
Security Research of a Social Payment App

Ben Kraft, Eric Mannes, Jordan Moldow

14 May 2014
Sections 1.3, 5 added 7 July 2014

Abstract

We have performed a security audit of Venmo, a social payments application. We
were interested in analyzing Venmo because of its position at the intersection of pay-
ment processing (which must be implemented securely) and social networking. We
think it is important to know if secure payment is possible in a social networking envi-
ronment. As such, we searched for both technical and social vulnerabilities, in addition
to reverse-engineering the private API used by Venmo’s apps. We looked for bugs that
would allow us to steal money from others, and also ways to trick people into voluntar-
ily giving money to the wrong person. We found several issues, including some which
could allow some adversaries to steal other users’ money, and some which leak infor-
mation which should not be public. We recommend that Venmo they improve their
user interface, remove certain user actions, and change their default privacy settings.

1 Introduction

1.1 About Venmo

Venmo is a social payments application. It provides users with an interface for easily paying
the people they pay most frequently—their friends—for pizza, their share of rent, or anything
else. Venmo allows users to connect with their friends on Venmo, send payments, charge
other users, and publicize their transactions to other users under various privacy settings.
Venmo has web, iPhone, and Android versions, as well as a public API that allows for
integration with third-party applications.

In 2012, Venmo was purchased by Braintree, an online payments platform, for $26.2
million. Venmo expected to process $250 million that year [11]. Braintree was later purchased
by PayPal, owned by eBay, for $800 million. Venmo has nearly 1.5 million distinct user
accounts.

Venmo prominently advertises its security on its website. Venmo encrypts all connec-
tions using SSL and “uses bank-grade security systems and data encryption to protect you
and prevent against any unauthorized transactions or access to your personal or financial
information.” [7]

1

1.2 About our project and paper

We were interested in analyzing Venmo because of its position at the intersection of payment
processing (which must be implemented securely) and social networking. We performed
a security analysis of Venmo and reverse-engineered their private API. In Section 2, we
describe the methods we used to analyze Venmo’s client-side code and private API. In
Section 3, we describe the issues we found in Venmo that violate its security, such as enabling
fraudulent transactions or leaking information to users whose access to it should be restricted.
In Section 4, we provide recommendations to improve Venmo’s security. Finally, in our
appendices, we describe the private API used by the Venmo app as well as other API calls
used in our work.

1.3 About the disclosure of our results

We researched Venmo security issues under a responsible disclosure policy, which was estab-
lished with the company before we began our project. At the conclusion of our investigation,
we sent this paper to Venmo, to allow Venmo engineers to address the issues we found before
publishing the paper and publicly disclosing our findings.

Venmo’s response to our findings can be found in Section 5.

2 Methods

2.1 Android App

Venmo publishes applications for Android and iOS devices to allow users to take nearly all
actions they can take on a computer from their mobile device. While the source of the apps
is not public, we were able to easily decompile the Android version by downloading the APK
and using the dex2jar utility [8] according to instructions available online [1]. While the
decompiler was unable to decompile a few functions, the vast majority of the app’s code
came out in a readable format, from which we could reverse-engineer its functionality.

The app works about as one might expect. It makes requests to an API similar to Venmo’s
public API (detailed in Section 2.3), and caches some data in a local database. Fortunately,
the app appears to keep the local database secure using the appropriate Android APIs, and
it appears that Venmo’s security model does not assume any integrity of the data therein.

2.2 Javascript

For the Venmo web application, Javascript code gets shipped to the client as gzipped, minified
Javascript. It is possible to beautify this code in order to make it easier to inspect for
potential vulnerabilities. We used the Python package jsbeautifier [2] to generate a
human-readable version of the Venmo web application code.

2

The code appears to be partially obfuscated. Function arguments are shortened to single
letters, but global variables and object attributes are not changed at all. This makes the
code similar enough to the original source that it is not hard to read and make sense of it.
For example, we were able to find that the code was calling a private API (see Section 2.3).
We also noticed that the site was not calling the API to get lists of friends for the search
autocomplete, but instead that this list was being hardcoded into the HTML page. Other
than these two things, we did not find any bugs while inspecting the code, although it is
possible that more bugs could be found with a more complete review.

