
Implementing a Secure Verifiable Auction

Mark Bun, Yi-Hsiu Chen, and Tom Morgan

May 14, 2015

1 Introduction

An online auction system provides a platform that allows users to exchange items. Such a platform raises a
number of interesting security concerns that are in tension with each other. On one hand, each bidder wishes
to keep her bid private so that other bidders do not gain an advantage over her in the present or subsequent
auctions. On the other hand, bidders and regulating authorities want to be able to verify that the result of
an auction is correct, even in the face of a cheating auctioneer. Thus we are interested in designing sealed-bid
auctions that are secure and verifiable in that they achieve the following properties simultaneously.

• Correctness: The auction result is deterministic and strictly follows the auction rules.

• Bid Privacy: The confidentiality of the bids should be maintained during and after the auction. (This
requirement implies the fairness of the auction. Namely one cannot change their bid after the submis-
sion.)

• Public Verifiability: Both the validity of the bids and the results of the auction can be verified by any
third party.

Of course, with an eye toward making such an auction practical, we want to make both the auction and
verification procedure computationally efficient.

Building on ideas of Parkes et al. [PRST08], Rabin, Servedio, and Thorpe [RST07] designed and im-
plemented such a highly efficient auction protocol. The idea of the protocol is as follows. Each bidder
determines his bid and publicly posts a commitment to this bid to a public bulletin board. After the auction
has ended, the bidders open their commitments to the auctioneer over private channels. The auctioneer
can then determine the results of the auction, and then engage in a zero-knowledge proof with a verifier to
convince her of the correctness of the outcome. The zero-knowledge property of such a proof guarantees
protects the privacy of the bids.

Using the work of [RST07] as a starting point, we make the following contributions.

1. Through more careful bookkeeping, we reduce the proof size and verification time of the protocol of
[RST07] by constant factors.

2. We implement and test the protocol using our theoretical optimizations.

3. We extend the techniques of [RST07] to handle more general classes of auctions.

1.1 Related work

Prior to the work of [RST07], Parkes, Rabin, Shieber, and Thorpe [PRST08] gave a solution based on
additively homomorphic encryption, and in particular implemented a secure verifiable auction using Pailler
encryption. Their C++ implementation is somewhat practical (running in less than 24 hours) for about 100
users. The work of Rabin, Servedio, and Thorpe [RST07] gave a more efficient solution using ideas from
secret sharing, which bypasses the need to use homomorphic encryption. More specifically (see Section 2 for
details), they represent every number x in a field Fp as a random representation (u, v) such that u+ v = x
in Fp. This representation enables a “cut-and-choose” style interactive proof, where opening a commitment

1

to either u or v enables verification while revealing nothing about x. The auction system of [RST07] offers
about a 60-fold speed up, at the expense of having a much larger proof for verification (i.e. communication
complexity).

Subsequently, Micali and Rabin [MR14] extended the techniques of [RST07] to prevent collusion in
Vickrey auctions and to verify the correctness of solutions to matching problems (e.g. for medical resident
matching). Similar random representation techniques were also used by Rivest and Rabin [RR] to implement
verifiable electronic voting schemes.

2 The Protocol

We give a complete description of our verifiable auction protocol, which builds heavily on the protocol of
[RST07]. In Section 2.7 we discuss the improvements we make over their protocol.

2.1 Model and Tools

Infrastructure. In our model, we assume there is a secure private channel between each player and the
auctioneer. There is also a public bulletin board that every participant can post messages to. We assume
that all parties (buyers, sellers, auctioneers, and verifiers) are users of a common public key infrastructure.
In particular, each party has private digital signature key corresponding to a public verification key with a
trustworthy link to that party’s identity. Without mention in the following, we assume that whenever a user
posts or sends a message, she will include a digital signature of that message to ensure its authenticity.

Commitment scheme. We assume a perfectly (i.e. information-theoretically) hiding and computationally
binding commitment scheme COM.

