Unsafe and Unsound
Cryptoanalysis of Leaky Acoustic Signals

Aakriti Shroff, Jennifer Hu, Tiffany Tang
May 15, 2014

Abstract

Acoustic Crytoanalysis is a side channel attack in which the attacker
listens in on the sounds that are emitted from a laptop. These sounds
come from the vibration of electrical components in the CPU’s voltage
regulation circuit. In our experiment, using a Lenovo Thinkpad T20 and
an iPhone 5s, we attempted to distinguish between CPU operations and
extract RSA keys by listening in on the acoustic noise that was being
leaked by the laptop during RSA decryption.



1 Introduction

1.1 Background Information

Electrical components in a CPU’s voltage regulation circuit vibrate as they
struggle to supply constant voltage to the CPU despite fluctuations in power
consumption caused by different operations. These electronic components in a
CPU’s circuit vibrate to produce a high-pitched noise during operation. The
acoustic signals vary according to the CPU’s workload, and can leak valuable
information regarding the kinds of computations running.

A 2013 paper by Daniel Genkin, Adi Shamir, and Eran Tromer showed that
it was possible to extract a 4096-bit RSA key from a laptop computer by an-
alyzing the audible whine it emits during operation [1]. Their experiment was
successful using rudimentary equipment. In one scenario, a cell phone was used
to record sounds coming from the laptop.

1.2 Motivation and Objectives

Originally we had planned to extend the cryptoanalysis work done by Genkin,
Shamir, and Tromer. After further contemplation, we felt that it would be a
difficult and interesting enough project to implement the paper’s design and
carry out an RSA key extraction attack using the equipment and software we
had. By running such an experiment, we hoped to gain a better understanding
of acoustic cryptoanalysis and make a conclusion on the feasibility of such an
attack in real-world settings.

1.3 Related Work

Acoustic cryptoanalysis is only one of many side-channel attacks. Other exam-
ples include timing attacks to extract RSA keys. Timing attacks use the idea
that depending on the inputs, certain operations will vary in time. This is usu-
ally done by sending multiple requests to the server and timing the responses
to fine-tune the adversary’s guess on the private key. Another example that is
closer to acoustic cryptoanalysis is being able to eavesdrop on someone typing
on their keyboard. [3]

1.4 GnuPG implementation

We focus on GnuPG’s RSA decryption operations and how the operations are
identified by their acoustic frequency spectrum. This can allow secret keys to be
distinguished by the sound that is made when they are used. We use GnuPG’s
modular exponentiation routine which is based on the Chinese Remainder The-
orem and improves the efficient of RSA decryption by a factor of about 4. We
used version 1.4.15.

1.5 Distinguishing RSA keys

The acoustic signature of modular integer exponentiation depends on the modu-
lus involved, therefore we should expect different keys to cause different sounds.



Using GnuPG to sign a fixed message using different RSA keys randomly ge-
neatured, we can distinguish keys of interest.

1.6 Paper Outline

We will organize the paper as follows. First we start by introducing our experi-
mental setup in section 2, which includes the recording devices and the laptops
we used, and which ones gave successful results. We also describe our proce-
dure to distinguish between different CPU operations. In section 3, we show
how acoustic leakage easily allows differentiation between different RSA keys.
We also present our approach for extracting RSA keys. Lastly, we disuss the
successfulness of the experiment and the feasibiility in section 4.

2 Setup and Preliminary Analysis

In this section, we describe the methods and approaches we used in our attempt
to carry out an attack. We first describe our experimental set-up and our ratio-
nale behind choosing our equipment. We then describe the initial diagnostics
performed to determine whether or not a laptop was suitable for our acoustics
attack. Finally, we describe potential problems that arise from the occurrence
of other signals.

2.1 Experimental Setup

The experiment required three main components (1) a microphone to record
acoustic leakage, (2) a method to perform elementary signal processing, and (3)
a suitable laptop to function as the attacked computer.

Microphone

We tried recording acoustic leakage with three different microphones.

