
resolution, low noise, l3 cache side-channel attack.
IACR Cryptology ePrint Archive, 2013:448, 2013.

https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://github.com/agl/ctgrind
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4314.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4314.html
https://github.com/vasilvv/decor/blob/master/SUMMARY.md
https://github.com/vasilvv/decor/blob/master/SUMMARY.md

APPENDIX
A. INSTRUCTION CHECKER
We have developed a patch against Valgrind which triggers
a “use of undefined value” error when one of the operands
of multiplication is a private value. The patch adds the
following code into multiple functions in Valgrind’s memory
checker:

switch (op) {

case Iop_DivS32:

case Iop_DivU32:

case Iop_DivU32E:

case Iop_DivS32E:

case Iop_DivS64:

case Iop_DivU64:

case Iop_DivS64E:

case Iop_DivU64E:

case Iop_DivModU64to32:

case Iop_DivModS64to32:

case Iop_DivModU128to64:

case Iop_DivModS128to64:

case Iop_DivModS64to64:

case Iop_Mul64:

case Iop_Mul32:

case Iop_Mul16:

case Iop_Mul8:

complainIfUndefined(mce, atom1, NULL)

complainIfUndefined(mce, atom2, NULL)

default:

break;

}

The first problem here is that upstreaming this patch is
problematic, since memcheck does not need those cases in
order to detect undefined behavior. The second problem is
that we have to take the most inclusive list of instructions
which leak information through timing on various platforms,
and map all of them onto the list of the instructions used by
Valgrind’s internal machine. We believe that both of those
are feasible, but they would require us to actively commu-
nicate with the upstream.

	Introduction
	Feasibility of timing attacks
	Testing
	Choice of mechanism
	Testing tool
	Testing on real implementations

	Limitations
	Accuracy of the model
	False positives

	Conclusions
	Acknowledgments
	References
	Instruction checker

