
1

6.857 L7

Physical Unclonable Functions (PUFs)

Srini Devadas

2

Traditional Authentication

•  Each IC needs to be unique
–  Embed a unique secret key SK in on-chip non-volatile memory

•  Use cryptography to authenticate an IC
–  A verifier sends a randomly chosen number
–  An IC signs the number using its secret key so that the verifier can

ensure that the IC possesses the secret key

Sends a random number

Sign the number with a secret key
 Only the IC’s key can generate

a valid signature

IC with
a secret key

IC’s Public
Key

Physical Unclonable Function

A Physical Unclonable Function (PUF) is a function
that is:
– Based on a physical system
– Easy to evaluate (using the physical system)
– Hard to predict

A PUF can additionally be:

•  Manufacturer Resistant (better than unclonable: even
the manufacturer cannot produce two identical systems)

4

•  Generate secrets from a complex  
 physical system"

Variation inherent in (natural)
manufacturing process

Hard to remove and predict

Persistent

Optical Physical Unclonable Functions

θ	

Image

5

Optical PUFs

θ1	

Image1

Secret Database

θ1 	

θ2	

θ3	

Image1

Image2

Image3

Using a PUF as a Key

PUF

•  A PUF can be used as a key.
•  The lock has a secret database of challenge-response pairs.
•  To open the lock, the key has to show that it knows the

response to a challenge.

?

7

Silicon PUFs

•  Because of random process variations, no two Integrated
Circuits even with the same layouts are identical
–  Variation is inherent in fabrication process
–  Hard to remove or predict
–  Relative variation increases as the fabrication process advances

•  Delay-Based Silicon PUF concept (2002)
–  Generate secret keys from unique characteristics of silicon chip

Combinatorial
Circuit"

Challenge"
n-bits"

Response"
m-bits"

8

Why PUFs?

•  PUF can enable secure, low-cost authentication w/o crypto
–  Use PUF as a function: challenge response
–  Only an authentic IC can produce a correct response for a

challenge
–  Inexpensive: no special fabrication technique

•  PUF can generate a unique secret key / ID
–  Highly secure: volatile secrets, no need for trusted programming
–  Can integrate key generation into a secure processor

•  Physical security: PUF secrets are the delays of wires and
gates which are harder to extract via microscopy than bits
in non-volatile memory

PUF
n

(Challenge) Response

9

Main Questions

•  How to design a PUF circuit for reliability and
security?
–  Analog or asynchronous systems are susceptible to

noise
–  Need barriers against software modeling attacks

(equivalent to cryptanalysis)

•  How to use the PUF for authentication and key
generation?

PUF
n

(Challenge) Response

Authentication Using PUFs

10

11

An Arbiter-Based Silicon PUF

•  Compare two paths with an identical delay in design
–  Random process variation determines which path is faster
–  An arbiter outputs 1-bit digital response

•  Multiple bits can be obtained by either duplicate the
circuit or use different challenges
–  Each challenge selects a unique pair of delay paths

…"

n-bit"
Challenge"

Rising  
Edge"

1 if top"
path is "
faster,"
else 0"

D Q
1

1

0

0

1

1

0

0

1

1

0

0

1 0 1 0 0 1

0 1

G
Response"

12

Metrics

•  Security: Show that different PUFs (ICs) generate
different bits
–  Inter-chip variation: how many PUF bits (in %) are different

between PUF A and PUF B?
–  Ideally, inter-chip variation should be close to 50%

•  Reliability: Show that a given PUF (IC) can re-generate
the same bits consistently
–  Intra-chip variation: how many bits flip when re-generated again

from a single PUF
–  Environments (voltage, temperature, etc.) can change
–  Ideally, intra-chip variation should be 0%

13

Arbiter PUF Experiments: 64 and 512 stages

0

5

10

15

20

25

0 16 32 48 64 80 96 112 128

M
il

li
o

n
s

Code distance [Bits]

PUF Response: Average Code Distances
128 (2x64) bit, RFID MUX PUF Rev.Ax1 M3 vs. Rev.Ax8 M3 @ +25°C

Intra-chip @ Rev.Ax1

Inter-chip @ Rev.Ax1

Intra-chip @ Rev.Ax8

Inter-chip @ Rev.Ax8

64 stage

512 stage

14

Low-Cost Authentication

•  Protect against IC/FPGA substitution and counterfeits
without using cryptographic operations

Authentic
Device A

 PUF

Untrusted
Supply
Chain /

Environments

???

Challenge Response

Is this the
authentic
Device A?

=?

PUF

Challenge Response’

Challenge Response

Database for Device A

100  1010 010101
101  1000 101101
0111001 000110

Record

Attacking a PUF

•  Duplication: Make more PUFs from the original
blueprints and hope for a match.

•  Brute-force attack: Exhaustively characterize the
PUF by trying all challenges.

•  Model building attack: Try to build a model of the
PUF that has a significant probability of outputting
the same value.
–  Discover hidden delays of wires/gates in a given PUF

•  Direct measurement: Open the PUF and attempt
to directly measure its characteristics.

