
1

COMPUTATIONAL SECURITY AND THE ECONOMICS OF PASSWORD HACKING

Abstract

Given the recent rise of cloud computing at cheap prices and the increase in cheap

parallel computing options, brute force attacks against stolen password databases are a new

option for attackers who may not have enough computing power on their own. We take a survey

of the current availability and cost of cloud computing as it relates to the idea of computational

security in the context of breaking password databases. Rather than look at just the increase in

computing power available per computer, we look at how computing as a service is raising the

barrier for password protections being computationally secure. We look at the set of key

stretching functions meant to defeat brute force password attacks with the current cheapest

cloud computing service in order to determine what amount of money and effort an attacker

would need to compromise a password database.

Michael Phox

Zachary Sherin

Adin Schmahmann

Augusta Niles

Context

In password-based network security systems, there is a

general architecture whereby the password is sent from

the user device to a service server, which then hashes

the password some number of times using a random

oracle before storing the password in a database.

Authentication is completed by following the same

process and checking if the hashed password is

correct. If the password is in the database, access

permission is granted (See Figure 1).

However, the security system above has been shown to

have significant vulnerability depending on the method of password encryption. In contrast to

informationally secure (intercepting a ciphertext does not yield any more information to change

the probability of any plaintext message. eg. one-time pad), these systems are only secure

assuming that any adversaries are computationally limited, as all adversaries are in practice.

Because the contents of databases are frequently compromised, if password encryption is not

Figure 1 Password-based Security

2

one-way and collision resistant, decryption is trivial. However, even if both of these conditions

are met, passwords are routinely cracked and the accounts exposed using brute force methods.

Salting (using random data as an additional input to a one-way hash function) can increase the

security of a database by making it more difficult to build and use a dictionary attack against

passwords in the database to decrease the amount of time required to crack each password.

Figure 2 Evolution of Password Storage

If the passwords are being correctly salted and hashes are one-way and collision resistant,

there is less risk that an adversary may be able to use a dictionary or rainbow table to make

cracking passwords less time-consuming. In this case, the attacker must either store

dictionaries for each possible salt or invest the time and money to build them at the time of the

attack. The assumed infeasibility of cracking salted passwords remains the standard today,

however, salts are not always used and current hashing schemes may not be sufficient to

ensure computational security. This problem only gets worse as computing power gets cheaper.

In recent months, the price of rentable computing

power has decreased significantly, driven by a

price war in cloud computing between Amazon

Web Services, Google, and Windows Azure set in

motion in order to remove margins and decrease

the incentive of new players to enter this market.

The following events show the accelerating nature

of the price declines in the cloud computing area.

 March 24th, 2014: Cisco joins cloud computing race with $1 billion plan

 March 26th, 2014: Google Slashes Cloud Prices: Google vs AWS Price Comparison

 March 28th, 2014: AWS Responds with Price Cuts: Google vs AWS Pricing Round 2

 March 31st, 2014: Microsoft Azure Matches Amazon’s Price Cuts And Introduces New

“Basic” Tier

3

This accelerating price competition comes on top of significant declines in price over the past

five years. In this time, the cost of two popular instance sizes at Amazon Web Services, the

quad-core 4xlarge (left axis below), and m1.small (right axis) have halved.

Figure 3 Declining Prices for OnDemand Computation

The growing vulnerability for

computationally secure systems has not

been overlooked and in January of 2012, a

german researcher named Thomas Roth

used AWS to crack all hashes from the 560

character SHA1 hash with a password

length from one to six in only 49 minutes.

His hacking system architecture was:

 22GB RAM

 2 x Intel Xeon X5570

 2 x NVIDIA Tesla “Fermi” M2050

 $2.10/Hour

Roth has subsequently been deterred from making his code open-source by involvement from

the German police, who raided his apartment the evening before he was set to release the took

at the Black Hat DC conference. However, another open-source system, Cryptohaze

implements network-clustered GPU accelerated password cracking as well and this project

seeks to add to this body of research by examining the implications for computation security as

computation becomes inexpensive. We lay out a framework for quantifying computational

security given the anticipated characteristics of the user’s and adversary’s systems and the

quality of a given password.