Definition 1 (Commitment). A perfectly hiding and computationally binding commitment scheme is a
function COM : Fp × [0,m− 1]→ R where |R| = m that is

• (Perfectly hiding) For any u ∈ Fp, COM(u, ·) is a bijection (i.e. COM(u, ·) is one-to-one and
{COM(u, r)}r∈[0,m−1] = R)

• (Computationally binding) It is infeasible for a polynomial time algorithm to find a pair (u1, r1), (u2, r2)
such that COM(u1, r1) = COM(u2, r2).

Random representation. To enable cut-and-choose proofs, we define a random representation for points
x ∈ Fp.

Definition 2 (Random representation). A random representation of x is a vector X = (u, v) where u
R←− Fp

and v = x− u mod p.

Note that for any x, the marginal random variables u and v are uniformly distributed on Fp. Namely,

∀a ∈ Fp,P[u = a | x] = P[v = a | x] =
1

p
.

The commitment of a random representation is simply the commitment of both components. Namely,
COM(X) = (COM(u),COM(v)).

2.2 Overview

Before the auction closes, a buyer can post a commitment to her bid to the public bulletin board. By the
hiding property of the commitment scheme, no other party can determine the contents of the bid. After
the auction has concluded, she can then send the decommitment value to the auctioneer (through a secure
channel). The binding property of the commitment scheme prevents her, or anyone else, from changing the
underlying bid. After receiving every buyer’s decommitment, the auctioneer can decide the winner(s) of the
auction and announce the winner(s) and the winning bids.

2

Now if another party wants to check the correctness of the auction result, he can request to engage in a
verification protocol with the auctioneer. The auctioneer first generates a “proof” that the result is correct.
Next, the verifier sends a random challenge. The auctioneer responds to the challenge, and finally the verifier
can check if the auctioneer resolved the auction correctly. To convince the verifier, we want the verification
protocol to satisfy completeness and soundness properties. Moreover, to protect bidder privacy, we want it
to be zero-knowledge.

To prove the correctness of an auction outcome, the auctioneer must supply zero-knowledge proofs that
the committed values on the bulletin board compare correctly. While we only need to prove the correctness of
comparisons, the techniques underlying such proofs require the ability to prove the correctness of additions
and multiplications – making this proof system quite general. In the following 3 subsections, we present
the protocols for addition, multiplication and comparison respectively. We will then show how to put these
protocols together.

2.3 Addition

Addition proof generation. Suppose the random representations of x1, · · · , xk are Xi = (ui, vi) for
i = 1, · · · , k. Assume these commitments COM(Xi)s are posted on the public bulletin board. The auctioneer
wishes to prove that x1 + · · ·+ xk = x without revealing anything else about the individual xi’s.

First, the auctioneer generates a random representation of x, X = (u, v). He then posts COM(X) to
the bulletin board. (If the verifier needs to know x as part of the correctness guarantee, the auctioneer
can simply reveal COM(X). But if the verifier is not allowed to learn x, the auctioneer can still prove the
equality). The auctioneer calculates t such that

(u1, v1) + (u2, v2) + · · ·+ (uk, vk) = (u, v) + (t,−t) (1)

and posts COM(t) on the public board as well.

Addition verification. Next, a verifier can randomly challenge the auctioneer to open either all of the
u-components or all of the v-components. The auctioneer will then open the requested commitments and
also reveal t. If the challenge was for the u-components, the verifier checks that

u1 + u2 + · · ·+ uk = u+ t

Otherwise, she checks that
v1 + v2 + · · ·+ vk = v − t

Properties. The protocol has perfect completeness since an honest auctioneer can always find t such that
equalities hold for both components in equation (1)). If he honestly opens the commitments, the verifier will
accept in either challenge case. On the other hand, X is not correctly calculated and posted on the public
board, then there is no t such that equation (1)) holds. Since the commitments are computationally binding,
the verifier will discover the inconsistency with probability at least 1/2 − negl against a computationally
bounded auctioneer. Therefore, the protocol achieves soundness of 1/2. The last desired property is zero-
knowledge. Intuitively, the protocol is zero-knowledge because by only seeing ui (or vi) component of a
vector, the verifier learns nothing about xi. (Perfect zero-knoweldge can be proved formally from the perfect
hiding property of the commitment scheme.)