2.3 Private API

Venmo publishes an API [6] allowing a few simple lookups of user and transaction infor-
mation, along with transaction creation. Both the Android app and some parts of the
Javascript webapp use a similar but distinct API; instead of URLs beginning with https:

//api.venmo.com/v1/, they use URLs beginning with https://venmo.com/api/v5/. This
“v5” API has calls similar to those in the public API, but also allows much more: users can
manage settings and friends, search people, view public or friends’ transactions, and view
certain Venmo metadata. This API makes it possible to build a third-party Venmo client
with all of the functionality of the official one, which is not possible with the public API.
We have documented many of the v5 API calls in Appendix A.

3 Vulnerabilities

3.1 Leaking friends-only posts

Venmo transactions can have one of three privacy settings, or “audiences”: public (visible
to everyone), friends (visible only to the friends of the payer and payee), and private (visible
only to the payer and payee). However, the Venmo API contains a call that violates their
security policy: it publicly leaks information about transactions that are set to an audience
of friends.

Each transaction on Venmo has a corresponding ID. These IDs (an example one be-
ing 10743167) are ordered sequentially. If [paymentid] is a number corresponding to
a public or friends-only transaction, then a GET request to https://api.venmo.com/

payments/[paymentid] returns a JSON response containing information about the trans-
action, whether or not the person making the API call is friends with either party to the
transaction. The call returns the ID of the user receiving money in the transaction, a de-
scription of the charge, and timestamps for the transaction. (See Appendix B.)

3.2 SMS confirmations of charges

When Alice charges Bob on Venmo, Bob receives a text message of the form “Alice requests
$[amount] - for [message]. To pay, reply with ‘[three-digit code]’.” If Bob replies to Venmo

3

https://api.venmo.com/v1/
https://api.venmo.com/v1/
https://venmo.com/api/v5/
https://api.venmo.com/payments/[paymentid]
https://api.venmo.com/payments/[paymentid]

with the confirmation code corresponding to an existing charge, Venmo processes the trans-
action and notifies both Alice and Bob of the result. If the code is invalid, Venmo sends a
text message to Bob that reads “No one has requested money from you with that confirma-
tion code.” If Alice knows Bob’s cell phone number and is able to spoof an SMS message to
Venmo that appears to come from him and contains the correct 3-digit code, she can cause
Venmo to transfer money to her from Bob through a fraudulent transaction.

Forging SMS messages is possible, and the sending address of an SMS may not be trust-
worthy. In late 2012, security researcher Jonathan Rudenberg was able to attack Twitter,
Facebook, and Venmo using such a vulnerability. Twitter allowed users who had connected
their phones to make tweets by text. Venmo allowed users to initiate (not just confirm) pay-
ments by text. By not authenticating text messages beyond looking at the untrustworthy
sender field, these services made were vulnerable to attackers doing anything that a user
could do by text message. [9]

In the case of Venmo charge confirmation codes, Alice doesn’t need to know the correct
confirmation code for any charge to Bob that she wants confirmed. As far as we could
tell, there were no negative consequences to sending an incorrect code. So, Alice could
send many SMS messages to Venmo appearing to come from Bob, each guessing a different
confirmation code, until she reached the correct one. Alternatively, if sending fake text
messages is expensive, she could make a large number of charges and send a smaller number
of spoofed texts guessing confirmation codes. Either of these attacks could succeed quickly,
due to the small confirmation code space of only 1000 possibilities.

We were unable to implement this attack in practice. Several SMS gateways that we tried,
including the one used by Rudenberg in 2012, no longer appear to support users sending
SMS messages that come from a number not purchased by the user for use specifically with
the gateway. However, we think that trusting the integrity of an SMS message is a bad idea
when it has been untrustworthy so recently in the past, and we believe that it is likely still
possible to forge SMS messages, potentially for a small fee, using a method or service that
we didn’t try.

We describe a potential fix to this vulnerability in Section 4.1.

3.3 Security Policy Vulnerabilities

The Venmo account creation process implies that there is a security policy dictating that
all accounts must be tied to verified identities. Creating accounts requires entering a unique
phone number and email address (the Venmo server does not allow duplicates), and requires
that both be verified (via SMS and email, respectively). Additionally, Venmo users are
strongly encouraged to further identify themselves by verifying themselves via Facebook or
entering their Social Security number; the benefit of this is an increased spending limit.

