Two Factor Zero Knowledge Proot
Authentication System

Quan Nguyen
Mikhail Rudoy
Arjun Srinivasan

6.857 Spring 2014 Project

Abstract

It is often necessary to log onto a website or other system from an untrusted device using an untrusted
connection. In this paper, we propose a login protocol that can be implemented to allow security in this
situation. The protocol is a two factor authentication scheme which utilizes zero knowledge proofs to
convince a server, over an unsecure connection, that the user knows his password without compromising
that password. The protocol never requires the user to enter any sensitive information on the (potentially
compromised) device that they are logging in on. We analyze the security of this protocol, noting which
vulnerabilities it protects against and which it is susceptible to. We also describe our implementation of this
protocol, which can be seen at http://tfzkp.herokuapp.com.

Introduction

It is often the case that logins to secure systems are
made from untrusted devices, such as public kiosks
or otherwise possibly compromised systems. There
are many ways these systems can be compromised.
One common way is through the use of a hardware
or software keylogger. Hardware keyloggers act as
devices that monitor keyboard and other input from
input devices to the system. These allow an adver-
sary to have full knowledge of all data transferred
from the user to the system, including login creden-
tials. Software keyloggers behave similarly, but are
pieces of malicious software that use the network to
relay information back to an attacker. If any sort of
information is sent to the untrusted system, there is
no way to avoid a keylogger from tracking this data.

In addition, even systems that are not compro-
mised at the software or hardware level are subject to
human intervention, including shoulder surfing. This
involves a human or camera behind a user as he or she

types in login credentials. This is especially prevalent
in public areas, such as outdoor ATMs. Some solu-
tions developed include cameras placed to track sus-
picious behavior using computer vision techniques;
however, these are not reliable, as the shoulder surfer
does not necessarily have to be human, but can be
any sort of monitoring device.

The only way to reliable and practical way to log in
to systems in these situations involve not passing any
sensitive information through the untrusted device.
For this reason, we look to the combined use of zero
knowledge proofs and two factor authentication.

In this paper, we propose a protocol that is meant
to solve all of the problems described above. In par-
ticular, the protocol is intended to allow a user to log
in to an account on an untrusted device while in the
presence of keylogging and shoulder surfing using an
unsecured network. The protocol allows the user a
trusted device to aid in his log in which can also be
shoulder surfed and also connects over an unsecured
network, but is guaranteed not to be keylogged or
otherwise compromised.

Background

To combat the security vulnerabilities detailed above,
a few security techniques can be combined. Two
Factor Authentication is a method commonly
used by internet services to provide an extra layer
of security in addition to the standard password used
as login credentials. It employs a secondary device,
such as a phone, that the user must have in his or her
possession to complete the authentication process. In
services such as Google’s GMail, two factor authen-
tication works using a phone’s SMS capabilities to
send text messages from authentication servers with
access codes to the phone. This is combined with the
password, so authentication requires both knowledge
and possession of a trusted device.

Two factor authentication still requires sending a
password over a network, however. To combat this,
we introduce the concept of zero knowledge proof.
Zero knowledge proof is a type of proof that is com-
pete and sound and has the zero knowledge prop-
erty. The completeness and zero knowledge proper-
ties amount to the idea that the prover can only suc-
cessfully convince the verifier of the fact being proved
if and only if the fact is true. The zero knowledge
property states that the verifier learns nothing from
the proof other than the fact that proven fact is true.
What we use in our protocol is a zero knowledge proof
that the prover knows a secret key; because of the
zero knowledge property, the key is not compromised,
only the fact that the prover knows the key.

Protocol

We can now describe the protocol that we developed
to address the problems introduced earlier. This pro-
tocol involves two separate stages. The first stage is
the signup stage, during which the user creates an
account with a website or other service. The second
stage is the login stage, and consists of the steps nec-
essary to log in.

Before we describe the particulars of these two
stages, we will introduce the principals in this scheme:

User: The user is the individual who wishes to se-
curely maintain and access an account with one or
more services.

Trusted Device (TD): The trusted device is a
device that belongs to the user. It must be a mobile

device such as a phone, tablet, or laptop because
it will be required every time the user attempts to
log in. We assume that the trusted device is not
compromised.

Untrusted Device (UD): An untrusted device is a
device that the user wishes to use in order to log into
an account that the user has. The untrusted device
is, as the name implies, not trusted; it is assumed
to be keylogged and shoulder surfed.