4

Quantifying Password Quality

While there are the valid concerns listed

above regarding salting and correctly

hashing passwords before storing them in

a database, these are not the only

concerns. Perhaps more troubling is that

people tend to choose low entropy

passwords. This means that, for example,

guessing a 6-letter lowercase letter

password is likely to require much much

less than 26^6 attempts. In fact, Joseph

Bonneau’s paper on “The science of

guessing” [2012] he describes a statistical

method of analyzing passwords that gave

results such as most passwords having

15-25 bits of randomness. More

specifically, he defines as the mean number of password guesses to before finding the correct

one with probability alpha (the equation is given below) and found that was between 15-25 bits

(i.e. between 33 thousand and 33 million guesses) for the large sets of data examined.

Decreasing the number of guesses required for a sample password can be done by using a

dictionary of words tuned towards the audience being examined. For instance, in a break

resulting in leaked LinkedIn passwords some of the most popular were related to the website

(such as linkedin, link, linked).

Therefore when we examine the quality of passwords and how much entropy they truly have we

cannot assume passwords are random within the acceptable password space. Instead we

should, if we are to be conservative from the point of view of those trying to protect their

passwords, look at the password distributions of similar systems and decide what proportion of

the population we care about. In particular it is worth noting that if a hacker can easily attempt a

few million guesses of a password that for about 50% of users the hacker will be able to retrieve

the password.

5

: Minimum dictionary size to succeed with Pr = α

: Probability of password X

Our Research

Background on Key Derivation Functions

Having looked at the state of research on passwords, it is clear that simply hashing a

password is not enough to keep it secure, if the password itself is weak. We look to a different

class of algorithms that don’t just hash a password, but instead turn it into a key suitable for

either user identification or data encryption. These algorithms are called key stretching

algorithms, as they take a low entropy password and use it to produce a high entropy (usually

256 bit) key. These functions need the following criteria to be considered good key stretching

functions:

1. Collision Resistant (no key can be produced by two different passwords)

2. One-Way (impossible to get the password from the key)

3. Resource Intensive (hard to run the algorithm many times at once, to prevent brute-

force attacks)

This last point is the most important part of key stretching algorithms. Rather than simply

making it impossible to derive the password from the key, they are designed to actively resist

brute-force search. By taking up a large amount of an attacker’s resources, whether time,

computer memory, or cost for custom hardware, these algorithms try to push the time for

cracking a hashed password into the area considered computationally secure.

To check this security, we decided to see if given the dropping price of cloud computing

and the increase of commercially available, parallel computing graphics hardware these

algorithms could be overcome. The idea of computationally secure is being pushed further and

further by the availability of cheap computation power. To verify their claims, we look at one

existing hash function, SHA256, and two key stretching functions, scrypt and PBKDF2, for

comparison.

SHA-2 is a fast hash function commonly used for storing passwords in a database. It

makes no attempt to be resource-intensive, making it our baseline for what is an algorithm that

can be brute forced. The advent of Bitcoin’s enormous value increase has produced a huge

6

number of algorithms, dedicated hardware, and other ways to quickly brute force SHA-2

hashes.

PBKDF2 is a key stretching function that uses SHA-2 as a starting point for an algorithm

that takes more time. It runs for several thousand iterations of the hashing algorithm (in this

case SHA-2) and combines the output of each stage into the final key. This algorithm takes a

large amount of time, meaning that an honest user would wait on the order of half a second to

produce the key from their password for user verification, but an adversary would take much,

much longer to brute force a password for an offline attack. However, it doesn’t resist parallelism

as an attacker can use graphics hardware or a custom-designed ASIC to run many instances of

the algorithm at the same time.

Scrypt is a different approach to the key stretching function. Rather than expanding the

amount of time that any one iteration of the algorithm takes, it expands the use of memory. It

runs PBKDF2 to generate an input key, then uses a large amount of memory to store a number

of pseudorandom values that will be used by scrypt to calculate the final output. It resists

parallelism by using a large amount of memory space. This makes it hard to use graphics

hardware (which has less memory than the CPU) to run many instances of the algorithm at

once. An important caveat to this point is that the algorithm can be made to waste less memory

space by recalculating certain values over and over. This adds an extremely inefficient time

component to the algorithm, similar to PBKDF2.

We looked at each of these algorithms, and compared their speeds on a user device, an

android phone, versus an attacker’s devices, a mid-grade gaming laptop and Amazon’s EC2

GPU computation cloud service. The user device comparison is to see at what point these

algorithms become unserviceable for the common user. Though PBKDF2 could theoretically be

expanded to take several seconds to compute a user’s password verification, a user may not

wish to wait the time it takes to log into the service every time. Therefore we keep our device

comparisons to time that the average user would not notice for maximum usability.