The verification process can be circumvented. You do not need to enter your own phone
number; you can enter one of a friend who is not yet a Venmo user, or choose a random
phone number, or choose a phone number that is guaranteed to be fictitious. It also easy to
create a throwaway email address to use. After creating the account, you are directed to a

4

screen where the application tries to force you to verify your phone number. However, this
page is implemented as a modal dialog on top of the normal Venmo application (see Figure
1). In many modern browsers, you can manually modify the DOM to delete the modal and
continue using the site. We did not find any site features which were explicitly disabled by
the API for unverified accounts.1 We were able to send a charge request from, and receive a
payment at, an unverified account.

Figure 1: Venmo phone number verification modal dialog.

From our standpoint, this does not seem to be a cause for concern. However, since it
seems that Venmo does care about accounts being verified, that they might consider this to
be a violation of their account security policy.

3.4 Social engineering attacks

As with any web application, Venmo is vulnerable to social engineering attacks. However,
some of these attacks could be mitigated with appropriate changes to the UI.

Venmo has a notion of friendships. This is implemented in a similar fashion to those of
other popular social networks such as Facebook (in fact, Venmo can import your Facebook

1Creating an app that can use the public API is disabled, but due to the insecurity of the client secrets
discussed in Section 3.5, this is unnecessary.

5

friends and automatically create Venmo friendships with them). Within the application,
you can search for all users by name, send friend requests to any of them, and accept friend
requests. On any user’s page (including your own), you can view their friends. Friends can
be trusted (more on that later) and autocomplete in searches. You can also set stories in
your feed to be available only to your friends (instead of public).

For example, one might expect that the application would only allow friends to charge
each other, and only allow users to pay users who are their friends. This is not the case; any
Venmo users can send charges and payments to any other Venmo user. Additionally, the
process for approving a charge sent by a non-friend is exactly the same as for approving a
charge sent by a friend. There are no technical barriers to tricking someone into giving you
money.

The user interface makes it very feasible to carry out such an attack. The interface
for pending charge requests does not make any distinction between charges from friends
and charges from others (see Figure 2). Ideally, every request would be clearly marked as
either being from a confirmed friend or a non-friend, so that the user can better scrutinize
potentially false charges. Without this, it is harder to tell at a glance if a charge request is
legitimate or from a fake account with no prior history with you.

Figure 2: Venmo charge requests. Ben Kraft is a friend, Jordan Moldow is not. The views
for both types of requests are the same.

This sort of attack is made even easier by the fact that setting and changing your identity
on Venmo is incredibly easy. At any time you can change your name, profile picture, user-

6

name, and biography, and have those changes instantly go into effect. If you want to steal
money from Alice, and you know that she needs to use Venmo to pay Bob for something, you
can change your name and profile picture to match Bob’s, send a charge request to Alice, and
hope that she approves it. Unless Alice has memorized Bob’s username, inspects the link to
your profile, and notices that the URL is different than Bob’s (duplicate usernames are not
permitted by the application, but you can still choose something which appears legitimate),
there is nothing in the request that distinguishes it from a legitimate charge from the real
Bob.

In the presence of allowed name changes, an improvement in the interface to clearly
mark friends and non-friends does not even prevent this attack in all cases. If an attacker
is a real-life acquaintance of Alice who is also Venmo friends with Alice, or has previously
tricked Alice into accepting a friend request (perhaps also via a name change), they can later
change their name and profile picture to that of her friend Bob, and execute the same attack
described above. Then you would be marked as a friend, and Alice would have a fifty-fifty
chance of guessing whether the charge request is from the real Bob. Therefore, even with
a great interface, it seems to be an exploitable security flaw to allow users to change their
names at will.

These attacks can also be carried out passively. An attacker can create a fake Venmo
account with a name similar to that of a real person and hope that someone accidentally
pays them. While testing the name changing feature, Eric modified his account to match
Ben’s. Later, our exploit was accidentally verified when our mutual real-life and Venmo
friend Gurtej accidentally paid Eric’s account for something instead of paying Ben.