— Samsung Galaxy S3 running Android

The first microphone we used was an Android Samsung Galaxy S3. The
sampling rate was not available on the phone’s official website, but based
on online discussions and spectrograms produced by the phone, we esti-
mated that the phone had a sampling rate of 48,000 kHz, which is the
standard sampling rate for many microphones. By the Nyquist-Shannon
sampling theorem, this means that the phone can capture frequencies up
to 24,000 kHz. Howevever, the Android phone was only able to capture
frequencies up to 22,000 kHz. This is most likely due to the other hard-
ware inside the Android phone and the fact that Android phone is not
intended to be used as a high-end recorder.

— Apple iPhone 5s with a Dayton iDevice Microphone:
The second recording device, which became our main recording device for
most of the project, was an iPhone 5s with a Dayton iDevice Microphone.



The iPhone 5s had the same sampling rate of 48,000kHz as the Android
phone. We found that there was less distortion of signals on the spec-
togram when using the iPhone instead of the Android phone. The Dayton
iDevice Microphone gave us more flexibility in choosing where to put our
microphone, which is very important for our set-up. The Android’s phone,
on the otherhand, had its microphone on the back, which made recording
in certain positions difficult.

— h4n Zoom Recorder:

The third recording device we used was a Zoom Recorder, which had a
sampling rate of 96,000kHz. Using this recording device, we were able
to view up to frequencies of 48,000kHz on our spectograms. The Zoom
Recorder essentially has double the sampling rate than both the Android
and iPhone. We found that the graphs concerning the RSA algorithm
were not much clearer when using this microphone. However, we ulti-
mately used the Apple iPhone for our final recordings because we felt
more comfortable with the device.

Signal Processing

After obtaining recording samples from our microphone, we used a signal ana-
lyzer to convert the data to readable format, like a spectogram. For the earlier
stages of our project, we used signal analyzing programs from the phone. How-
ever, these signal analyzing allowed us at most to only take screenshots of the
current screen. To get better graphs and results, we instead recorded the sounds
and then did post-processing on a seperate computer. For our final program,
we used Baudline, which is a signal anaylzer that provides spectrum analysis
data visualization. Most of the graphs from our write-up were created using
baudline.

Laptop/Attacked Computer

The most difficult part in our search for equipment was looking for a suitable
laptop to run as the attacked computer. We were using our phones in the initial
stages and due to a limited budget decided against purchasing better equipment.
Most of the acoustic signals we wanted to see were at too high a frequency for
the phones to record. Thus, we needed an older laptop. The reasoning behind
finding an older laptop was that the processor would be much slower than say
an i7 Intel Processor and that the capacitors would more likely be worn out and
thus leak out more acoustic noise. We did, however, initially test to see if our
current laptops would be suitable for the experiment.

We tried using a 13-Inch Macbook Pro and a Lenovo IdeaPad Y510p 15.6-
Inch Laptop. The processors on both laptops were an i5 Intel Processor and i7
Intel Processor respectively. We were not able to capture acoustic signals on
both laptops. We then borrowed a laptop from MIT class 6.01. The laptop
was running on Athena Ubuntu with an i3 Processor. We were also not able
to capture any acoustic signal on this laptop as well. We borrowed a fellow
MIT student’s laptop, a Lenovo Thinkpad r61i. This laptop was running on
Windows XP SP2 with an Intel Core Duo Processor (1.5GHz). This laptop was
also not suitable for two important reasons. The processor was running CPU



instructions at too high a rate for our phones to actually record any acoustic
signal. Secondly. we discovered that the capacitors in this laptop were very
”deep” into the laptop. This made recording very difficult because we were not
able to take apart the laptop, due to the fact that we were borrowing it and
had to return it without tampering with the laptop in any way. Our next step
was to find an even older laptop. We wanted to obtain a Lenovo Thinkpad T23,
which according to the authors of the original paper, had very strong acoustic
leakage that would be capturable by a phone’s microphone. We were, however,
not able to obtain one. Instead, we managed to obtain a Lenovo Thinkpad T20.
It was running on Windows XP S2 with an Intel Pentium IIT processor (650
MHz). Compared to the other laptops, the processor is much much slower, so
we had a higher chance of actually seeing something relevant in our recordings.