Server: A server in this scheme is the device in
charge of a particular service. All interaction with
the service is achieved through communication with
the server.

Adversary: In this scheme we consolidate all pos-
sible malicious actions under a single hypothetical
individual who we refer to as the adversary.

Account Creation Protocol

Before the user can log into an account with a service,
the user must have an account with that service. Set-
ting up an account is actually a very simple process.

To begin, the user selects a username and commu-
nicates it to the server via the trusted device. If this
username is already taken, the user is informed with
an error message, and the user must make another at-
tempt. When the user identifies an unused username,
the process can continue.

In the next step, the user selects a password and
enters it into the trusted device. The trusted device
uses that password to (deterministically) generate a
secret key; for example, the binary representation of
the password can be interpreted as a large number
and that number can be used as the secret key. The
trusted device then randomly generates and saves a
secret key for itself. The public keys associated with
each of the two secret keys are then computed. After
that, the username and both public keys are sent to
the server, which stores this data. This set of steps
is summarized in figure 1 below.

It is important that, once this process is complete,
the trusted device deletes all references to the user’s
password or to the associated public key.

In our scheme, we assume the discrete logarithm
assumption. This allows us to keep the private key,
public key pairs in a particular format: a private key
is an integer x and the associated public key is the
triple (g, ¢",p) where p is a large prime and g € Z,.

username
user’s secret key
TD's secret key
username u username
user’s secret key - user’s public key
i TD’s public key
c 3 ',
e h‘}l\'ep(’b’f’('i—
o Prrb‘,’-(_ »('@;y - ;

Figure 1: the setup process summarized

Login Protocol

The user, having created an account may find that
he wishes to log in from an untrusted device.

He begins by selecting the service that he wishes
to log into on his trusted device. The device sends
a message, digitally signed with the device’s secret
key, to the server indicating the intent of the user
(as identified by his username) to log in. The server
verifies the signature, and either accepts the signature
as valid, or rejects it as invalid. In the former case,
the server saves in its records that a login attempt
has begun. Just in case, this login attempt expires
within a minute if it is not continued. The steps so
far have been summarized in figure 2.

% intent to login using username

i digitally signed with
intent to login b "

TD's secret key
l-ﬂ/' \
acceptance of signature @

Figure 2: the first steps to logging in

login attempt
initialization recorded

After that, the trusted device requests that the user
enter his password. Once the password is entered, the
trusted device computes the user’s secret key from

the password. Next, the trusted device runs through
several rounds of zero knowledge proof with the server
to demonstrate knowledge of the user’s secret key to
the server. Every message sent should be signed with
the trusted device’s secret key such that all messages
not sent by this device can be ignored. Suppose we
let be the user’s secret key. The server has access
to g and ¢g*, so the proof necessary is the proof of
knowledge of discrete logarithm. A zero knowledge
proof of this kind is easy to do, as seen in [?]. The
next figure demonstrates these steps.

X g

\b

Figure 3: the user tells the trusted device his pass-
word, and the trusted device proves knowledge of the
password to the server

When the server is sufficiently convinced that the
trusted device currently knows the password, it gen-
erates a random token and associates that token with
this login attempt. Once again, if the token remains
unused for too long, the login attempt expires. The
token is encrypted with the trusted device’s public
key and sent to the trusted device. The trusted de-
vice decrypts the message and displays the token on
screen. The user then enters his username and the
token into the untrusted device which sends the data
on to the server. These steps are shown in figure 4.

The server checks that the user has a login at-
tempt in progress and verifies that the token entered
matches the one associated with that login attempt.
If everything checks out, the untrusted device is in-
formed that it successfully “logged in half way”, and
the token is removed from the records; as a result, the
token can only be used once. If verification fails (for
example if the adversary shoulder surfs and enters
that token first), the untrusted device is informed of
this fact. In either case, the untrusted device then

TS
5 g

username
Token

username

! tokeu

Figure 4: the user uses the token that is sent by the
server to “login half way” on the untrusted device

displays to the user whether or not he has “logged in
half way.” The user uses this information to inform
the trusted device of whether the first half of logging
in was successful. The device in turn, forwards this
answer to the server. If the answer is no, the login
attempt is aborted and must be restarted. If the an-
swer is yes, the untrusted device must be the single
device that is logged in half way, and the protocol
can continue. These steps are summarized in figure