A clever, data-driven attacker could mount an improved version of this attack. The
private Venmo API we found provides a method, GET /public, for downloading a list of
public transactions, which comprise as much as 50% of all Venmo transactions. The data
returned by this method includes monetary amounts, payers, payees, and user-provided text
descriptions of the transactions. By filtering this data, you can look for recurring spending
habits, and try to hijack those. For example, you can try to find users who are receiving
rent payments on Venmo, create a fake account for the rent collector, and perform active or
passive attacks against the renters to attempt to collect payments.

3.5 API Authentication Vulnerabilities

In order to allow users to authorize third-party applications to use the Venmo API on
their behalf, Venmo’s API allows authentication using OAuth 2.0 [5]. In addition, Venmo
uses other services’ OAuth APIs to allow Venmo users to authorize Venmo to access those
services. While many of the faults are in the OAuth standard itself, both Venmo’s OAuth
implementation and its usage of other services’ OAuth APIs do have potential vulnerabilities.

Venmo’s API implements a version of the OAuth 2.0 standard [5]. The standard itself
is flawed in many ways, some of which affect how Venmo uses it. (The details and flaws
of the OAuth standards are beyond the scope of this paper, but for more information, see
for example the blog of the editor of the OAuth 1.0 standard, who resigned his role as the

7

editor of the OAuth 2.0 standard [3].) The Venmo OAuth API has two possible request
flows. The “client-side flow” uses only a client ID to authenticate the client, and gives the
client tokens valid for only 30 minutes, while the “server-side flow” uses a client ID and
client secret, and gives the client tokens valid for 60 days, after which they may be renewed.
The intention seems to be that apps which have no way of securing a client secret (such as
mobile apps) must use the former flow. However, even Venmo’s own app violates this policy.
In particular, the Venmo Android app’s client ID and client secret are stored in the app,
so that anyone who decompiles the app can easily find them. This is the case even though
it appears that since users log into the app with their username and password rather than
through OAuth, the app does not actually need the client secret at all. Other third-party
apps may do the same. While compromising the client secret does not compromise user
accounts, it does break the intended guarantee that the client is in fact the client it claims
to be, and trivializes the distinction between the two authentication flows.

Venmo also uses the Twitter OAuth 1.0 API. This implements the OAuth 1.0 stan-
dard [4], and is somewhat similar to Venmo’s “server-side flow”, although it is somewhat
more complex. Venmo stores its client key and secret for the Twitter API in its Android
app. Again, this does not directly compromise user credentials, but it means that from
Twitter’s perspective, anyone can claim to be Venmo, and redirect users to a page where
they will be asked to authorize Venmo to access their Twitter account, but actually autho-
rize whomever redirected them there. This opens an attack vector where an attacker Eve
could put up a web page asking users to authorize Venmo to tweet as them, and linking
them to this hijacked auth page. The users would see that they were authorizing Venmo,
and therefore accept the authorization, but Eve would get the OAuth tokens for the request.
Fortunately, it appears that Venmo’s settings in the Twitter API are such that the user
will always have to confirm the authorization; otherwise, the same attack would be possible
against any logged-in user who has already authorized the real Venmo client, without the
user even seeing the authorization page or having a chance to deny the authorization.

Unfortunately, Twitter offers no help here; even a Twitter developer suggested that not
much more could be done to secure the client secret [10]. In this case, it might be possible for
Venmo to proxy the requests through its servers, storing the secret only on Venmo servers,
but that would be more difficult, and it seems Twitter does not expect it. Venmo also
connects to the Foursquare and Facebook APIs, and these connections appear to be more
secure, as their secrets are not stored within the app. Fortunately, the Venmo OAuth API
is not vulnerable to the same attack even if keys are compromised, because it does not allow
OAuth clients to set an arbitrary redirect URL. Twitter could also implement a similar
system, but it does not.

8

4 Recommendations

4.1 Rate-limiting charge confirmations and capping charges

In Section 3.2 above, we described an attack in which an attacker who can spoof SMS
messages that appear to come from an arbitrary sender (a plausible threat) can steal money
from any user whose cell phone number he knows. The attack works because there are
only 1000 possible 3-digit confirmation codes a Venmo charge can have, there is no limit on
the number of charges one Venmo user can be charged, and there are no consequences for
submitting incorrect confirmation codes by SMS. Thus, an attacker can spam a victim with
charges to fill up their confirmation code space and then send a few guesses via spoofed SMS
messages.