We used this laptop in our final setup, so we will briefly describe how we found
the ideal setup for this laptop.

Figure 1: This is the Lenovo Thinkpad T20. The circled regions are where
we placed our microphone in order to find the best position to record acoustic
leakage. All of these provide a good signal, but we found a better place to put
our microphone later.

Figure 2: This is the back of the Lenovo Thinkpad T20.

The back of the Lenovo Thinkpad T20 included most of the connections that
would be seen on a laptop today. For example, the USB drive, the printer, and
the monitor output, and the power supply was all located on the back of the
laptop. We tried recording close to each of these connections, but did not find
this to be ideal. We were also using a USB wireless mouse because it was nearly
impossible to use the laptop otherwise, which may or may not have interferred
with the signal.



Figure 3: This is the right side of the Lenovo Thinkpad T20.

The right side of the laptop was not very useful in providing acoustic leakage.
This may have been due to the fact that there were not a lot of openings here.

Figure 4: This is the left side of the Lenovo Thinkpad T20.
Unlike the right side, the left side proved to be more promising. There

were stronger acoustic signals on this side overall. The strongest came from the
PCMCIA card slot. Below is a figure of our final setup.

Figure 5: Our final setup is as shown. The green circle indiates where the
Dayton Microphone was inserted (in the PCMCIA card slot, which was useful
because there were a couple of capacitors close to it).

2.2 Acoustic Signals and CPU Operations

In order to determine whether or not we can extract RSA keys from a laptop, we
had to first run a diagnostics test on the laptop to see if we could differentiate
between different CPU operations. Despite limitations in our equipment, we
were able to see interesting patterns that allowed us to recognize certain CPU
instructions. For our diagnonstics, we used HLT, MEM (L1 cache miss), and
MUL (multiplication CPU instruction). We will now describe our procedure.
It should be noted that we recorded these sounds when the power settings were
maximized and the power supply was plugged in. The original paper stated
that doing these two things would ensure a better reading. By maximizing
the power settings, we could be sure that the CPU was not being



underclocked. Here are the steps that we took, in order.

1. Obtain a spectrogram of the laptop under normal conditions.

2. Obtain a spectrogram of the laptop while running the HLT command in
1 sec loops.

3. Obtain a spectrogram of the laptop while running the HLT and MUL
command in 1 sec loops.

4. Obtain a spectrogram of the laptop while running the HLT, MUL, and
MEM command in 1 sec loops.

5. Obtain a spectrogram of the laptop while running several CPU in 1 sec
loops and slowly decrease the time of the loops in subsequent iterations.

The first step is to obtain a regular reading of the laptop under normal cir-
cumstances, during which we did nothing to the laptop. This enabled us to see
what the laptop’s spectogram looked like while nothing was being run. This is
important to be able to differentiate when we actually run CPU instructions on
the laptop.

The second step was then to record what HLT looked like. We ran HLT for
1 sec in an infinite loop for this step. HLT is a special command that is im-
portant for our anaylsis. It is a kernal command and halts the CPU completely
until the next interrupt is signaled. As will be shown in the graphs, HLT is one
of the most distinguishable operations. If we are able to see a difference be-
tween when the laptop is running under normal conditions and when the laptop
is running with the HLT command, we continue on with the diagnostics.

In the third step, we ran both the HLT and MUL command in 1 sec loops.
The purpose of this step is to be able to see what MUL looks like. Because we
know what HLT looks like, if we are indeed able to see CPU operations, MUL
will be easily identifiable.

After successfully determining whether or not we can differentiate between HLT
and MUL, we move on to the next step. The fourth step involves running three
instructions: HLT, MUL, and MEM in 1 second loops. From the previous step,
we know how HLT and MUL look like. We can then try to see if we can deter-
mine where MEM is.

Finally, if the fourth step can be completed, we know that we are able to see
and distinguish between some CPU operations. The fifth step is to see how
well we can see different CPU operations. For this step, we run a program that
executes several different instructions, such as NOP, HLT, MUL, FMUL, and
MEM. It first runs all the instructions in 1 second. Then it runs the same set
of instructions faster (ie: 0.8 seconds) in the next iteration.



