
6.857 Lecture 4:
Hash Functions

Emily Shen

Most slides courtesy of Ron Rivest (Crypto 2008)

Outline

�Review hash function basics
�Revisit indistinguishability from RO
�MD5
�MD6

Review: Hash function basics (I)

�Hash function h: {0,1}* {0,1}d

maps arbitrary-length strings of data to
fixed-length output (“digest”)

in deterministic, public, “random” manner

Review: Hash function basics (II)

�Hash function typically consists of:
– Compression function

f: {0,1}c × {0,1}b {0,1}c

maps fixed-length input to fixed-length
output

– Mode of operation hf

how to apply f repeatedly to arbitrary-
length input to get fixed-length output (of
length d)

Review: Desirable properties (I)

� One-wayness (preimage resistance)
– Infeasible, given y ←R {0,1}d, to find any

x s.t. h(x) = y

� Collision resistance
– Infeasible to find x, x’ s.t. x ≠ x’ and

h(x) = h(x’)

� Weak collision resistance (2nd preimage
resistance)
– Infeasible, given x, to find x’ ≠ x s.t. h(x) = h(x’)

Review: Desirable properties (II)

�Pseudorandomness
– Infeasible to distinguish behavior from

random oracle (RO)

�Non-malleability
– Infeasible, given h(x), to produce h(x’),

where x and x’ are “related”

Formal definitions

�Family of functions
H: {0,1}k × {0,1}* → {0,1}d

�For each K ∈ {0,1}k, we have
hK: {0,1}* →{0,1}d

�Security properties defined in terms of
game played w/ adversary

Collision resistance

�Security game:
– Adversary A gets K ←R {0,1}k

– A outputs x, x’
– A wins if x ≠ x’ and h(x) = h(x’)

�Advantage of A = probability that A wins
�H is collision resistant if no efficient

adversary has more than negligible
advantage

� A makes hash queries, i.e. outputs x, gets back hK(x) or
RO(x) (depending on which world A is in)

� At end of game, A outputs 0 or 1
� Advantage of A = |Pr[AhK = 1] – Pr[ARO = 1]|
� H is indistinguishable from RO if no efficient adversary has

more than negligible advantage

Indistinguishability from RO

hK RO

A

? or ?

K ←R {0,1}k

Indistinguishability from RO

� But hK and f are fixed, public functions…
� No randomness in hK, so it will be distinguishable from RO
� Adversary should have access to comp. fn f
� Need a new notion: “indifferentiability” from RO

hK RO

A

? or ?

K ←R {0,1}
k

� Variant notion of indistinguishability
appropriate when distinguisher has access to
inner component (e.g. mode of operation hf /
comp. fn f).

� FIL = fixed input length, VIL = variable input length

FIL RO

Indifferentiability (Maurer et al. ‘04)

hRO VIL RO S

A

? or ?

Indifferentiability from RO

� Indifferentiability: ∃ simulator S s.t. no
adversary can distinguish left from right
with more than negligible advantage

hRO FIL RO VIL RO S

A

? or ?

MD5 compression function

�Chaining variable and output = 128 bits
� IV = fixed value
�64 steps (4 rounds of 16 steps)
�512-bit message block considered as

16 32-bit words

� Mi = 32-bit message word
� Ki = 32-bit constant, differs

in each step
� <<<s = left bit rotation by s

bits; s differs in each step
� : addition mod 232

� F(x,y,z) =

depending on round

MD5 compression function

Image source: http://en.wikipedia.org/wiki/File:MD5.png

(x⁄y) ¤ (Ÿx⁄z)
(x⁄z) ¤ (y⁄Ÿz)

x ∆ y ∆ z
y ∆ (x⁄Ÿz)

Wang et al. break MD5 (2004)

�Differential cryptanalysis (re)discovered
by Biham and Shamir (1990).
Considers step-by-step ``difference’’
(XOR) between two computations…

�Applied first to block ciphers (DES)…
�Used by Wang et al. to break collision-

resistance of MD5
�Many other hash functions broken

similarly; others may be vulnerable…

NIST SHA-3 competition!

� Input: 0 to 264-1 bits, size not known in
advance

�Output sizes 224, 256, 384, 512 bits
�Collision-resistance, preimage

resistance, second preimage
resistance, pseudorandomness, …

�Simplicity, flexibility, efficiency, …
�Due Halloween ‘08

MD5 was designed in 1991…

�Same year WWW announced…
�Clock rates were 33MHz…
�Requirements:

– {0,1}* {0,1}d for digest size d
– Collision-resistance
– Preimage resistance
– Pseudorandomness

�What’s happened since then?
�Lots…
�What should a hash function --- MD6 ---

look like today?

