6.857 L7

Physical Unclonable Functions (PUFs)

Srini Devadas




Traditional Authentication

 Each IC needs to be unique

— Embed a unique secret key SK in on-chip non-volatile memory

» Use cryptography to authenticate an IC
— A verifier sends a randomly chosen number

— An IC signs the number using its secret key so that the verifier can

ensure that the IC possesses the secret key
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Physical Unclonable Function

A Physical Unclonable Function (PUF) is a function
that is:

— Based on a physical system
— Easy to evaluate (using the physical system)
— Hard to predict

A PUF can additionally be:

 Manufacturer Resistant (better than unclonable: even
the manufacturer cannot produce two identical systems)



Optical Physical Unclonable Functions

- Generate secrets from a complex
physical system

Variation inherent in (natural)
manufacturing process

Hard to remove and predict

Persistent
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Optical PUFs
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Using a PUF as a Key

« APUF can be used as a key.
 The lock has a secret database of challenge-response pairs.

* To open the lock, the key has to show that it knows the
response to a challenge.
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Silicon PUFs

« Because of random process variations, no two Integrated
Circuits even with the same layouts are identical
— Variation is inherent in fabrication process
— Hard to remove or predict
— Relative variation increases as the fabrication process advances

« Delay-Based Silicon PUF concept (2002)

— Generate secret keys from unique characteristics of silicon chip
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Why PUFs?

n
(Challenge) —— p ) —— Response

 PUF can enable secure, low-cost authentication w/o crypto
— Use PUF as a function: challenge — response

— Only an authentic IC can produce a correct response for a
challenge

— Inexpensive: no special fabrication technique

 PUF can generate a unique secret key / ID
— Highly secure: volatile secrets, no need for trusted programming
— Can integrate key generation into a secure processor

« Physical security: PUF secrets are the delays of wires and
gates which are harder to extract via microscopy than bits

In non-volatile memory
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Main Questions

n
(Challenge) —— p ) —— Response

* How to design a PUF circuit for reliability and
security?
— Analog or asynchronous systems are susceptible to
noise

— Need barriers against software modeling attacks
(equivalent to cryptanalysis)

* How to use the PUF for authentication and key
generation?




Authentication Using PUFs
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An Arbiter-Based Silicon PUF
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« Compare two paths with an identical delay in design
— Random process variation determines which path is faster
— An arbiter outputs 1-bit digital response

« Multiple bits can be obtained by either duplicate the
circuit or use different challenges

— Each challenge selects a unique pair of delay paths
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Metrics

« Security: Show that different PUFs (ICs) generate
different bits

— Inter-chip variation: how many PUF bits (in %) are different
between PUF A and PUF B?

— ldeally, inter-chip variation should be close to 50%

« Reliability: Show that a given PUF (IC) can re-generate
the same bits consistently

— Intra-chip variation: how many bits flip when re-generated again
from a single PUF

— Environments (voltage, temperature, etc.) can change
— ldeally, intra-chip variation should be 0%
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Arbiter PUF Experiments: 64 and 512 stages

PUF Response: Average Code Distances
128 (2x64) bit, RFID MUX PUF Rev.Ax1 M3 vs. Rev.Ax8 M3 @ +25°C
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Low-Cost Authentication

* Protect against IC/FPGA substitution and counterfeits
without using cryptographic operations
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Attacking a PUF

* Duplication: Make more PUFs from the original
blueprints and hope for a match.

* Brute-force attack: Exhaustively characterize the
PUF by trying all challenges.

* Model building attack: Try to build a model of the
PUF that has a significant probability of outputting
the same value.

— Discover hidden delays of wires/gates in a given PUF

» Direct measurement: Open the PUF and attempt
to directly measure its characteristics.




Arbiter PUF is not a PUF (clonable!)