2.4 Multiplication

Multiplication proof generation. Suppose the random representations of x, y, z are X = (ux, vx), Y =
(uy, vy) and Z = (uz, vz). Commitments to all three representations are posted on the public board. The
auctioneer wishes to show that x · y = z.

The auctioneer prepares three more auxiliary random representation below, where r1, r2 are randomly
chosen from Fp. 

Z0 = (u0, v0) = (uxuy, vxvy)

Z1 = (u1, v1) = (uxvy + r1,−r1)

Z2 = (u2, v2) = (vxuy + r2,−r2)

3

As in the addition protocol, the auctioneer first calculates t such that

(uz, vz) = (u0, v0) + (u1, v1) + (u2, v2) + (t,−t)

and post the commitment COM(t) as well.

Multiplication verification. A verifier randomly challenges the auctioneer to open one of four following
aspects.

1. All the u components and t.

2. All the v components and t.

3. ux, vy and both components of Z1.

4. vx, uy and both components of Z2.

The auctioneer then opens the corresponding aspects. Based on the challenge requested, the verifier checks
the following.

1. uz = u0 + u1 + u2 + t and u0 = ux · uy.

2. vz = v0 + v1 + v2 − t and v0 = vx · vy.

3. uxvy = u1 + v1.

4. vxuy = u2 + v2.

Properties. As before, the perfect completeness of the protocol is trivial: if x · y = z, honest prover can
always convince the verifier. On the other hand, x · y 6= z, we can see that no matter how the prover
generates Z0, Z1, Z2 and w, at least 1 of 4 aspects that checked by the verifier fails. Thus the protocol has
1/4-soundness.

For the zero-knowledge property, we first examine the first two aspects. As with addition, individual
components of Z0, X, Y reveal nothing about X,Y and Z. And for Z1, Z2, since the auctioneer added the
new randomness r1 and r2, these are also just a uniformly random numbers from Fp. Now we consider
the third and fourth aspects. Here, the verifier only learns one of two components of X and Y , which also
contains no information about x, y.

2.5 Comparison

In Fp, if we know that 0 ≤ x < p/2, 0 ≤ y < p/2 and 0 ≤ x − y < p/2, then we can conclude that x > y.
Therefore, we will focus on proving that 0 ≤ x < p/2.

First, by Lagrange’s four-square theorem, we can represent x as x = a2 + b2 + c2 + d2. If we can show
that −q ≤ a, b, c, d ≤ 2q (In Fp, this really means 0 ≤ a ≤ 2q or p − q ≤ a < p) where q =

√
p/32, then

0 ≤ x < 16q2 = p/2. Below we will show how to prove that −q < a < 2q based on the fact that 0 ≤ a < q.
The auctioneer first randomly picks w1, w2 from [−q, q) such that |w1 − w2| = q. Then it is easy to see

that one of w1 + a and w2 + a lies in the range [0, q). Let the one in range be r = wb + a where b ∈ {1, 2}.
Now the auctioneer posts the random representations of all the above quantities, which are

W1 = (u1, v1), W2 = (u2, v2), A = (ua, va), R = (ur, vr)

Verification of −q ≤ a < 2q. First, the auctioneer posts t such that

(ub, vb) + (ua, va) = (ur, vr) + (t,−t)

Then as in multiplication verification, the verifier will send a random challenge for opening one of the
following four aspects.

4

1. All the u components and t.

2. All the v components and t.

3. Both W1 and W2.

4. R.

Then for each challenge, the verifier checks the following for the corresponding aspects.

1. ub + ua = ur + t.

2. vb + va = vr − t.

3. |w1 − w2| = q and they both lie in the range [−q, q).

4. r is in the range [0, q).

Properties. Under the condition that a ∈ [0, q), the auctioneer can post items that validate all four
aspects, so we again, we have perfect completeness. On the other hand, if in fact a /∈ [−q, 2q), then it is
impossible for all four aspects to true. No matter what wb auctioneer gives, either wb /∈ [−q, q) or r /∈ [0, q).
Thus we also have the 1/4-soundness. Finally, the zero-knowledge property is also obvious. As before, the
first two aspects reveals nothing about a. And for aspect 3 and 4, the distribution of (w1, w2) and r are also
independent of a (separately).

