
Massachusetts Institute of Technology Handout 7
6.857: Network and Computer Security March 12, 2012
Professor Ron Rivest Due: March 19, 2012

Problem Set 3

This problem set is due online, at https://courses.csail.mit.edu/6.857/ on Monday, March 19 by
11:59 PM. Please note that no late submissions will be accepted.

You are to work on this problem set with your assigned group of three or four people, given at
http://courses.csail.mit.edu/6.857/2012/ps3groups.html. If your name is missing, please email
6.857-tas@mit.edu. Be sure that all group members can explain the solutions. See Handout 1 (Course
Information) for our policy on collaboration.

Homework must be submitted electronically! Submissions should be in pdf form, with the document
named by each team member’s last name appended. Each problem answer must appear on a separate page.
Mark the top of each page with your group member names, the course number (6.857), the problem set
number and question, and the date. We have provided templates for LATEX and Microsoft Word on the
course website (see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we will distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in the email used to turn
in the submission.

Problem 3-1. SHA-256 Collisions

Define h to be the SHA-256 hash function, and let hn denote h with its output truncated to n bits (for any
n, 1 ≤ n ≤ 256).

You are asked to find the largest n you can for which you can demonstrate a collision for hn.

In Python, hn(x) can be defined:

import hashlib

def h(n,x):

"""

here n in a positive integer not more than 256, and

x is a byte string

returns first n bits of sha256(x).

"""

assert 0 < n <= 256

y = hashlib.sha256(x).digest()

bytes_wanted = (n+7)/8

bits_wanted = n - 8*(bytes_wanted-1) # in last byte

mask = ((1 << bits_wanted)-1)

z = y[:bytes_wanted-1] + chr(ord(y[bytes_wanted-1]) & mask)

return z

Your implementation should use only a small amount of memory (not proportional to the number of calls
to h your program makes). You can use variants of the “Pollard-rho” algorithm or Floyd’s “two-finger”
algorithm (or any other low-memory algorithm you like).

Estimate the amount of time your implementation would take to find a collision for a hash function with a
d-bit output, for d = 64, 80, 128, 160,and 256.

Turn in the largest collision you found, and also your code as part of the pdf document. (The verbatim
command is useful for putting code in a latex document.) Your collision should be different than that turned
in by any other team!

2 6.857 : Handout 7: Problem Set 3

Problem 3-2. Merkle-Damg̊ard Transform - from Katz and Lindell 4.15

The following problem is taken from Katz and Lindell, Problem 4.15 parts (a), (b), and (c) on page 157.

As Professor Rivest mentioned in class, a formal definition of hash functions includes a family of hash
functions indexed by a key s. A randomized algorithm Gen is used to generate a seed s for a hash function,
and then hs is used to denote the hash function indexed by seed s.

The Merkle-Damg̊ard transform converts any fixed-length hash function (which takes inputs of a fixed-length
to some output length) into a full fledged hash function (which can take inputs of arbitrary length to the
given output length), while maintaining collision resistance properties. This transform is widely used in
practice.

Though this transform works for fixed-length hash functions that shrink by any amount, even just a single
bit, for simplicity we will give the construction for a function that shrinks its input length by a factor of 2. Let
(Gen, h) be a fixed-length collision resistant hash function for inputs of length 2`(n) and with output length
`(n) - h := {0, 1}s × {0, 1}2`(n) → {0, 1}`(n). The Merkle-Damg̊ard transform constructs a variable-length
hash function (Gen,H) with H := {0, 1}s × {0, 1}∗ → {0, 1}`(n) as follows:

•Gen remains unchanged

•H: on input a key s and a string x ∈ {0, 1}∗ of length L < 2`(n), do the following (set ` = `(n) in what
follows):

1.Set B := dL` e (i.e., the number of blocks in x). Pad x with zeroes if necessary so its length is
becomes a multiple of `. Parse the padded results as the sequence of `-bit blocks x1, . . . , xB . Set
xB+1 := L, where L is encoded using exactly ` bits.

2.Set z0 = 0`.

3.For i = 1, . . . , B + 1, compute zi := hs(zi−1||xi).

4.Output zB+1.

For each of the following modifications to the Merkle-Damg̊ard transform, determine whether the result is
collision resistant or not. If yes, provide a proof; if not, demonstrate an attack.

(a) Modify the construction so that the input length is not included at all (i.e., output zB and not zB+1 =
hs(zB ||L)).

(b) Modify the construction so that instead of outputting z = hs(zB ||L), the algorithm ouputs zB ||L.

(c) Instead of using a fixed IV , choose IV ← {0, 1}l and define z0 := IV . Then, set the output to be
IV ||hs(ZB ||L).