.
halfway login
cunﬁnnad

\, halfway login
confirmed

halfivay login

half of login complete

Figure 5: the user confirms to the server that it is the
untrusted device that has successfully logged in half
way and not a device in use by the adversary

W

At this point, the trusted device does another few
rounds of ZKP resulting in the server sending an-
other encrypted token. Once again, the trusted de-
vice decrypts the token and the user copies it to the
untrusted device. This time, when the untrusted de-

vice sends the data to the server, the server verifies
not only that the token is correct, but also that the
device attempting to log in is the unique device that
s “half way logged” in. At that point, the device’s
halfway login is upgraded to a full login, and the
server can serve the untrusted device the content that
the user is attempting to access. Once the second to-
ken is printed on screen, the trusted device removes
all record of the user’s password or secret key. See
figure 6 for a summary of these final steps.

L‘fal

Figure 6: a second round of zero knowledge proof and
a second token which will only be accepted from the
“halfway logged in” device are used to complete the
login attempt

Security

The above protocol is meant to solve the problems
of keylogging, shoulder surfing, and unsecure net-
works. In addition, we claim that the protocol is a
two-factor authentication scheme, meaning that both
knowledge of the password and ownership of the de-
vice are strictly necessary to log in. We discuss the
protocol’s security with respect to each of these issues
below.

Secure Password Storage

Password systems are generally implemented by stor-
ing hashed passwords. This requires the user to
directly send the server his password, and unfortu-
nately, in the real world passwords are often leaked.
The proposed protocol avoids this issue by never

giving the server the users’ passwords in the first
place. Instead, the server is provided with public
keys, which as the name implies can be made pub-
lic without a loss of security. In this sense, the pro-
posed protocol is an improvement over hashing based
password schemes because it allows for more secure
password storage.

Two Factors are Necessary to Log in

It is clearly true that if the user has both knowledge
of the password and ownership of the trusted device,
the above protocol can be used to successfully log in.
We want to make sure, however, that only a user with
both of these factors can successfully log in.

Whenever the server receives a message regarding a
login attempt associated with a particular username,
the server uses the public key that it has stored to ver-
ify that the message is signed with the secret key as-
sociated with the trusted device associated with that
username. If verification of the signature fails, the
server simply ignores the message. Thus, since a suc-
cessful login attempt requires a lot of communication
between the server and the user’s trusted device, a
successful login attempt is impossible without knowl-
edge of the trusted device’s secret key.

Since we trust the trusted device to be secure, we
are assuming that the adversary cannot steal the se-
cret key from the trusted device. Since encryption
of messages and signing of messages can be accom-
plished without compromising the security of the se-
cret key, the adversary cannot gain the trusted de-
vice’s secret key by eavesdropping on legitimate login
attempts made by the user [?]. Thus, we conclude
that only the trusted device has access to the trusted
device’s secret key, and so only with ownership of the
trusted device can a login attempt succeed.

We also know that the zero knowledge proofs have
only a negligible probability of success if the prover
(the trusted device in this case) does not actually
have access to the knowledge; this is the soundness
property of zero knowledge proofs. Thus, a login
attempt can succeed only if the trusted device has
access to the user’s secret key. However, since the
trusted device always deletes all references to the
user’s password or secret key between login attempts,
the only way for the trusted device to have the user’s
secret key is for the user’s password to be entered
at the start of the login attempt. Thus, in addition
to ownership of the trusted device, knowledge of the
password is required in order to successfully log in.

We see that the protocol described is a two fac-
tor authentication scheme and therefore has the extra
layer of security associated with such a scheme.

Keylogging

One of the assumptions made is that the untrusted
device is being keylogged. In that case, we see that
over the course of a login attempt, the data leaked
consists only of the two tokens and the user’s user-
name.

username ‘.
token 1
token 2
\

Figure 7: over the course of a login attempt, this data
could be leaked to the adversary via keylogging

The protocol does not rely on keeping the user’s
username secret, and in fact it is expected that a
user’s username will be publicly known. The adver-
sary can gain no advantage from learning that piece
of information.