Being able to prove that a ∈ [−q,−2q], together with the protocols for proving addition and multi-
plication, allows us to prove that 0 ≤ x < p/2. In the next subsection, we will see how we put things
together.

2.6 Putting Things Together

In this section, we present the complete protocol for proving 0 ≤ x < p/2. (Suppose X = (ux, vx) is on the
board). As in the previous section, we assume that x ∈ [0, q) where q =

√
p/32. We follow the convention

that a capital letter is the random representation of the value of the corresponding lower-case letter.

2.6.1 Proof Generation

Values. First, use the algorithmic version of the four-square theorem to find a, b, c, d such that x = a2 +
b2 + c2 + d2.

For a, we randomly pick wa
0 , w

a
1 ∈ [−q, q) such that |wa

0 − wa
1 | = q. We let ra = a + wa

h where h = 0 or
q such that ra ∈ [0, q). We do the same thing for b, c and d, yielding tuples (wb

0, w
b
1, rb), (wc

0, w
c
1, rc) and

(wd
0 , w

d
1 , rd).

Random Representations. We need the following random representations as part of the proof.

• The random representations for a2, b2, c2 and d2.

A2 = (u2a, v
2
a) , B2 = (u2b , v

2
b) , C2 = (u2c , v

2
c) , D2 = (u2d, v

2
d)

• Two random representations for each of a, b, c and d.

A = (ua, va) , B = (ub, vb) , C = (uc, vc) , D = (ud, vd)

A′ = (u′a, v
′
a) , B′ = (u′b, v

′
b) , C ′ = (u′c, v

′
c) , D′ = (u′d, v

′
d)

• The auxiliary random representation for the showing AA′ = A2 (and similarly for B,C,D).

Za
0 = (ua0 , v

a
0) = (uau

′
a, vav

′
a) , Za

1 = (ua1 , v
a
1) = (uav

′
a + ra1 ,−ra1) , Za

2 = (ua2 , v
a
2) = (vau

′
a + ra2 ,−ra2)

• Random representations for proving a ∈ [−q, 2q] (and similarly for b, c, d).

W a
0 = (uw0

a , vw0
a) , W a

1 = (uw1
a , vw1

a) , Ra = (ura, v
r
a)

5

“t values” for proving addition. The auctioneer also calculates random t values that satisfy following
equations.

• t for X = A2 +B2 + C2 +D2:

(ux, vx) = (u2a, v
2
a) + (u2b , v

2
b) + (u2c , v

2
c) + (u2d, v

2
d) + (t,−t)

• ta, tb, tc, td for A = A′ (and B,C,D)

(ua, va) = (u′a, v
′
a) + (ta,−ta)

• t2a, t2b , t2c , t2d for showing A2 = Za
0 + Za

1 + Za
2 (and B,C,D).

(u2a, v
2
a) = (ua0 , v

a
0) + (ua1 , v

a
1) + (ua2 , v

a
2) + (t2a,−t2a)

• twa , twb , twc , twd for Ra = W a
h +A (and B,C,D.

Ra = W a
h +A+ (twa ,−twa)

All the above representations and t values are committed then posted on the public board.

2.6.2 Verification

The verifier sends a random challenge to ask the auctioneer to open one of four following commitments.

1. All the u-components and t values.

2. All the v-components and t values.

3. W a
0 ,W

a
1 and Za

2 , Z
b
2, Z

c
2, Z

d
2 .

4. Ra, Rb, Rc, Rd and Za
2 , Z

b
2, Z

c
2, Z

d
2 .

Then the verifier can check the corresponding aspects

1. Check

ux = u2a + u2b + u2c + u2d + t

ua = u′a + ta

u2a = ua0 + ua1 + ua2 + t2a

u2a = ua · u′a
ura = uwh

a + twa

2. As in previous aspect, but replace all u’s by v’s and t by −t.

3. Check uav
′
a = ua1 + va1 , |wa

0 − wa
1 | = q and wa

0 , w
a
1 ∈ [−q, q) (Also for b, c, d)

4. Check vau
′
a = ua2 + va2 and ra ∈ [−q, q] (Also for b, c, d)

2.7 Our Improvements

The protocol we just described makes two improvements in comparison to [RST07].