* Introduced in 2003 paper, shown in same paper to be
susceptible to a machine learning model-building attack

Rev.A PUF Model/Data Correlation Levels

100% —

90%

80%

70%

60% - N -

50% —F— - L] CFMin |
Need to add

40% CFMax |-

nonlinearity to

20% <

10%

0%
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Model output match level to 16,384 bits of real Rev.A PUF data (teaching set included)

Number of challenges (= single response bits) taught




Feed-forward Arbiter

* Also introduced in 2003 paper, conjectured to be
hard to learn
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« Shown in 2008 (Koushanfar) and 2009
(Ruhrmair) to be susceptible to a model-building
attack based on evolutionary algorithm
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XOR Arbiter PUF

« Can process and combine outputs of multiple
PUFs

« Simplest version: XOR operation
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4-way XOR Experiments

Millions

PUF Response: Average Code Distances
128 (2x64) bit, RFID MUX PUF Rev.A M3 vs. Rev.B COC @ -25, 0, +25, +50, +85°C combined
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8-way XOR experiments

PUF Response: Average Code Distances
128 (2x64) bit, RFID MUX PUF Rev.B vs. (synthesized) Rev.Bx2XOR @ +25°C
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XOR Arbiter PUF Security Analysis

* Logistic regression with Rprop heuristic is the
best machine learning attack currently known on
the XOR arbiter

« XOR arbiter is linearized by increasing the
number of dimensions in the machine learning
problem

— Number of independent dimensions is ~ nk / k!

« Machine learning runtime complexity grows as O
(nX) for k-way XOR over n-stage PUFs

— Size of circuit grows as O(nk)
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XOR Arbiter PUF Modeling Results
Ruhrmair et al, CCS 2010

* N=64,k=6,and n =128, k = 5 can be broken
in a few days of CPU time for noiseless data

— Algorithm fails for n = 64, k = 4 on real/noisy PUF
data

« Can implement and use XOR PUFs with k =8
with reasonable noise levels

— Increasing n does not increase noise and increases
adversary’s computational effort

* Open questions:

— Can we show a hardness result, i.e., learning requires
time exponential in k7

— Other ways of adding nonlinearity to circuit?
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Generating Cryptographic
Keys Using PUFs
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Using a PUF as a Key Generator

« Are only going to generate a fixed number of bits
from a PUF

— Assume small enough number of bits to preclude
modeling attacks or that bits are kept secret

« Cannot afford any errors!

* |Important question: How to correct errors
guaranteeing limited leakage of information?

— Need to quantify entropy of PUF

— Need to analyze/quantify leakage due to redundant
syndrome bits
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Reliable Response Generation:

Initialization
B.efore PUF :n
First Use: Circuit
Initialization Encoding N Syndrome
(public information)

* To initialize the circuit, an error correcting syndrome is
generated from the reference PUF circuit output
— Syndrome is public information
— Can be stored on-chip, off-chip, or on a remote server

* For example, BCH(127,36,31) code will correct up to 15

errors out of 127 bits to generate 36-bit secret
— 91-bit syndrome gives away 91 bits of codeword
— Failure probability will be dependent on PUF error rate

25




Reliable Response Generation:
In the Field

In the Field: PUF | n | n
Response Circuit [*| P9
Generation I
Reliable
PUF Syndrome

In the field, the syndrome will be used to re-
generate the same PUF reference output from
the circuit
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Error Correction Complexity

« Some examples of BCH codes that are
necessary to correct “raw” PUF outputs

— (127, 36, 31) gives 36 secret bits, corrects 15 errors;
need to run 4 times to get 128-bit secret

— (255, 63, 61) gives 63 secret bits, corrects 30 errors;
need to run twice

 BCH engine complexity grows quadratically with

code word size

 Lots of ongoing work to reduce error correction
complexity without compromising security
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PUFs in Secure Processors
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Private/Public Key Pair Generation

ECC
PUF

Private key

|

Seed

RSA Key

|Generation

» Public key

 PUF response is used as a random seed to a private/
public key generation algorithm

— No secret needs to be handled by a manufacturer

« A device generates a key pair on-chip, and outputs a

public key

— The public key can be endorsed at any time

— No one needs to know private key

» Aegis processor: FPGA implementation built and tested
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Intellectual Property Protection

Software Encrypted

CPU/ASIC/FPGA

Same for With S _

all designs 1) SOTEIIE
Key K

Different for|  Public Key PK

every chip | Public Syndrome
K encrypted with PK

ECC PUF

— Private Key (SK)

(Never leaves the chip)
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Potential Uses of PUFs

 Limited use transit token ticket

* Anti-counterfeiting applications
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