Frequency (0-22.5 KHz)

MUL
MEM
MUL
MEM
MUL

MEM

Figure 6: A spectrogram obtained from step four. The CPU instructions have
been highlighted.

Using the Thinkpad T20, we were able to differentiate between the HLT,
MUL, and MEM instructions. As shown in the graph in figure 6, the CPU
instructions were quite distinct on our graphs. At first sight, the graphs may
be a bit difficult to read. Spectrograms record frequency versus time. Each row
(in this particular example, each highlighted row) represents a different CPU
instruction. The rows that are very bright green are the HLTs. We highlighted
MUL and MEM as well. As one can see, the pattern repeats in the graph,
implying that we are able to capture different CPU instructions consistently.

Figure 7: A spectrogram obtained from step five.



Unfortunately, with our limitations in equipment, we were not able to suc-
cessfully complete step five. We were able to recognize the HLT instructions,
but were not able to identify most of the other instructions. This is to be ex-
pected. Most of the key distinguishing characteristics of these other operations
are at a higher frequency. ' As it turns out, however, successfully completing
step five was not necessary for RSA key extraction.

2.3 Obstables during Recording

During our experiment, we encountered obstables. This is to be expected as we
are running this experiment in a real-world setting. The obvious obstable, as
mentioned in the experiment setup, was our microphone, which was limited in
the frequencies it could capture. To compensate for our recording device, we
chose an old laptop. The other obstacle was not as obvious and something we
discovered when we ran the diagnostics test on several laptops. It also occurred
in a lot of the laptops we tested against. We found a destructive signal that
leaked at around 21kHz. It also distorted the rest of the spectogram. We later
discovered that it was an electro-magnetic wave coming from the fan, which
turned on whenever the computer was too hot. We worked around this problem
by letting the laptop idle. When the laptop was cool enough, the fan would
turn off by itself.

Frequency (0-22.5 KHz)

Figure 8: A spectogram of the EM wave from the fan. The blue highlights
where the wave is. As we can see, the EM wave distorts the graph at other
frequencies as well.

3 GnuPG RSA Key Extraction

The results of the previous section demonstrate that using our set-up, it is
possible to distinguish between CPU operations running on the laptop. Our

1With better equipment, the orignal authors were able to distinguish between a lot more
instructions.



preliminary analysis confirms that acoustic signals emanating from a target
laptop leak information about the underlying code. In this section, we discuss
the specifics of our side-channel attack on GnuPG RSA and summarize our key
extraction experiment as well as present our findings.

The authors of [1] identified a common RSA implementation, GnuPG, specifi-
cally GnuPG 1.x series, as vulnerable to an acoustic side-channel attack. Through
preliminary analysis, we decided to target GnuPG 1.4.15 compiled with MinGW
gce version 4.6.2 compiler on a Thinkpad T20 running Windows XP.

We briefly describe the weakness in GnuPG’s RSA implementation that makes
it vulnerable to our side-channel attack. 2.

3.1 GnuPG RSA

The ciphertext that we pass to GnuPG’s decryption algorithm is directly passed
to it’s underlying modular exponentiation routine along with the secret key d
and the integers p and gq. Within the routine, the ciphertext is first reduced
modulus the integers, and the reduced ciphertext is used in a multiplication
routine that is repeated 2048 times. The repetition amplifies the acoustic leak-
age over several cycles, and we can observe any differences in the patterns more
easily.

Recall that GnuPG RSA’s decryption algorithm uses CRT as an optimiza-
tion. As a result, the modular exponentiation first operates modulo p, and
then switches over to operating in modulo q. The acoustic leakage created in
each case is distinct, and is discernible on the spectrogram. We present our
analysis of RSA’s acoustic leakage in Section 3.2.