Reducing the number of aspects. The protocol of [RST07] creates 16 aspects for comparison, so they
only achieve 1/16-soundness in each round. In Section 2.6, we adopt the idea from [RMMY12] of wrapping
the verification into only 4 aspects while maintain the zero-knowledge. (Note that the description given
by [RST07] does not specify a wrapping). Therefore, to achieve the same level of soundness, we need
log(15/16)/ log(3/4) ≈ 4.45 times fewer proofs as in [RST07].

6

Reducing the commitments. In order to prove x < p/2, the authors of [RST07] count a cost of 101
commitments. However, the protocol we just described above only uses 87 commitments. In our implemen-
tation, we use 91 commitments to make the implementation more concise and structured, but we still get
about a 10% improvement in all time and space complexities.

3 Extension to Double Auctions

In a double auction there are m sellers each trying to sell an item, and n buyers each trying to buy an item.
All items are indistinugishable. The ith seller submits a price si to the auctioneer which is the least they
would be willing to accept for their item, and the jth buyer submits a price bj to the auctioneer which is
the most they would be willing to pay for the item. The auctioneer takes all of the submitted prices and by
some mechanism arrives at a price p for item to be exchanged at.

One simple mechanism that is commonly used is the average mechanism, which operates as follows. First,
the auctioneer orders the prices from the buyers and sellers in increasing order of constraint. For the buyers,
this means decreasing order of price so that b1 ≥ b2 ≥ . . . ≥ bn. For the sellers, this means increasing order
of price so that s1 ≤ s2 ≤ . . . sm. The auctioneer then finds the largets index k ∈ {1, . . . ,min(n,m)} such
that bk ≥ sk. This is the largest k for which there exists a price satisfying both the kth buyer and the kth
seller. The auctioneer then sets the price at p = (bk + sk)/2.

We will use the comparison proof primitive that we discussed in Section 2.5 to prove the correctness
of a double auction using the average mechanism. The auctioneer will publicly release the price p, the
identities of the participants who submitted prices bk and sk, and the identities of those whose prices were
in {b1, . . . , bk−1} and {s1, . . . , sk−1}. Note that for those sets of participants, the ordering is not revealed,
just the set membership, and none of the participants have their submitted prices revealed.

In order to prove the correctness of the output, we most prove the following conditions:

1. p = (bk + sk)/2.

2. bk is the kth largest buyer price.

3. sk is the kth smallest seller price.

4. bk ≥ sk.

5. bk+1 < sk+1.

Condition 1 is easily proven with an addition proof, and Condition 4 is easily proven with a comparision
proof. We prove Condition 2 using n− 1 comparison proofs, by proving bi ≥ bk for each bi ∈ {b1, . . . , bk−1}
and bi ≤ bk, and then proving that bi ≤ bk for each bi /∈ {bk} ∪ {b1, . . . , bk−1}. Condition 3 is analagously
proven with m− 1 comparison proofs.

We could easily prove Condition 5 with a single comparison proof if the identities of the participants who
submitted prices bk+1 and sk+1 were revealed, however do not need to. Instead we do a little more work. It
is equivalent to prove that max{bk+1, . . . , bn} < min{sk+1, . . . , sm}. To prove this, the auctioneer sets w =
sk+1 = min{sk+1, . . . , sm}, and commits to a pair representation of w (without revealing which participant it
came from). The auctioneer then uses comparison proofs to prove that bi < w for all bi /∈ {bk}∪{b1, . . . , bk−1},
and si ≥ w for all si /∈ {sk}∪{s1, . . . , sk−1}. This gives us that max{bk+1, . . . , bn} < w ≤ min{sk+1, . . . , sm},
implying Condition 5.

In total we proved the result using one addition proof, and 2(n+m− k)− 1 ≤ 2n+ 2m− 1 comparison
proofs.

4 Implementation

We implemented an end-to-end secure verifiable auction system according to the protocol described in Section
2. Our implementation was done in C++ using the NTL number theory library1 built on top of the GNU

1http://www.shoup.net/ntl/

7

Multiple Precision Arithmetic library.2 Our implementation code is attached as a zip file. In the rest of this
section, we will overview the design of implementation, and discuss the algorithms we used to implement
the different pieces of the protocol.