We suggest that Venmo do the following:

• Use 6-digit confirmation codes instead of 3-digit ones;

• Only allow a user to have 20 charges to them pending at once;

• Not accept any confirmation codes submitted over SMS for some period of time if a
user submits 10 incorrect confirmation codes;

• Decrease the number of incorrect confirmation codes Venmo will accept from individual
if a large number of incorrect codes come in globally.

It is unlikely that anyone using Venmo normally will run into these limits. (If not, these
numbers can be tweaked.) If an attacker tries to make the maximum number of charges
against someone’s account and then tries to guess the maximum number of text messages,

they’ll succeed with probability 1 −
(

99980
1000000

)10
≈ .04%. To successfully perform this attack

even once, an attacker will likely have to submit an enormous number of wrong confirmation
codes, by which time Venmo would have throttled SMS confirmations and otherwise taken
notice.

4.2 OAuth Secrets

Some of the vulnerabilities in the OAuth APIs are very difficult to fix. In particular, it is
more or less impossible for any standalone app to authenticate itself to a service without
potentially leaking its authentication information to users. Thus, in such a situation, it
should be assumed that any client identifier should only be used for the purpose of tracking
or analytics, and not to guarantee security. In addition, the implementation should ensure
that a user’s tokens are only ever given to the application the user thinks they are giving
access, such as by ensuring that redirect URLs specified in the OAuth standards are on
the correct domain. (Venmo’s OAuth API already does this; Twitter’s does not.) Finally,
if client authentication is desired, requests can still be proxied through an external server
on which the secret is stored. However, this just passes the buck—now the client must
authenticate to that server, which remains difficult.

9

4.3 Plugging leak of friends-only transactions

The API call described in Section 3.1 should be fixed so that it doesn’t display information
about friends-only transactions to a Venmo user who is not a friend of either party to the
transaction.

4.4 Preventing impersonation attacks

Venmo should clearly indicate when a user is about to pay a non-friend or when a user receives
a charge from a non-friend. Otherwise, there is no obvious way for a user to distinguish a
payment to or charge from their friend from a transaction with an attacker using the friend’s
name and profile picture to impersonate the friend, as described in Section 3.4.

5 Venmo’s Response

Venmo’s written response to our paper was the following:

Venmo engineers addressed the following issues from the research findings:

• Leaking friends-only posts: The API endpoint was taken down.

• SMS confirmation of charges: Confirmation code now 6 digits long and rate-
limited.

• OAuth Secrets: We don’t rely on the client secret for purposes of security
for mobile app binaries we ship.

In addition, we are constantly improving how we mitigate risks around social
engineering and identity fraud. We currently minimize these risks by using var-
ious rate limits, transaction caps, and internal monitoring tools to detect and
eliminate abuse.

6 Conclusion

On the whole, we found Venmo to be reasonably secure. We were unable to actually steal any
money with the exploits we found, although it may be possible to do with the SMS spoofing
attack. However, we did find some bugs that can cause users’ assumptions to be violated:
OAuth authorizations that are not what they seem to be, one Venmo user masquerading as
another, and transactions that are supposed to be shared only with friends being publicly
accessible. In addition, we learned just how easy it was to reverse-engineer an API; while
Venmo could have done more to hide their private API, we expect that it would only have
made our job more time-consuming, without changing the outcome.

To that end, we have learned a lot about the security of mobile and web applications.
In writing apps, developers should assume that any their code that is ever on a user device

10

is public, including all APIs and any secrets stored in apps or Javascript. In addition,
developers should consider how users will know that the action they are taking is the action
they think they are taking, and whether an adversary can circumvent that. Rate-limiting is
very easy to do, generally doesn’t affect normal users, and is a great defense against many
attack vectors. Finally, developers should be careful which external services, networks, and
organizations they trust. And, of course, users should pay attention to defaults, and to what
they share with whom.