We implement the adaptive chosen-ciphertext attack described in [1] to ex-
tract individual bits of the exponent. Once either exponent p, ¢ is extracted,
extracting the secret key d is trivial. Let the binary representation of integer ¢
be ¢n, Gn_1,---,q1- Assume that we have already extracted the high ¢ — 1 bits of
q, and let ¢! be the 2048 bit ciphertext whose high i — 1 bits are equal to those
of ¢, whose *" bit is 0, and remaining bits are 1. Consider decrypting using
ciphertext ¢'. This ciphertext is first reduced with exponent ¢ in a bit-by-bit
manner. Depending on the value of q, two things happen:

— ¢ = 1 Then ¢! < ¢ and is not reduced. Our structured ciphertext is
passed into the multiplication routine 2048 times.

— ¢; = 0 Then gc»! > ¢ and is reduced. A random-looking c that is shorter
than 2048 bits is passed into the multiplication routine 2048 times.

In section 2, we established that CPU operations like multiplications could
be distinguished by analyzing acoustic leakage. We extend the results to dis-
tinguishing multiplication operations with structured 2048-bit binary numbers

2The focus of this section is our experience implementing the attack, and for a more in-
depth understanding of the attack, please refer to [1]

10



from that of multiplication operations with shorter,random-looking binary num-
bers. This is central to our attack and our analysis of the chosen-ciphertext
decryption is presented in Section 3.3.

3.2 RSA Key Distinguishability

Our analysis required us to first identify what the acoustic leakage of a GnuPG
RSA decryption looked like. From our preliminary analysis, we discovered that
HLT’s acoustic leakage generates a good visual marker in the spectrogram. We
ran five identical decryptions on a fixed GnuPG message using the same secret
key interleaved with HLT messages. The spectrogram produced a clear acoustic
signature for the RSA decryption as seen in figure 9.

l—’ Frequency (0-22.5 KHz)

Figure 9: A spectrogram obtained from decrypting a fixed gnuPG message five
times. The HLT instructions have been darkened.

Moreover, the spectrogram captured the acoustic leakage that occurred dur-
ing the transition between modulo p and modulo ¢ operations as seen in figure
10. This is important to our attack as the spectral signature during this transi-
tion serves as a signature for the key in general; i.e. different keys have diffferent
spectral signatures, and this difference is specially noticeable during the transi-
tion between p and gq.

11



Frequency (0-22.5 KHz)

Figure 10: A spectrogram obtained from decrypting a fixed gnuPG message five
times. The HLT instructions have been darkened. Transition between p and
q has been marked using white arrows. Within each decryption, the blue row
refers to modulo p operations, and yellow row to modulo ¢ operations.

Finally, we encrypted a fixed message using five different RSA keys, and ran
the decryption algorithm on each of them i.e. fixed message, different keys. We
created a program that calls an infinite loop of these five decryption invoca-
tions as seen in figure 11. We analyzed the transition between p and ¢ on the
spectrogram, and confirmed that different keys could be distinguished based on
their transitions (figure 12).

The ability to identify keys can prove to be extremely advantageous in other

attacks as well where the acoustic traffic is monitored and the identification of
rarely-used keys can reveal something about the situation.

12



Figure 11: A spectrogram representing acousting leakage of five decryptions,
each decrypting the same fixed message but with different keys. The spectro-
gram shows 3 iterations of the infinite loop each decrypting five times (blue
blocks). The white circle encloses p-q transitions of five different keys and is
enlarged in figure 12

Figure 12: Enlarged cross-section of spectrogram in figure 11. The clarity of
the p-q transitions is only limited by our equipment. Even using our elementary
set-up, we are able to see the unique signature for each of the 5 keys as seen
within each circle.

13



3.3 RSA Key Extraction

Because different keys cause different sounds, we were able to use GnuPG to help
distinguish between RSA secret keys. To extract the secret key, it is sufficient
that we extract either p or q. We implement an adaptive chosen-ciphertext
attack that exposes the RSA exponent bit-by-bit as explained in Section 3.1.

Creating chosen-ciphertext c!

The chosen ciphertext ¢! is structured as the 2048 bit ciphertext whose high
i — 1 bits are equal to those of ¢, whose i" bit is 0, and remaining bits are 1,
where ¢ RSA exponent ¢ be ¢, ¢n—1,...,q1. While the paper [1] brushes over
creating the ciphertext, and invoking RSA decryption on the created GnuPG
message, we found this part of the experiment quite challenging.