Why this Matters

Many web services need to store user identification information to allow those users to

login. When storing passwords to verify a user at a later time, the web service should store them

in such a way that even if the database is compromised user credentials cannot be stolen. As

shown above, hashing algorithms such as SHA-2 are not enough to prevent passwords from

being stolen or figured out from the hash value. Key stretching functions are meant as a better

7

way to store passwords in a database securely. We hope to prove or disprove this assumption

for each of the two algorithms currently in use, which are scrypt and PBKDF2.

Modeling Hack-Economics

In order to quantify the computational security of a system, the team first defined the

effort required to break a password as the amount of time or money required to break a

password:

The number of guesses has units, guesses. This is multiplied by the time per guess and

then the dollars per unit of time to arrive at a value for the effort required to break a password

denominated in dollars. This equation depends both on the quality of the password (#Guesses

Required), the capability gap between the hacker and user hashing systems which determines

the amount of time required to complete one “guess” (hardening from plaintext guess to

ciphertext candidate using whichever encryption scheme is selected), and the cost of the

computation hour. The cost of computation can either be seen as the hourly rate of a rented

system or an allocated rate of return on a purchased system investment.

The amount of time required per guess can either be determined computationally, or can

be estimated from the parameters of the algorithm used. For instance for PBKDF2 we can use

the equation:

The above equation is derived from the equation:

𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝐺𝑢𝑒𝑠𝑠 = 𝐻𝑎𝑠ℎ 𝑡𝑖𝑚𝑒 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑎𝑠ℎ𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑒𝑟 𝐺𝑢𝑒𝑠𝑠

Because the number of hashes required per guess is the same for the hacker as it is for the

user for a particular hashing scheme, an equivalency is developed which cancels out this

variable and allows us to create the ratio for the time required per hacker guess, a key element

of the Effort equation.

 In order to translate Effort into system cost, we must consider the economics of the

hacker system and ability to parallelize in order to get more compute hours out of a real hour if

there is a real hour constraint. The following equation is rounded up to determine the number of

whole instances required to hack a password from a user system in a given amount of time:

8

Finally, the cost of breaking a password is calculated by calculating the cost of usage of

the instances over the time required for hacking. This is again, rounded up to the nearest

feasible quantity of hours.

The cost to break the password, denominated in dollars is then compared with an

estimated value of the password (the possible value associated with hacking an account) as a

last step in the analysis. This analysis relies upon the user to provide an estimated value of

their account but in system implementation, it may be possible to derive this figure.

Computational security is then defined by the test of whether or not the effort and cost to hack is

worth the value. The model structure that implements the above equations is given in the figure

below:

Figure 4 Hacking Economics Model Structure

9

The above example scenario supposes that a password takes 4 million guesses to hack using

an algorithm which uses 1000 hashes per guess. The cost per compute hour is $1.50 and the

value of the hack is $5.00. Here, we see that the effort required is $3.70, but the cost to hack in

the constrained timeframe is $4.50. In this example case, the password is not economically

secure.

 In order to analyze the computational security of Scrypt and PBKBF2 algorithms given a

realistic password quality and rented computing power, test programs were developed to gather

information about the performance of various user and hacking systems.

Our Method

By using the fastest implementation available for each algorithm, we look to see if an

adversary could brute force a database of passwords. We first run the algorithm on a device

that a user might own, an android phone. By running the algorithm on a user device we can

determine what types of algorithm parameters might be acceptable to users. Then, we run the

algorithm with the parameters determined from the user machine using an implementation for a

computer with a graphics card, Amazon EC2 GPU instances. Since password cracking is

embarrassingly parallelizable once we know how many passwords an Amazon EC2 instance

can crack per second we can determine, given a budget of time and money, whether a

password is likely to be crackable. The model described below allows us to calculate the

amount of “effort” an adversary might have to spend in order to defeat each algorithm. This

effort is a representation of how much money an adversary might have to spend to acquire a

password assuming that the adversary can rent his computers in fractions of an hour and that

renting n computers for 1 hour costs the same as renting 1 computer for n hours.

Description of android and scripting algorithms

 In order to gain some perspective on password based key derivation, we made an

Android application that measures how long it takes to run different hashing algorithms several

times on the same key.