7 Acknowledgements

The authors would like to thank the entire course staff of 6.857, especially Prof. Ron Rivest
and Anand Oza, the TA who advised our project. We would also like to thank the Venmo
security team for giving us permission to do this project.

8 References

[1] Jerod Brennen. Step-by-step guide to decompiling android apps. Dec. 2013. url: https:
/ / infosecguide . wordpress . com / 2013 / 12 / 17 / step - by - step - guide - to -

decompiling-android-apps/.

[2] Stefano Sanfilippo et al. Einar Lielmanis. jsbeautifier. 2014. url: https://pypi.

python.org/pypi/jsbeautifier.

[3] Eran Hammer. OAuth 2.0 and the road to hell. July 2012. url: http://hueniverse.
com/2012/07/26/oauth-2-0-and-the-road-to-hell/.

[4] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849 (Informational). Obsoleted by
RFC 6749. Internet Engineering Task Force, Apr. 2010. url: http://www.ietf.org/
rfc/rfc5849.txt.

[5] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Standard).
Internet Engineering Task Force, Oct. 2012. url: http : / / www . ietf . org / rfc /

rfc6749.txt.

[6] Venmo Inc. Venmo OAuth API. 2014. url: https://developer.venmo.com/docs/
oauth.

[7] Venmo Inc. Venmo — Security. 2014. url: https://venmo.com/info/security.

[8] Bob Pan. dex2jar. 2013. url: https://code.google.com/p/dex2jar/.

[9] Jonathan Rudenberg. SMS Vulnerability in Twitter, Facebook and Venmo. Dec. 2012.
url: https://titanous.com/posts/twitter-facebook-venmo-sms-spoofing.

[10] Taylor Singletary. How to protect my Consumer Key and Consumer Secret Key. 2012.
url: https://dev.twitter.com/discussions/5456.

11

https://infosecguide.wordpress.com/2013/12/17/step-by-step-guide-to-decompiling-android-apps/
https://infosecguide.wordpress.com/2013/12/17/step-by-step-guide-to-decompiling-android-apps/
https://infosecguide.wordpress.com/2013/12/17/step-by-step-guide-to-decompiling-android-apps/
https://pypi.python.org/pypi/jsbeautifier
https://pypi.python.org/pypi/jsbeautifier
http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
https://developer.venmo.com/docs/oauth
https://developer.venmo.com/docs/oauth
https://venmo.com/info/security
https://code.google.com/p/dex2jar/
https://titanous.com/posts/twitter-facebook-venmo-sms-spoofing
https://dev.twitter.com/discussions/5456

[11] Jenna Wortham. Braintree, a Payments Company, Buys Venmo for $26.2 Million. Aug.
2011. url: http://bits.blogs.nytimes.com/2012/08/16/payments-start-up-
braintree-buys-venmo-for-26-2-million/?smid=tw-share.

Appendix A Venmo v5 API

In general, the v5 API is a REST API similar to the public v1 API. The HTTP requests
used are GET, POST, PUT, and DELETE; for GET and DELETE parameters should be
URL-encoded, while for POST and PUT they should be form-encoded in the body of the
request. The response will be JSON, usually a dictionary, often with a ‘data’ key containing
most of the data. Errors are returned using HTTP status codes with a JSON response body
including another error code and an error message.

We did not document every call in the API. For example, we did not document all of
the calls involved in setting up a bank account or debit/credit card and confirming a phone
number.

A.1 Authentication

GET /oauth/authorize Authorizes an app to use the API on your behalf. As far as we
can tell, this works identically to the documented v1 OAuth API [6] authorization process.
The client ID and secret from a v1 API app may also be used for the v5 API.

GET /oauth/access token Gets an access token. This may either be used as a part
of the OAuth server-side flow with GET /oauth/authorize (as in the v1 API), or may be
used alone to log in using a username and password. If used alone, requires arguments
‘phone email username’ and ‘password’. Note that while the URL implies that this imple-
ments OAuth, it in fact does not; it simply sends a username and password.

A.2 Transactions

GET /public Gets 20 recent public transactions. Does not require authentication. Op-
tional arguments ‘since’ and ‘until’ allow paging through the list of all public transactions
by timestamp. Returns the details of each transaction, including the payment ID, payer,
payee, timestamp, message, permalink, client used, and any comments or likes.