The two tokens are both randomly generated and
provide the adversary with no information on the
user’s password of the trusted device’s secret key. The
adversary can gain no information from learning the
two tokens. Beyond that, however, the adversary also
cannot make use of the tokens in any way. If the ad-
versary attempts to use the second token to log in
then he will not be successful; this is because only
the unique computer that is “halfway logged in,” the
untrusted device that the user is using to login, can
finish the login attempt. If the adversary attempts
to use the first token to log in, then he will success-
fully log in half way. However, in that case the user
will be unable to log in half way, and as a result the
log in attempt will be canceled without the adver-
sary having a chance to keylog or eavesdrop a second
token with which he can conclude his login attempt.

Clearly, the adversary can gain no advantage from
learning the values of the two tokens.

Unsecured Network

Assuming that the network is unsecured, we want to
know whether the adversary can learn anything use-
ful by eavesdropping on the network. Eavesdropping
on the network allows the adversary access to commu-
nications between the server and the trusted device
and between the server and the untrusted device; in
effect, the adversary is able to read everything sent
and received by the server.

“-._ Username
-, user’s public key
. TD’s public key
"+~ ZKP transcripts
ﬁ‘x_\ first token

EI *~._second token

‘\\sen'me content
Figure 8: the adversary can access all of the commu-

nication that the server participates in by eavesdrop-
ping on an unsecure network

During the setup phase, the server and the trusted
device agree on a username, and the trusted device
sends the server both public keys. As mentioned be-
fore, none of the security of this protocol relies on
keeping any of these three data secret, so the adver-
sary gains nothing by eavesdropping on this phase.

During a login attempt, the trusted device always
digitally signs messages to the server with the device’s
private key. Viewing these signatures does not help
the adversary because digital signatures are designed
to not be forgeable [?].

In the protocol, after first contacting the server,
the trusted device uses a Zero Knowledge Proof to
establish its knowledge of the user’s password. The
zero-knowledge property of zero-knowledge proofs al-
lows this conversation to occur on an unsecure net-
work while revealing to any observer (such as the ad-
versary) only that the user’s trusted device has been
given the user’s password.

Next, the server sends an encrypted token to the
trusted device. We can select an encryption method
that is IND-CCA2 secure, so that even if the adver-
sary learns both the token and its encryption, the se-
cret key used remains secure. Even if the encryption
fails to hide the value of the token, tokens can only be
used once, so a use by the adversary would be obvious
to the user. Thus, the adversary must either watch
passively as the user uses the token (thereby making
knowledge of the token completely irrelevant) or ac-
tively attempt to use the token first, in which case
the user will abort the login attempt. In either case,
the adversary gains nothing in this step.

Finally, another round of ZKP and another trans-
mitted token round off the login attempt. The Zero
Knowledge Proof remains equally secure in this part
of the protocol as it was the first time, and the to-
ken, even if its value is decrypted, is useless to the
adversary because it can only be used with the user’s
untrusted device.

After the login attempt succeeds, the adversary will
be able to eavesdrop on the content that the user is
trying to access. While this is not a good thing, it
is to be expected in a situation as hostile as we are
dealing with, and services using this protocol should
be set up so as not to reveal any sensitive information
after login.

Shoulder Surfing

Exactly the same way that eavesdropping on the net-
work amounts to reading all of the server’s communi-
cations, shoulder surfing, in the worst case, amounts
to viewing all of the user’s communications.

Over the course of the protocol, shoulder surfing
can reveal the user’s username and the two tokens
used for this particular login attempts. As already
mentioned, none of this information is of any use to
the adversary: the username is already public, and
the protocol only generates a second token if the first
is not stolen; stealing the second token can only be of
use to the adversary in exactly the situation in which
the token is not generated.

The real vulnerability here is that a shoulder surfer
can see the user type his password into the trusted
device. This would be a serious issue, but there are
several mitigating factors.

First of all, even if the user’s password is stolen, the
fact that this is a two-factor authentication scheme
allows the user some additional security. If the user
suspects that his password has been stolen, he should
change to a different password as quickly as possible,

4

{ username
! password
{ token 1
“' token 2

Figure 9: in the worst case, shoulder surfing allows an
adversary to see everything that the user enters into
any device and everything that the devices inform the
user of

but as long as he still has his trusted device, the user
is safe from the adversary accessing his account.