For each algorithm, we measured how long it to run that particular hashing algorithm

100000, 200000, and 500000 times on the same key. Since users expect applications to

respond fairly quickly when they attempt to log in, we realized we could learn a lot about how

much keys can be stretched in certain amounts of time. A pseudocode version of the algorithm

is written below, note that the algorithm only measures how long the key stretching takes and

doesn’t measure the overhead from initializing the required variables.

10

 1. //declare variables

 2. key = “hello”

 3. start timer

 4. for x iterations { // x = 100000, 200000, or 500000

 5. key = hash(key) // hash = md5, sha1, sha256, sha512

 6. end timer

 7. return elapsed time in ms

The full java code can be found in the appendix at the end. Note that in the table below using

PBKDF2 refers to using PBKDF2(SHA1, x, key) instead of simply iterating through SHA1 many

times.

The table below shows how long it took each of the algorithms to derive a key through

by repeatedly hashing some initial key.

#Iter md5 sha1 sha256 sha512 pbkdf2

100000 5816 5963 5671 9536 6316

200000 11713 121119 11400 14838 12977

500000 29082 29177 28310 35746 34701

 We found that, for the algorithms not using SHA512, that it takes 6 seconds to derive a

key by iterating through it 100000 times and we found that as the number of iterations increase,

that the amount of time required increases linearly. We believe that these times are likely longer

than the average user is willing to wait (they are probably willing to wait around 1 second) for

the key to be derived so that they can successfully log in to whatever system they’re trying to

access. Therefore using SHA512 about 10000 iterations is as long as a user might be willing to

wait and for the others 50000 iterations is likely the right number as well.

EC2 Algorithms and Approach

 In order to fully utilize EC2 as a way to crack stolen password hashes, we went with a

base of the Amazon EC2 instance ‘g2.2xlarge’ to allow GPU computation. The SHA-2 and

PBKDF2 algorithms are straightforward ports to the NVIDIA CUDA programming language.

There are no special alterations to each of these algorithms, they are simply run in parallel for

11

higher throughput of hashes. The scrypt implementation is from an implementation meant for

mining Litecoin. As such, it uses certain tricks of parallelism to calculate sections of the

algorithm faster than a CPU could alone. The implementation is taken directly from the popular

CUDAminer software available for Litecoin cryptocurrency mining. Below is the data for both a

middle-cost GPU from a consumer laptop, and the EC2 instance numbers for a single instance

of ‘g2.2xlarge.’

Hackenomics Results and Conclusions

As seen in the table below, we have given the hacker a time and money budget to spend

cracking a password with EC2. Whether the password is crackable will depend on the hacker’s

budget, the algorithm’s parameters and how many password need to be tried (we assume

around 4 million for most passwords based on the literature discussed previously). As can be

seen the standard parameters for PBKDF2 HMAC SHA512 of 10,000 iterations is insufficiently

secure for many hackers. Additionally, more than 10,000 iterations of this PBKDF2 is likely not a

good idea from a usability perspective since it takes around a second to compute and users will

likely not wait much longer than that.

The parameters we used in experimentation for Scrypt were not sufficiently strong

(N=1024, r=1, p=1) unfortunately. In order to correct for this, we have multiplied the effort

required by Guesses/second for the user in order to linearly extrapolate the effort required by

the adversary to be as if the user had waited a full second for Scrypt to run. While this method is

not ideal, the fast and publicly available GPU code for Scrypt was made to work with these

parameters.

From our results we can conclude that given a way to quickly verify the correctness of a

password stretched into a key using PBKDF2 with HMAC SHA512 for 10,000 iterations is

insufficient to protect most users. Nonetheless, there are companies (such as BoxCryptor)

whose entire security model relies on these types of passwords being difficult to crack. We hope

that our results get people to consider the “effort”, a function of both time and money, of cracking

average passwords when considering key stretching algorithms and their parameters. Even

more so we hope that security researchers keep these measures of “effort” up to date with the

developments in cloud computing, customizable hardware, and even crypto-currencies which

tend to use hash functions internally.

12

Recommendations for the future

Since the industry standards for key stretching are PBKDF2 and Scrypt it would be great

to apply our results to commonly used parameters for Scrypt and be able to run an efficient

GPU implementation on EC2 GPU instances to more accurately determine whether or not

Scrypt is sufficiently secure for the majority of users.