4.1 Design

Our implementation to run on a single machine, and does not have any networking infrastructure. However,
a key design principle we adhered to was to make our implementation sufficiently modular and “honest” in
its application of the protocol so that a network layer could easily be added to it if desired. By this we mean
that we have a different class for each participant in an auction (auctioneer, buyer, seller and verifier) and
each class only receives data as input into its functions that the corresponding participant in the protocol
would be allowed to see.

Here is a sketch of an example run of our implementation:

1. We initialize an instance of a PublicBoard (the public bulletin board), an Auctioneer, a Seller and
n instances of Buyer.

2. The Seller asks the Auctioneer to start an auction for a given Article, in response to which the
Auctioneer creates a new Auction and posts its PublicAuctionInfo to the PublicBoard.

3. Each of the n Buyers selects a bid and creates a BidPackage which it sends to the Auctioneer. A
BidPackage is created by making a series of PairReps (pair representations) of the bid, and then
creating a pair of SignedCommitments for each one. In response to each BidPackage, the Auctioneer

verifies that all commitments are consistent and the signatures are valid before and adding it to the
Auction, and adding the public information from it as a BidInfo object to the PublicAuctionInfo.

4. The Auctioneer resolves the auction, by computing the winner and updating Auction and
PublicAuctionInfo accordingly.

5. A Player (which is a super-class of Buyer and Seller) requests a proof of the correctness of the auction
from the Auctioneer. The Auctioneer responds by construction a series of ComparisonProof objects
(which consist of Commitments and PairReps) in accordance with the protocol. The Auctioneer

extracts just the commitment outputs from these proofs in ComparisonProofCommitments objects,
and returns the set of these to the Player.

6. The Player picks a random number in {1, 2, 3, 4} for each translation of the proof, and sends these
numbers to the Auctioneer (each corresponding to a challenge from Section 2.6.2) to challenge the
provided proof. In response to these, the Auctioneer opens the corresponding commitments in the
proof and sends back a series of Challenge objects, each containing a set of Commitment objects from
the earlier ComparisonProof objects. The Player then iterates through all of these Challenge objects,
as well as the signed commitments in BidInfo to check that they accord with the protocol in Section
2.6.2.

4.2 Cryptographic Functions

The primary cryptographic tool used in the protocol described in Section 2 is the commitment scheme. In
particular, the vast majority of communication done between prover and verifier is taken up by commitments.
The commitment scheme we chose for our implementation was Olivier Gay’s implementation of the SHA-
256 cryptographic hash function.3 To commit to a value x, we randomly create a 5 byte (40 bit) string
r, concatenate r with a string representation of x (padded as needed to a fixed length), and then apply
SHA-256 to the result. The output of the hash function is the commitment string that is broadcast, and the
commitment is opened by revealing x and r.

2https://gmplib.org/
3http://www.ouah.org/ogay/sha2/

8

The only other cryptographic primitive required by the protocol is a digital signature scheme. For this,
we used our own implementation of the Digital Signature Algorithm.4 Our implementation uses DSA key
lengths (L,N) of 2048 bits and 224 bits respectively.

4.3 Four-Square Theorem and the Algorithm

As we have seen, the algorithm for four square theorem plays an important role in proving the comparison
result. Rabin and Shallit [RS86] proposed three randomized algorithms to represent a number into four
squares. The fastest one runs in expected time O(log2N) where N is the number. This algorithm is still
the state of the art and is which we implemented. Although the correctness relies on the extended Riemann
hypothesis. Without any hypothesis, the best known algorithm runs in expected time O(log2N log logN).

Here we sketch the algorithm we used in the protocol. First, we need an algorithm for representing a
prime number p = 4k + 1 as sum of two squares.

Two square algorithm: Find a, b such that a2 + b2 = p where p ≡ 1 mod 4

1. Find the solution of the equation x2 + 1 = 0 in Zp in the following way.

(a) Randomly guess b ∈ Zp, let fb(x) = x2 − 2bx+ (b2 + 1).