GET /feed Gets recent transactions in the user’s newsfeed. Optional parameters ‘limit’,
‘until’, and ‘since’ allow paging through the feed. Returns information similar to GET
/public, along with transaction amounts and the user’s current balance and number of no-
tifications.

12

http://bits.blogs.nytimes.com/2012/08/16/payments-start-up-braintree-buys-venmo-for-26-2-million/?smid=tw-share
http://bits.blogs.nytimes.com/2012/08/16/payments-start-up-braintree-buys-venmo-for-26-2-million/?smid=tw-share

GET /users/[id]/feed Gets recent transactions in another user’s newsfeed. Optional
parameters ‘limit’, ‘until’, and ‘since’ allow paging through the feed. Returns information
similar to GET /public, along with the requestor’s balance and number of notifications.

GET /news Gets recent transactions by a user and their friends. Otherwise similar to
GET /public and GET /feed; only includes amounts on the user’s own transactions.

GET /stories/[id] Gets the details of a story by its ID (a 96-bit hex string, returned by
any of the above calls). Includes amount only for the user’s own transactions.

GET /stories/[id]/likes Gets the likes of a story by its ID.

GET /transactions Identical to GET /feed, except omits the user’s notification count.

GET /users/[id]/transactions Identical to GET /users/[id]/feed, except omits the user’s
notification count.

GET /pending Gets a user’s pending transactions.

POST /transactions Makes a transaction. Similar to /payments in the v1 API. Required
parameters are ‘uuid’, ‘note’, and ‘transactions’; ‘transactions’ should be a JSON-encoded
list containing a single dictionary. The dictionary should have a key ‘amount’ with value
a number (negative to charge instead of paying) and one of the keys ‘user id’, ‘username’,
‘phone’, and ‘email’. Optional parameters are ‘audience’, ‘sharing’ (a JSON-encoded list
of strings like “facebook” and “twitter”), ‘location’ (a comma-separated pair of doubles),
and ‘app id’ (which controls the “via [app]” line in the transaction display). Returns your
current balance, a success message, and the transaction’s ID.

POST /likes Likes a transaction. The only parameter is ‘story id’.

POST /comments Comments on a transaction. Required parameters are ‘story id’ and
‘comment text’.

A.3 Users & Friends

GET /me Gets information about the current user.

GET /users/[id] Gets information on a particular user, including whether they are a
friend of the current user, and whether they are trusted by the current user. Returns
additional information and settings if the user is the current user.

13

POST /users Creates a user. Required arguments are ‘first name’, ‘last name’, ‘phone’,
‘email’, and ‘password’. If the phone or email are already used, it will return appropriate
errors; if the account is created it will still return an HTTP 400 Bad Request, but the
only error will be ‘Bad Request’. A ‘facebook id’ and ‘facebook access token’ may also be
included. A ‘phone claim secret’ may also be included; we are unsure of its purpose.

GET /recents Gets users with whom the current user has recently interacted, possibly
only including friends.

GET /friends Gets the current user’s friends (and whether they are trusted).

GET /friends/typeahead Identical to GET /friends.

GET /users/[id]/friends Gets another user’s friends.

PUT /friends/[id] Makes or approves a friend request. Returns whether you are now
awaiting their approval or now friends.

DELETE /friends/[id] Removes a friend (or an outgoing friend request).

PUT /friends/[id]/trust Makes or approves a trust request. Returns whether you are
now waiting their approval or now trusted.

DELETE /friends/[id]/trust Untrusts a friend (or removes an outgoing trust request).

A.4 Social & Sharing

PUT /linked accounts/facebook Links a Facebook account. Required parameters are
‘facebook access token’ and ‘facebook id’. Optionally ‘return friends’ may be set to 1 to
return those Facebook friends who are also on Venmo or 0 to return an empty response.
If the access token is incorrect, it will still return that Facebook user’s friends who are on
Venmo if that information is available from Facebook. Optionally ‘facebook expires in’ is
also optional; it is unclear what its value should be.

PUT /linked accounts/facebook/refresh Relinks an expired Facebook account. It is
unclear how this differs from PUT /linked accounts/facebook.