The second mitigating factor is that shoulder surf-
ing is difficult to do without being noticed and can
be avoided, as far as the trusted device is concerned,
with a little effort. The untrusted device does not
necessarily belong to the user; if it is in a public place,
the adversary can spend time and effort in advance
on setting up and hiding a camera which has a good
view of the untrusted device. With the trusted de-
vice, the adversary does not have this option; since
the trusted device belongs to the user, its exact lo-
cation at the time of use will not be known ahead of
time, and as a result the adversary has a much more
difficult time successfully shoulder surfing. Taking
this to its natural conclusion, a concerned user can
simply cover his device (with a piece of clothing for
example) while entering his password and severely
restrict the adversary as a result.

Vulnerabilities

We have described several key ways in which the pro-
tocol described is secure, but unfortunately there are
vulnerabilities that it is susceptible to. Before imple-
menting this protocol, it is key to consider the vulner-
abilities described below (as well as any other plausi-
ble breaches of security) and protect against them in
some way.

Trusting the Trusted Device

We assume in analyzing this protocol that the trusted
device is uncompromised. If this is not the case, de-
pending on the details, we can run into a range of
different problems.

In the worst case, the adversary has complete ac-
cess to everything on the device. Even if the adver-
sary has access only to the memory of the device,
he is able to steal enough data to successfully log in
using the user’s account. In order to log in under
a particular username, one needs knowledge of the
user’s password and ownership of the user’s trusted
device. The adversary can steal the user’s password
during any log in attempt, since for the duration of
that attempt the user’s password is stored on the de-
vice. The adversary can also steal the trusted device’s
secret key at any time, since it is also stored on the
device, allowing him to prove ownership of the user’s
trusted device without actually owning it.

A less extreme case is that the trusted device is
compromised, but not to the extent of giving the ad-
versary full access. One possibility is that the device
is keylogged. Keylogging the device allows the adver-
sary direct access to the user’s password. Given that
fact, using this scheme with a keylogged trusted de-
vice is no better than using a more standary two fac-
tor authentication scheme where the username and
password are entered directly into the (presumably
keylogged) untrusted device.

Even without the adversary intentionally taking
action to compromise the trusted device, certain is-
sues with the device can cause problems with this
scheme. For example, it could be that when this
protocol is implemented, user password data is not
perfectly removed between login attempts. This is
a very plausible situation, even without malicious
intent on the part of the person implementing this
scheme, since it is possible for the data to be recover-
able from the device’s memory even after the data has
been deleted. The problem in this situation is that
logging in no longer requires two factors: possession
of the device is still necessary, but now possession
of the device also directly grants knowledge of the
user’s password. With only one factor, the protocol
becomes much less secure; simply stealing the user’s
trusted device is sufficient to access their account.

Denial Attack

In our analysis above we assume that an adversary’s
intent is to access the user’s account. However, this

might not be the case.

For example, it could be that the adversary sim-
ply intends to be as much of a nuisance to the user
as possible. Unfortunately, an adversary with all of
the resources we have granted him can be a very ef-
fective nuisance. By stealing the first token (which
can be done several ways including shoulder surfing),
the adversary can log in halfway himself rather than
allowing the user to do so. This forces the user to
restart the log in attempt. By doing this repeatedly,
the adversary can effectively deny the user access to
their own account.

Active vs Passive Attacks

Another assumption we have made is that the ad-
versary’s control of the untrusted device and of the
unsecured network are passive. All of our analysis
so far interprets the fact that the untrusted device is
untrusted to mean that the device is keylogged, and
interprets the fact that the network is unsecured to
mean that the adversary can eavesdrop on the net-
work. However, it could be the case that the adver-
sary has more control over both of these components.

Here is an extreme example of what the adversary
could do: the adversary could allow the user to log
in on the untrusted device without interference, at
which point the adversary would simply take com-
mand of the untrusted device (which is logged into
the users account) away from the user. As you can
see, a user must trust the untrusted device at least
some minimum amount before agreeing to log in on
that device.

If the adversary has control over the network (as
opposed to just eavesdropping capability), he can or-
ganize a very similar attack, even without having con-
trol over the untrusted device.

The adversary does this by organizing a man in the
middle attack which places his own device between
the untrusted device and the server. In effect, the
user, believing himself to be logging the untrusted
device into his account will actually be logging the
adversary’s device in instead. He will be unable to tell
the difference (until the login attempt is complete)
because the untrusted device will display a copy of
what the adversary’s device displays: a computer in
the middle of logging in.