(b) Find the greatest common divisor (fb(x), x2k − 1). With probability 1/2 (over the
choice of b), the greatest common divisor is x− u− b where u is the root of x2 + 1 = 0
(mod p).

2. Once we get u2 + 1 = mp for some m. Compute the greatest common divisor in Gaussian
integer x+ yi = (u+ i, p), then x2 + y2 = p.

Once we have the algorithm for finding two squares, we have the following four-square algorithm for any
odd number n

Four square algorithm: For given odd n, find a, b, c, d such that a2 + b2 + c2 + d2 = n.

1. Randomly pick m which is less than n3 and m ≡ 2 mod 4.

2. Let q = mn− 1. If q is not a prime, then repick m in step 1.

3. Once q is a prime (and q ≡ 1 mod 4), use the tow square algorithm to find u, v such that
u2 + v2 = q. Basically, we have found u2 + v2 + 12 + 02 = mn for some m.

4. W.L.O.G, let −n/2 < u, v < n/2 Calculate the greatest common divisor in “integral quater-
nion”. That is a+ bi+ cj + dk = (u+ vi+ j + 0k, n), then a2 + b2 + c2 + d2 = n.

When we express the solution in integral quaternion. If we have solutions for n1, n2, we can get the
solution of n1n2 by multiplying the solutions in integral quaternion ring. It’s trivial to get the solution for
n = 2k. Therefore, by knowing how to find the representation of odd numbers, we know how to find a
solution for any natural number.

Remark 1. Under the settings that the price limit is 1 million. 60% of the proof preparing time is from the
four square theorem algorithm. And if we raise the price limit, the portion of running four square theorem
algorithm increases. That is because the running time of four square theorem is quadratic to the bit length,
while other operations (mainly the commitments) are linear. Therefore, the four square theorem algorithms
is the most significant bottleneck in the protocol.

4http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

9

5 Experimental Results

There are two kinds of time complexity we care about: the proof generation time and the verification time.
Meanwhile, the communication complexity is dominated by the size of the proof. In each experiment, we
will measure these three kinds of complexity.

The parameters we are interested in that will affect the complexity time are (1) The number of buyers
and (2) The price limit.

The following are the results we found by modifying those parameters. We set the soundness to be less
than 0.03 meaning we repeated the proof 100 times. Note that we can reduce the soundness error to 10−12

by repeat 10 multiple times, which is 1000 times. Then all the time complexity and space complexity simply
scales up by a factor of 10. All the tests were run on a machine with a 1.4 GHz Intel Core i5 processor.

5.1 Results

Performance If we set the price limit at about 1 million, and we want the soundness to be 10−12. Under
the setting of 100 buyers then

• Proof preparation time: 347 secs

• Verification time: 135 secs

• Proof size: 2.38 GB

The number of buyers

As expected, The running time is basically linear in the number of the buyers.

The Price Limit

10

The verification time and the proof size does not really grow with the size of the price limit. This is
because raising the price limit does not really change the size of commitment. However, increasing the price
limit does increase the proof preparation time. Moreover, we can see that if we subtract the running time
of four square algorithm, the running time is like a constant, which is also as expected. The four square
running time grows quadratically as in the analysis of the algorithm.

6 The Paillier-Based Scheme of Parkes et al.

For the sake of experimental comparison, we also implemented the verifiable auction of Parkes et al.
[PRST08]. Before describing the protocol, we recall Paillier’s additively homomorphic encryption scheme.
Paillier’s scheme is a public key encryption scheme with encryption key n = p · q for large (e.g. 1024 or
2048-bit) primes p and q. The secret decryption key is given by φ = ϕ(n) = (p − 1)(q − 1). To encrypt a
message x ∈ Zn, we compute a random help value r ∈ Z∗n and evaluate E(x; r) = (1 + n)xrn (mod n)2. It
is easy to see that Paillier encryption enables the addition of encrypted values as E(x, y) = E(x)E(y).

We now give a brief description of the verifiable auction protocol of [PRST08]. The bidding process is
as described in Section 2. Each bidder posts a signed commitment to her bid to a public bulletin board,
and at the conclusion of the auction, reveals her bid to the auctioneer. Commitments are done using Paillier
encryption for keys generated once and for all by the auctioneer: the commitment to a value x is E(x; r) for
a random opening r.