GET /friends/facebook Gets the current user’s facebook friends who are also on Venmo.

14

PUT /linked accounts/twitter Links a Twitter account. Required parameters are
‘twitter access token’ and ‘twitter access token secret’. Optionally ‘follow venmo’ may be
set to 0 or 1.

PUT /linked accounts/foursquare Links a Foursquare account. The only parameter
is ‘foursquare access token’.

POST /contacts Adds contacts (e.g. from a phone) as friends. The parameter ‘contacts’
should be a JSON-encoded list of dictionaries, each containing keys ‘n’ (for name), ‘e’ (for
email), and ‘p’ (for phone number).

POST /invites Invites users. Exact syntax is unclear, but requires a parameter ‘in-
vite list’, which is likely a JSON-encoded list of strings.

POST /stories/each Modifies all of a user’s transactions in the same way. The only
known parameter is ‘audience’, which sets the privacy of all past transactions.

POST /stories/[id]/audience Changes the audience of a particular past transaction.
The only parameter is ‘audience’.

A.5 Settings

GET /settings/notifications Gets notification settings.

PUT /settings/notifications Updates notification settings. Parameters are those re-
turned by GET /settings/notifications.

GET /users/me Gets general settings and information about the current user.

PUT /users/me Updates general settings. It is unknown exactly which of the parameters
returned by /users/me may be updated; ‘audience’, ‘autofriend’, and ‘sharing’ are definitely
included. Returns an empty response.

PUT /users/[id] If the ID is that of the current user, equivalent to PUT /users/me.
Otherwise, a permission error.

A.6 Other

GET /notifications Gets notifications for the current user.

15

POST /notifications Responds to a charge request. Parameters ‘id’, ‘action’, and ‘type’
are required. ‘action’ is 1 to approve, 0 to reject; ‘type’ should be ‘charge’.

GET /search Searches for users. The only required parameter is ‘q’; ‘limit’ is optional.

GET /ab testing Gets some kind of data related to A/B testing options. The exact
details of how this is used are unknown, but it appears to allow changing the text in certain
places and certain default messages. User authentication is not required, so by omitting it
and querying repeatedly one can see all possible responses.

GET /metadata Gets some kind of metadata about the client. Required parameters are
‘client id’ and ‘client secret’, but user authentication is not required. Appears to include
information on referral credits, possible client permissions, and more.

Appendix B Other API Calls

GET https://api.venmo.com/payments/〈id 〉 Gets details about a payment or charge.
It returns the status (e.g. ‘CHARGE COMPLETED’), timestamps for creation and com-
pletion, the aforementioned ID, a note, the audience, the action type (payment or charge),
and the ‘target user id.’ It also includes the amount of the transaction, although if the user
making the call is not a party to the transaction, the amount field is null.

There are two types of transaction IDs. One type is a decimal number (up to 8 digits long,
such as 10743167), numbering completed transactions in sequential order. Another type is
a longer hexadecimal string (such as 5372ef2bd546b84342cb223a), which corresponds to a
pending charge. For the first type, the ‘target user id’ is the ID of the user receiving the
money (the recipient of a payment or the person making the charge). For the second type,
the ‘target user id’ is the ID of the user receiving the charge.

This call returns payment information for all transactions that have a public or friends-
only audience, even if the person making the call is not friends with either party to the
transaction. Since transaction IDs are sequential, it is easy to just iterate through all of
them to get this information. This is a violation of Venmo’s security policy (see Section 3.1).

16

	Introduction
	About Venmo
	About our project and paper
	About the disclosure of our results

	Methods
	Android App
	Javascript
	Private API

	Vulnerabilities
	Leaking friends-only posts
	SMS confirmations of charges
	Security Policy Vulnerabilities
	Social engineering attacks
	API Authentication Vulnerabilities

	Recommendations
	Rate-limiting charge confirmations and capping charges
	OAuth Secrets
	Plugging leak of friends-only transactions
	Preventing impersonation attacks

	Venmo's Response
	Conclusion
	Acknowledgements
	References
	Appendix Venmo v5 API
	Authentication
	Transactions
	Users & Friends
	Social & Sharing
	Settings
	Other

	Appendix Other API Calls