Figure 10: an adversary can fool the user into log-
ging the adversary’s device into the user’s account
by hijacking the signal between the server and the
untrusted device

Implementation

Our implementation was in the form of a web fron-
tend, hosted on Heroku. The backend was written
in Python with Flask and all of the zero knowledge
computation was done in Javascript on the trusted
device and Python on the backend server. There were
twenty rounds of zero knowledge proof done with our
protocol (small enough to make the login process time
efficient) and our prime used was 1000667 with gen-
erator G = 98.

In a complete implementation of the protocol de-
scribed, the user’s trusted device would use an app
to interface with the server. In our more simplified
implementation, we only use a website. In the simpli-
fied system, setting up an account involves accessing
the website through the trusted device and register-
ing for an account. The initial page of the website is
shown below in figure 11, and the registration page
below that in figure 12.

6.857 TFZKP Authentication

This is our final project for 6.857 - Networks Security Spring 2014

74P,

‘Copyright 2014 by Quan Nowyen

Gontact nformatir: qenguyenamit .

Figure 11: Login page

Mew User Registration

Username

Password

Figure 12: Registration page

Using this registration page through the trusted
device allows a user to create an account associated
with a username, password, and trusted device’s se-
cret key. The username and password are provided
and remembered by the user. The trusted device’s
secret key is generated at random and stored in a
cookie on the trusted device. Unfortunately, this is
not the most secure storage, but we allow this in our
simplified implementation.

A more important hole that this difference intro-
duces is based on the fact that browsers occasionally
clear cookies. In our case, this means that the user’s
trusted device will occasionally and almost sponta-
neously stop being recognized as that user’s trusted
device. We did not implement a fix, but an easy
one exists. Users of this purely web-based system
would be provided an opportunity to reset their au-
thentication via email. This would be much like the
standard “reset password by email” option for nor-
mal password schemes. The user’s email would be
sent a link that could be used to essentially redo the

registration phase. In a situation where the cookie
storing the trusted device’s secret key is removed, the
user would simply need to re-set-up the device as the
trusted device by resetting their authentication data.

After a user is registered and wishes to log in, the
protocol requires them to start the zero knowledge
proof process through the trusted device and to gen-
erate a token which the user can then use to log in
on the untrusted device. The page shown in figure
13 is the page that the user accesses with his trusted
device.

Initiate Zero Knowledge Proof

e |

Figure 13: Get ZKP token page

Once the server is convinced of the trusted device’s
knowledge of the user’s password, it sends the user
his token via the webpage on the trusted device. The
token is of length 6 because that’s small enough for
the user to easily input from a trusted device (like a
phone) into a separate computer, but large enough to
remain reasonably secure. This is shown in figure 14.

Your token —> PUCUSA Logged in halfway successfully.

Initiate Zero Knowledge Proof Initiate Zero Knowledge Proof

e | =2 |

Figure 14: Received first token page
Figure 16: Login halfway successful page
The user then inputs this token into the untrusted

device along with his username. This can be seen in
figure 15.

The second token is generated on the trusted device
exactly as before.

asdf2 ‘

vour token — RH3VTF

Initiate Zero Knowledge Proof

asdf2

Figure 15: Sign in with token page

After that, the user’s login is halfway successful. Figure 17: Received second token page
According to the protocol, the user must generate
another access token to prevent shoulder surfers from
simply stealing the first and accessing the account.
Requiring two tokens at different steps of the process
ensures that only one untrusted device is used during Entering the second token results in a successful
the login process. login on the untrusted device, as seen in figure 18.

10

Logged in successfully

Welcome asdf2 !!!

IMUCHIZEROIKINOWIEDGE

s

Figure 18: Login successful page

References

2

David Chaum, Jan-Hendrik Evertse, Jeroen van
de Graaf, René Peralta, Demonstrating Posses-
sion of a Discrete Logarithm Without Reveal-
ing it. Advances in Cryptology — CRYPTO’ 86,
Lecture Notes in Computer Science Volume 263,
1987, pp 200-212.

Jeremy Clark, Elgamal and CPA-Security, Zero-
Knowledge. Concordia Institute for Information
Systems Engineering, Scribe Notes, March 14,
2013.

Oded Goldreich, Yair Oren, Definitions and
properties of zero-knowledge proof systems. Jour-
nal of Cryptology, 199424, Volume 7, Issue 1, pp
1-32.

11