What remains is to describe how the auctioneer can prove the correctness of comparisons between the
encrypted bids posted to the bulletin board. Recall that it suffices for the auctioneer to be able to prove that
a commitment contains a value x with 0 < x < 2t < n/2 for some parameter t. To do this, the auctioneer
generates a “test set” T = {E(u1; s1), . . . , E(u2t; s2t)} containing encryptions of t copies of 0 and each of
the t powers of 2: 1, 2, . . . , 2t−1. To prove that 0 < x < 2t, the prover writes x as a sum 2t1 + · · · + 2t`

of distinct powers of 2, and selects from T the corresponding set of encryptions Gj1 , . . . , Gj` . Moreover, it
selects t− ` encryptions of 0: Gj`+1

, . . . , Gt. By the additive homomorphism of Paillier encryption, we have
that E(x; r)−1 ·Gj1 · · · · ·Gjt ≡ E(0; s) (mod n)2 where s = r−1 · sj1 · · · · · sjt (mod n). Thus, the auctioneer
can reveal Gj1 , . . . , Gjt and the help value s to the verifier to convince her that x is in range. Moreover, the
protocol reveals nothing about which powers of t or how many copies of 0 are included in the revealed sets.

11

A few additional details need to be addressed, including how the verifier can check that the test set T
is valid. For brevity, we omit these details, but they can be found in [PRST08]. Experimental results are
below for 100 bidders, a price limit of 106, and soundness 10−12 with 1024 and 2048-bit key sizes: These

Figure 1: Complexity of the Paillier-Based Scheme

1024-bit 2048-bit
Proof generation 140 min 2.64 min
Proof verification 990 min 17.7 min

Proof size 4.33 MB 8.66 MB

results corroborate those of [RST07]: the scheme based on homomorphic encryption enables much smaller
proof sizes at the expense of much longer verification times.

7 Future Directions

One direction we are interested in is whether we can further decrease the amount of information that is
revealed about the participants in an auction. For example, in the case of a double auction we reveal exactly
the identities of the buyer and seller who bid bk and sk respectively. Naively this may seem necessary in
order to prove the correctness of the price (and it is consistent with what is done for second price auctions
in [RST07]) however it may be possible to avoid this. We would presumably commit to values x = bk and
y = sk, prove everything as before in our protocol except using these values instead, and then somehow
prove that there exists some bid (without revealing which one) that equals x and there is some bid (without
revealing which one) that equals y. One way to do this may be to select commit to a random permutation of
random representations of the bids, and through one set of challenges prove that it is a valid permutation,
and through another set of challenges prove that one of the items in the permutation is equal to our target.

References

[MR14] Silvio Micali and Michael O. Rabin. Cryptography miracles, secure auctions, matching problem
verification. Commun. ACM, 57(2):85–93, February 2014.

[PRST08] David C. Parkes, Michael O. Rabin, Stuart M. Shieber, and Christopher Thorpe. Practical
secrecy-preserving, verifiably correct and trustworthy auctions. Electronic Commerce Research
and Applications, 7(3):294–312, 2008.

[RMMY12] Michael O Rabin, Yishay Mansour, S Muthukrishnan, and Moti Yung. Strictly-black-box zero-
knowledge and efficient validation of financial transactions. In Automata, Languages, and Pro-
gramming, pages 738–749. Springer, 2012.

[RR] Michael O. Rabin and Ronald L. Rivest. Efficient end to end verifiable electronic voting em-
ploying split value representations. To appear in Proc. EVOTE 2014 (Bregenz, Austria).

[RS86] Michael O Rabin and Jeffery O Shallit. Randomized algorithms in number theory. Communi-
cations on Pure and Applied Mathematics, 39(S1):S239–S256, 1986.

[RST07] Michael O. Rabin, Rocco A. Servedio, and Christopher Thorpe. Highly efficient secrecy-
preserving proofs of correctness of computations and applications. In 22nd IEEE Symposium on
Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings, pages
63–76. IEEE Computer Society, 2007.

12

