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Traditional Authentication 

•  Each IC needs to be unique 
–  Embed a unique secret key SK in on-chip non-volatile memory 

•  Use cryptography to authenticate an IC 
–  A verifier sends a randomly chosen number 
–  An IC signs the number using its secret key so that the verifier can 

ensure that the IC possesses the secret key 

Sends a random number 

Sign the number with a secret key 
 Only the IC’s key can generate 

a valid signature 

IC with 
a secret key 

IC’s Public 
Key 



Physical Unclonable Function 

A Physical Unclonable Function (PUF) is a function 
that is: 
– Based on a physical system 
– Easy to evaluate (using the physical system) 
– Hard to predict 

A PUF can additionally be: 

•  Manufacturer Resistant (better than unclonable: even 
the manufacturer cannot produce two identical systems) 
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•  Generate secrets from a complex  
  physical system"

Variation inherent in (natural) 
manufacturing process 

Hard to remove and predict 

Persistent 
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Optical PUFs 
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Using a PUF as a Key 

PUF 

•  A PUF can be used as a key. 
•  The lock has a secret database of challenge-response pairs. 
•  To open the lock, the key has to show that it knows the 

response to a challenge. 

? 
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Silicon PUFs 

•  Because of random process variations, no two Integrated 
Circuits even with the same layouts are identical 
–  Variation is inherent in fabrication process 
–  Hard to remove or predict 
–  Relative variation increases as the fabrication process advances 

•  Delay-Based Silicon PUF concept (2002) 
–  Generate secret keys from unique characteristics of silicon chip 

Combinatorial 
Circuit"

Challenge"
n-bits"

Response"
m-bits"
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Why PUFs? 

•  PUF can enable secure, low-cost authentication w/o crypto 
–  Use PUF as a function: challenge  response 
–  Only an authentic IC can produce a correct response for a 

challenge 
–  Inexpensive: no special fabrication technique 

•  PUF can generate a unique secret key / ID 
–  Highly secure: volatile secrets, no need for trusted programming 
–  Can integrate key generation into a secure processor 

•  Physical security: PUF secrets are the delays of wires and 
gates which are harder to extract via microscopy than bits 
in non-volatile memory 

PUF 
n 

(Challenge) Response 
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Main Questions 

•  How to design a PUF circuit for reliability and 
security? 
–  Analog or asynchronous systems are susceptible to 

noise 
–  Need barriers against software modeling attacks 

(equivalent to cryptanalysis) 

•  How to use the PUF for authentication and key 
generation? 

PUF 
n 

(Challenge) Response 



Authentication Using PUFs 
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An Arbiter-Based Silicon PUF 

•  Compare two paths with an identical delay in design 
–  Random process variation determines which path is faster 
–  An arbiter outputs 1-bit digital response 

•  Multiple bits can be obtained by either duplicate the 
circuit or use different challenges 
–  Each challenge selects a unique pair of delay paths 
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Metrics 

•  Security: Show that different PUFs (ICs) generate 
different bits 
–  Inter-chip variation: how many PUF bits (in %) are different 

between PUF A and PUF B?  
–  Ideally, inter-chip variation should be close to 50% 

•  Reliability: Show that a given PUF (IC) can re-generate 
the same bits consistently 
–  Intra-chip variation: how many bits flip when re-generated again 

from a single PUF 
–  Environments (voltage, temperature, etc.) can change  
–  Ideally, intra-chip variation should be 0% 
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Arbiter PUF Experiments: 64 and 512 stages 
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Low-Cost Authentication 

•  Protect against IC/FPGA substitution and counterfeits 
without using cryptographic operations  
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Device A 

 PUF 
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Attacking a PUF 

•  Duplication: Make more PUFs from the original 
blueprints and hope for a match. 

•  Brute-force attack: Exhaustively characterize the 
PUF by trying all challenges. 