Encryptions using GnuPG RSA generate a GnuPG file which is formatted ac-
cording to the OpenPGP Message Format found at [4]. Our goal is to create a
valid GnuPG file containing the chosen-ciphertext that is correctly processed by
GnuPG. To do so, we first tried to manually create a GnuPG file from scratch
containing our ciphertext. We had to understand the steps involved during
GnuPG RSA encryption, and because of the lack of documentation regarding
GnuPG’s src directory, this was not easy. Instead we implemented a shortcut
using the following steps:

1. During RSA encryption, GnuPG invokes a public (MPI output, RSA-public-key
*pkey) method to carry out the exponentiation. 3

2. We modified the method so that it doesn’t perform any of the regular RSA
encryption steps, but simply returns our chosen-ciphertext. See Appendix
A for clarification.

3. Our hope was that a decryption call would fetch the ciphertext, our c¢*!,
from the GnuPG file and decrypt succesfully.

When we try invoking GNuPG --decrypt <ciphertext>, our call failed.
However, this doesn’t effect the success of our attack. This is because GnuPG
uses a hybrid cryptosystem to optimize for speed and security in which GnuPG
creates a one-time secret key from a random number. This session key is used
while encrypting the plaintext using a symmetric algorithm (eg. AS256). Once
the data is encrypted, the session key is then encrypted to the recipient’s public
key. This public key-encrypted session key is transmitted along with the cipher-
text to the recipient. When we decrypt using RSA, the private key is used to
decrypt the secret session key used, which in turn decrypts the ciphertext.

It is important to note that the value of the decrypted ciphertext does not
effect our analysis, only that our ciphertext, ¢!, was used during encryp-
tion/decryption with the correct exponent g. After carefully analyzing where
our decryption failed, we realized that while GnuPG RSA was correctly de-
crypting the session key, but the session key used to encrypt the plaintext was

3MPI refers to Multi Precision Integers. GnuPG uses MPIs to represent large integers as
big-endian 8-bit octets.

14



now invalid (because we have changed the underlying ciphertext). Subsequently,
our RSA decryption was happening as intended and we should observe acoustic
leakage that exposed bit ¢; even though we did not find out the value of the
decrypted ciphertext.

While we understand that this is not a realistic attack scenario, we believe that
this shortcut preseves the experiment’s objectives— analyzing acoustic leakage
during RSA decryption to extract secret key.

Extracting bit ¢;

We decrypted the ciphertext using the same key five times interleaved with
HLT operations and recorded the acoustic leakage emanating from the laptop.
During the first run, we set the ciphertext, ¢!, to be the 2048 binary number
0b10111..111, implying that we are extracting the second bit, g2047. The spec-
trogram highlighted the transition between modulo p and modulo q as seen in
figure 13. The attack described in [1] discusses steps to create templates that
the generated spectrograms can be compared against. We use the ones in the
paper as our template and deduced that the attacked bit is gogq7 = 1.

We extracted the next bit using the ciphertext Ob110111..111. Continuing
this attack two more times resulted in similar spectrograms, and we deduced
that the attacked bits were all 1. While attacking ¢o044, We encountered our
first ¢; = 0 bit. Our analysis confirmed this as the spectrogram generated was
unlike the ones generated for ¢; = 1 bits. Comparing it to the [1], we concluded
that bit g2044 = 0 and produces a unique acoustic signature as seen in figure
14.

15



Figure 14: Attacked bit is zero

16



4 Discussion

Our goal was to carry out the experiement that Genkin, Shamir, and Tromer
carried out, specifically to be able to distinguish between CPU operations, dis-
tinguishing between RSA secret keys, and extracting a few bits from RSA keys.
Overall, we were successful, despite early struggles in attempting to find equip-
ment, laptops and recording devices, that would provide us any results. The
most difficult area was extracting the bits from the RSA keys.