While thus far we have determined a basic metric for computational “Effort” and a

process for analyzing this metric across different systems, there may be other economical

factors (e.g. economies of scale and overhead) that might be relevant to incorporate into the

metric. Additionally, most password based key derivation functions like PBKDF2 and scrypt try

to make it difficult for an attacker to attempt getting the keys for many passwords by wasting

computational resources. As we have mentioned, the issue with this is that valid users have a

very limited wait time and also likely have (much) worse hardware than their adversaries. In the

case of PBKDF2 GPUs speed up computation time immensely giving the adversary a large

advantage. Similarly, while scrypt was designed to be harder for GPUs people have found that it

is not necessarily the case. However, in both of these cases the publicly declared algorithm is

meant to make particular (non-consumer) hardware slow. Perhaps though another scheme

where the resource used by the algorithm is “networking” as opposed to time (PBKDF2) or

space/memory (scrypt) would be able to help in addressing detectability of a hacker in addition

to simply trying to make it more difficult for the hacker to break the passwords.

13

Acknowledgements

We would like to thank Gene Itkis at Lincoln Laboratory for his assistance and guidance in

making this project happen.

Bibliography

[1] J. Bonneau, "The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million

Passwords".

[2] P. W. Staff, "Cloud Computing Used to Hack Wireless Passwords," PC World, 2011.

[3] C. Herley and P. Oorchot, "A Research Agenda Acknowledging the Persistence of

Passwords," Security&Privacy Magazine, 2011.

[4] U. Banerjee, "Amazon AWS 19th Price Reduction - a Closer Look," 2012. [Online]. Available:

http://setandbma.wordpress.com/2012/03/08/amazon-aws-price-reduction/. [Accessed

2014].

[5] RightScale, "Cloud Pricing Trends," RightScale, Inc., 2014.

[6] K. Higgins, "Cloud-Based Crypto-Cracking Tool To Be Unleashed at Black Hat DC,"

InformationWeek, 2011.

[7] H. Hosseini, "Google Slashes Cloud Prices: Google vs AWS Price Comparison," Cloud

Management Blog, 2014.

[8] J. Bonneau, C. Herley, P. Oorshot and F. Stajanoy, "The Quest to Replace Passwords: A

Framework for Comparative Evaluation of Web Authentication Schemes," in IEEE Symp.

S&P 2012, 2012.

[9] "Hash function in PBKDF2," Cryptography Stack Exchange, 2013. [Online]. Available:

http://crypto.stackexchange.com/questions/2851/hash-function-in-pbkdf2. [Accessed 2014].

14

Appendix 1: Android Code

public void buttonClick(View view){

 String password = "hello";

 byte[] hashed = password.getBytes();

 byte[] salt = new byte[16];

 new Random().nextBytes(salt);

 int iterations = 500000;

 String iteration =

 ((EditText)findViewById(R.id.numiterations)).getText().toString();

 KeySpec spec = new

PBEKeySpec(password.toCharArray(),salt,iterations,160);

 long start = System.currentTimeMillis();

 try{

 SecretKeyFactory f =

SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");

 start = System.currentTimeMillis();

 byte[] hash = f.generateSecret(spec).getEncoded();

 ((TextView)findViewById(R.id.moop)).setText(hash.toString());

 } catch(Exception e){

 ((TextView)findViewById(R.id.error)).setText(e.toString());

 }

 long totalTime = System.currentTimeMillis()-start;

 setContentView(R.layout.fragment_main);

((TextView)findViewById(R.id.time)).setText(String.valueOf(totalTime))

;

}

Appendix 2 : EC2 Code

http://hashcat.net/oclhashcat/ (used for benchmarking)

https://github.com/dave-andersen/keplerminer (EC2 scrypt implementation derived from this)

Appendix 3 : JavaScript Code

Stanford JavaScript Crypto Library (SJCL) (https://github.com/bitwiseshiftleft/sjcl) for PBKDF2

js-scrypt (https://github.com/tonyg/js-scrypt) for Scrypt

http://hashcat.net/oclhashcat/
https://github.com/dave-andersen/keplerminer
https://github.com/bitwiseshiftleft/sjcl
https://github.com/tonyg/js-scrypt

15

Appendix 4: Historical Cloud Computing Prices for Two Popular Instance Types

 Small – Linux –

N. Virginia

(m1.small)

Quadruple Extra Large

(/cgl.4xlarge/c3.4xlarge)

1/1/2010 $0.09 $3.16

3/12/2012 $0.08 $2.50

12/1/2012 $0.07 $2.10

4/14/2014 $0.04 $1.50