•  Model building attack: Try to build a model of the 
PUF that has a significant probability of outputting 
the same value. 
–  Discover hidden delays of wires/gates in a given PUF 

•  Direct measurement: Open the PUF and attempt 
to directly measure its characteristics. 
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Arbiter PUF is not a PUF (clonable!) 
•  Introduced in 2003 paper, shown in same paper to be 

susceptible to a machine learning model-building attack 
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•  Also introduced in 2003 paper, conjectured to be 
hard to learn 

•  Shown in 2008 (Koushanfar) and 2009 
(Ruhrmair) to be susceptible to a model-building 
attack based on evolutionary algorithm 
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Feed-forward Arbiter 



XOR Arbiter PUF 

•  Can process and combine outputs of multiple 
PUFs 

•  Simplest version: XOR operation 
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4-way XOR Experiments 
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8-way XOR experiments 
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XOR Arbiter PUF Security Analysis 

•  Logistic regression with Rprop heuristic is the 
best machine learning attack currently known on 
the XOR arbiter 

•  XOR arbiter is linearized by increasing the 
number of dimensions in the machine learning 
problem 
– Number of independent dimensions is ~ nk / k! 

•  Machine learning runtime complexity grows as O
(nk) for k-way XOR over n-stage PUFs 
–  Size of circuit grows as O(nk) 
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XOR Arbiter PUF Modeling Results 
Ruhrmair et al, CCS 2010 
•  n = 64, k = 6, and n = 128, k = 5 can be broken 

in a few days of CPU time for noiseless data 
–  Algorithm fails for n = 64, k = 4 on real/noisy PUF 

data 

•  Can implement and use XOR PUFs with k = 8 
with reasonable noise levels 
–  Increasing n does not increase noise and increases 

adversary’s computational effort  

•  Open questions:  
–  Can we show a hardness result, i.e., learning requires 

time exponential in k? 
–  Other ways of adding nonlinearity to circuit? 



Generating Cryptographic 
Keys Using PUFs 
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Using a PUF as a Key Generator 

•  Are only going to generate a fixed number of bits 
from a PUF 
–  Assume small enough number of bits to preclude 

modeling attacks or that bits are kept secret 

•  Cannot afford any errors! 

•  Important question: How to correct errors 
guaranteeing limited leakage of information? 
–  Need to quantify entropy of PUF 
–  Need to analyze/quantify leakage due to redundant 

syndrome bits 

24 
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Reliable Response Generation: 
Initialization 

•  To initialize the circuit, an error correcting syndrome is 
generated from the reference PUF circuit output 
–  Syndrome is public information 
–  Can be stored on-chip, off-chip, or on a remote server 

•  For example, BCH(127,36,31) code will correct up to 15 
errors out of 127 bits to generate 36-bit secret 
–  91-bit syndrome gives away 91 bits of codeword 
–  Failure probability will be dependent on PUF error rate 

PUF 
Circuit 

Encoding 
m 

n Before 
First Use: 
Initialization Syndrome 
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Reliable Response Generation: 
In the Field 

•  In the field, the syndrome will be used to re-
generate the same PUF reference output from 
the circuit 

In the Field: 
Response 
Generation 
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Error Correction Complexity 

•  Some examples of BCH codes that are 
necessary to correct “raw” PUF outputs 
–  (127, 36, 31) gives 36 secret bits, corrects 15 errors; 

need to run 4 times to get 128-bit secret 
–  (255, 63, 61) gives 63 secret bits, corrects 30 errors; 

need to run twice 

•  BCH engine complexity grows quadratically with 
code word size 

•  Lots of ongoing work to reduce error correction 
complexity without compromising security 
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PUFs in Secure Processors 
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Private/Public Key Pair Generation 

•  PUF response is used as a random seed to a private/ 
public key generation algorithm 
–  No secret needs to be handled by a manufacturer 

•  A device generates a key pair on-chip, and outputs a 
public key 
–  The public key can be endorsed at any time 
–  No one needs to know private key 

•  Aegis processor: FPGA implementation built and tested 

Seed 

Private key 

Public key RSA Key 
Generation 

ECC 
PUF 



Intellectual Property Protection 
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CPU/ASIC/FPGA 
Software Encrypted 

With Symmetric 
Key K 

 
Public Key PK 

Public Syndrome 
K encrypted with PK 

ECC PUF Private Key (SK) 
(Never leaves the chip) 

Same for 
all designs 

Different for 
every chip 
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Potential Uses of PUFs 

•  Limited use transit token ticket 

•  Anti-counterfeiting  applications 