We began our analysis by attempting to distinguish various operations per-
formed by the CPU of the laptop, and were able to detect certain patterns
that allowed us to recognize HLT,MEM, and MUL instructions. The reasoning
behind our procedure is as follows - being able to know what a certain CPU
operation looks like on our spectrogram allows us to identify other operations
by running an extra operation each time until we were able to see all.

Next, after gaining comfirmation that acoustic signals do leak information about
underlying code, we tried to distinguish different keys based on their different
spectral signatures, and were able to identify them by looking at the transitions
between p and q on the spectrograms. The ability to determine such could be
even clearer if we were to have better equipment.Lastly, we focused on con-
structing a chosen ciphertext attack needed to extract RSA keys.

Looking at our results, we felt that our project was successful in meeting its
aims. We managed to extract RSA key bits, which was our initial goal. We did
not expect to be able to extract keys, given our long search for an appriopriate
computer, and were quite pleased when we managed to do so. In terms of what
went well, we felt that the analysis part of the project — where we tested po-
tential laptops, differentiated CPU operations, differentiated between different
RSA keys, and RSA key extraction went well. This was because we understood
the mechanics of acoustic cryptoanalysis very well through research and discus-
sion.

We felt, however, that the search for equipment did not go as well. The high-
end microphones that were able to capture high frequencies were very costly
and well beyond the budget of our group. Because we were not able to acquire
a decent microphone, we had to make sure we chose a very old laptop to ensure
that we would be able to capture signals. This part, we felt, was very much out
of our hands.

If we could do things differently, we may have considered looking at older laptops
beforehand. It took a lot of time for us to find the Thinkpad T20. Most of
the time, we were testing out laptops that were outputting frequencies much
higher than we could capture. We felt that while this was a valuable learning
experience, we could have saved more time if we had used an older laptop in
the first place.

17



5 Conclusion

Although we have sucessfully implemented the experiment, there are many next
steps to attempt. Executing such experiments on laptops other than the Lenovo
Thinkpad T20 as well as various models and/or various operating systems and
other version of GnuPG@G, could help emphasize such results as well as provide
a whole new area to research. It is suggested the signal quality and effective
attack distance cary according to the computer’s age. In addition, to distinguish
keys of interest in many applications, it may be possible to distinguish between
algorithms, different implementations of an algorithm, or different computers
running the same algorithm.

For other groups interested in carrying out this attack, we recommend using
a very old laptop with an old processor, because that increases the chance of
the microphone being able to listen in on the computer. We also recommend
the group to carry out our initial diagnostics on each computer they attempt
this on to see whether or not it is feasible to carry out the actual attack.

In terms of feasibility in a realistic setting, acoustics cryptoanalysis is all very
dependent on the equipment of the attacker and the laptop being attacked. In
order to successfully extract RSA keys, the attack must have a powerful enough
microphone to be able to capture high frequencies. The laptop must also be
leaking acoustic signals at a low enough rate for the microphone to be able to
capture it. So, while the attack is very possible, the attacker may not have a
lot of freedom in choosing whoose keys to extract.

6 Acknowledgements

We would like to thank the 6.857 staff, especially Professor Rivest and our T.A.
Justin Holmgren, for their guidance throughout the project. We are grateful
to Kyle Fisher for helpring us acquire the attacked laptop we used for our
experiments. Lastly, we’d like to thank the authors of [1] for invaluable advice
provided to us during our correspondence with them.

7 Appendix

For the RSA key extraction, we chose our ciphertext by using the modified
public function in cipher/rsa.c:

static void public(MPI output, MPI input, RSA public key *pkey )

{

const char *str = "CHOSEN CIPHERTEXT HERE";
mpifromstr (output, str);

}

18



8 Reference

[1] Daniel Genkin, Adi Shamir, Eran Tromer RSA Key Extraction via Low-
Bandwidth Acoustic Cryptanalysis 2013.

[2] Eran Tromer Hardware-based Cryptanalysis 161-170 2007
[3] Dmitri Asonov, Rakesh Agrawal Keyboard Acoustic Emanations 2004

[4] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer OpenPGP
Message Format. RFC 4880 2007

19