16

Arbiter PUF is not a PUF (clonable!)
•  Introduced in 2003 paper, shown in same paper to be

susceptible to a machine learning model-building attack

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

M
od

el
	 o
ut
pu

t	 m
at
ch
	 le

ve
l	 t
o	
16

,3
84

	 b
its
	 o
f	 r
ea
l	 R
ev
.A
	 P
U
F	
da
ta
	 (t
ea
ch
in
g	
se
t	 i
nc
lu
de

d)

Number	 of	 challenges	 (=	 single	 response	 bits)	 taught

Rev.A	 PUF	 Model/Data	 Correlation	 Levels

CFMin

CFAvg

CFMax
Need to add
nonlinearity to
circuit

•  Also introduced in 2003 paper, conjectured to be
hard to learn

•  Shown in 2008 (Koushanfar) and 2009
(Ruhrmair) to be susceptible to a model-building
attack based on evolutionary algorithm

17

Feed-forward Arbiter

XOR Arbiter PUF

•  Can process and combine outputs of multiple
PUFs

•  Simplest version: XOR operation

PUF
Circuit

PUF
Circuit

PUF
Circuit

PUF
Circuit

n-bit"
Challenge"

XOR of k
PUFs each

with n stages

18

4-way XOR Experiments

19

0

50

100

150

200

250

0 16 32 48 64 80 96 112 128

M
il

li
o

n
s

Code distance [Bits]

PUF Response: Average Code Distances
128 (2x64) bit, RFID MUX PUF Rev.A M3 vs. Rev.B C0C @ -25, 0, +25, +50, +85°C combined

Intra-chip @ Rev.Ax1

Inter-chip @ Rev.Ax1

Intra-chip @ Rev.B

Inter-chip @ Rev.B

4-way XOR

2-way XOR

8-way XOR experiments

20

0

5

10

15

20

25

30

0 16 32 48 64 80 96 112 128

M
il

li
o

n
s

Code distance [Bits]

PUF Response: Average Code Distances
128 (2x64) bit, RFID MUX PUF Rev.B vs. (synthesized) Rev.Bx2XOR @ +25°C

Intra-chip @ Rev.B

Inter-chip @ Rev.B

Intra-chip @ Rev.Bx2

Inter-chip @ Rev.Bx2

8-way XOR

4-way XOR

21

XOR Arbiter PUF Security Analysis

•  Logistic regression with Rprop heuristic is the
best machine learning attack currently known on
the XOR arbiter

•  XOR arbiter is linearized by increasing the
number of dimensions in the machine learning
problem
– Number of independent dimensions is ~ nk / k!

•  Machine learning runtime complexity grows as O
(nk) for k-way XOR over n-stage PUFs
–  Size of circuit grows as O(nk)

22

XOR Arbiter PUF Modeling Results
Ruhrmair et al, CCS 2010
•  n = 64, k = 6, and n = 128, k = 5 can be broken

in a few days of CPU time for noiseless data
–  Algorithm fails for n = 64, k = 4 on real/noisy PUF

data

•  Can implement and use XOR PUFs with k = 8
with reasonable noise levels
–  Increasing n does not increase noise and increases

adversary’s computational effort

•  Open questions:
–  Can we show a hardness result, i.e., learning requires

time exponential in k?
–  Other ways of adding nonlinearity to circuit?

Generating Cryptographic
Keys Using PUFs

23

Using a PUF as a Key Generator

•  Are only going to generate a fixed number of bits
from a PUF
–  Assume small enough number of bits to preclude

modeling attacks or that bits are kept secret

•  Cannot afford any errors!

•  Important question: How to correct errors
guaranteeing limited leakage of information?
–  Need to quantify entropy of PUF
–  Need to analyze/quantify leakage due to redundant

syndrome bits

24

25

Reliable Response Generation:
Initialization

•  To initialize the circuit, an error correcting syndrome is
generated from the reference PUF circuit output
–  Syndrome is public information
–  Can be stored on-chip, off-chip, or on a remote server

•  For example, BCH(127,36,31) code will correct up to 15
errors out of 127 bits to generate 36-bit secret
–  91-bit syndrome gives away 91 bits of codeword
–  Failure probability will be dependent on PUF error rate

PUF
Circuit

Encoding
m

n Before
First Use:
Initialization Syndrome

(public information)

26

Reliable Response Generation:
In the Field

•  In the field, the syndrome will be used to re-
generate the same PUF reference output from
the circuit

In the Field:
Response
Generation

PUF
Circuit

Syndrome

Decoding

m

n n

Reliable
PUF

Error Correction Complexity

•  Some examples of BCH codes that are
necessary to correct “raw” PUF outputs
–  (127, 36, 31) gives 36 secret bits, corrects 15 errors;

need to run 4 times to get 128-bit secret
–  (255, 63, 61) gives 63 secret bits, corrects 30 errors;

need to run twice

•  BCH engine complexity grows quadratically with
code word size

•  Lots of ongoing work to reduce error correction
complexity without compromising security

27

PUFs in Secure Processors

28

29

Private/Public Key Pair Generation

•  PUF response is used as a random seed to a private/
public key generation algorithm
–  No secret needs to be handled by a manufacturer

•  A device generates a key pair on-chip, and outputs a
public key
–  The public key can be endorsed at any time
–  No one needs to know private key

•  Aegis processor: FPGA implementation built and tested

Seed

Private key

Public key RSA Key
Generation

ECC
PUF

Intellectual Property Protection

30

CPU/ASIC/FPGA
Software Encrypted

With Symmetric
Key K

Public Key PK

Public Syndrome
K encrypted with PK

ECC PUF Private Key (SK)
(Never leaves the chip)

Same for
all designs

Different for
every chip

31

Potential Uses of PUFs

•  Limited use transit token ticket

•  Anti-counterfeiting applications