Design Considerations / Responses

Memory is now ``plentiful’’…

�Memory capacities have increased 60%
per year since 1991

�Chips have 1000 times as much
memory as they did in 1991

�Even ``embedded processors’’ typically
have at least 1KB of RAM

So… MD6 has…

�Large input message block size:
512 bytes (not 512 bits)

�This has many advantages…

Parallelism has arrived

�Uniprocessors have “hit the wall”
– Clock rates have plateaued, since power

usage is quadratic or cubic with clock rate:
P = VI = V2/R = O(freq2) (roughly)

� Instead, number of cores will double
with each generation: tens, hundreds
(thousands!) of cores coming soon

4 16 64 256 …

So… MD6 has…

0

1

2

3

level

�Bottom-up tree-based mode of
operation (like Merkle-tree)

�4-to-1 compression ratio at each node

Which works very well in parallel

0

1

2

3

level

�Height is log4(number of nodes)

But… most CPU’s are small…

�Storage proportional to tree height may
be too much for some CPU’s…

So… MD6 has…

�Alternative sequential mode

� (Fits in 1KB RAM)

0

1

level

IV

Actually, MD6 has…
�a smooth sequence of alternative

modes: from purely sequential to purely
hierarchical… L parallel layers followed
by a sequential layer, 0 ≤ L ≤ 64

�Example: L=1:

0

1

2

level

IV

Hash functions often ``keyed’’

�Salt for password, key for MAC,
variability for key derivation, theoretical
soundness, etc…

�Current modes are “post-hoc”

So… MD6 has…

�Key input K of up to 512 bits
�K is input to every compression function

Generate-and-paste attacks

�Kelsey and Schneier (2004), Joux (2004),
…

�Generate sub-hash and fit it in
somewhere

�Has advantage proportional to size of
initial computation…

So… MD6 has…
�1024-bit intermediate (chaining) values
� root truncated to desired final length
�Location (level,index) input to each node

0

1

2

3

level

(2,2)(2,0) (2,1) (2,3)

Extension attacks…

�Hash of one message useful to
compute hash of another message
(especially if keyed):

H(K || A || B) = H(H(K || A) || B)

So… MD6 has…

� ``Root bit’’ (aka “z-bit”) input to each
compression function:

0

1

2

3

level
z = 1

Putting it all together…

0

1

2

3

level

(2,0) (2,1)

z = 1
Chop to d bits

(1,9)

partially filled empty

Side-channel attacks

�Timing attacks, cache attacks…
�Operations with data-dependent timing

or data-dependent resource usage can
produce vulnerabilities.

�This includes data-dependent rotations,
table lookups (S-boxes), some complex
operations (e.g. multiplications), …

So… MD6 uses…

�Operations on 64-bit words
�The following operations only:

– XOR
– AND

– SHIFT by fixed amounts:
x >> r >>
x << l <<

∧

Security needs vary…

�Already recognized by having different
digest lengths d (for MD6: 1 ≤ d ≤ 512)

�But it is useful to have reduced-strength
versions for analysis, simple
applications, or different points on
speed/security curve.

So… MD6 has …

� A variable number r of rounds.
(Each round is 16 steps.)

� Default r depends on digest size d :
r = 40 + (d/4)

� But r is also an (optional) input.

1681361049680r

512384256224160d

MD6 Compression function

Compression function inputs
� 64 word (512 byte) data block

– message, or chaining values
� 8 word (512 bit) key K
� 1 word U = (level, index)
� 1 word V = parameters:

– Data padding amount
– Key length (0 ≤ keylen ≤ 64 bytes)
– z-bit (aka ``root bit’’)
– L (mode of operation height-limit)
– digest size d (in bits)
– Number r of rounds

� 74 words total

Prepend Constant + Map + Chop

N

�(N)

C

�

π

1-1 map π

const key+UV data

15 8+2 64

89 words

89 words

16 words

Prepend
Map

Chop

Simple compression function:

Input: A[0 .. 88] of A[0 .. 16r + 88]
for i = 89 to 16 r + 88 :

x = Si ⊕ A[i-17] ⊕ A[i-89]
⊕ (A[i-18] ∧ A[i-21])
⊕ (A[i-31] ∧ A[i-67])

x = x ⊕ (x >> ri)
A[i] = x ⊕ (x << li)

return A[16r + 73 .. 16r + 88]

Constants

� Taps 17, 18, 21, 31, 67 optimize diffusion

� Constants Si defined by simple
recurrence; change at end of each 16-
step round

� Shift amounts repeat each round (best
diffusion of 1,000,000 such tables):

9315158292615279151692411l
i

12671113715147212111013510ri

1514131211109876543210

Large Memory (sliding window)

4 201 2 2332354132

� Array of 16r + 89 64-bit words.
� Each word computed as function of

preceding 89 words.

� Last 16 words computed are output.

Small memory (shift register)

104136231723651232

Si

∧ ∧

Shifts

�Shift-register of 89 words (712 bytes)
�Data moves right to left

89 words

Security Analysis

Generate-and-paste attacks (again)

�Because compression functions are
“location-aware”, attacks that do
speculative computation hoping to “cut
and paste it in somewhere” don’t work.

Analyzing mode of operation
General approach:

If compression function f is “secure”,
then mode of operation MD6f is “secure”

e.g.,
� f collision-resistant ⇒ MD6f collision-resistant
� f preimage-resistant ⇒ MD6f preimage-resistant
� f PRF ⇒ MD6f PRF

Property preservations

� Theorem. If f is collision-resistant, then MD6f

is collision-resistant.
� Theorem. If f is preimage-resistant, then

MD6f is preimage-resistant.

� Theorem. If f is a FIL-PRF, then MD6f is a
VIL-PRF.

� Theorem. If f is a FIL-MAC and root node
effectively uses distinct random key (due to
z-bit), then MD6f is a VIL-MAC.

� (See thesis by Chris Crutchfield.)

Indifferentiability (Maurer et al. ‘04)

�Variant notion of indistinguishability
appropriate when distinguisher has
access to inner component (e.g. mode
of operation MD6f / comp. fn f).

MD6f FIL RO VIL RO S

A

? or ?

Indifferentiability (I)

�Theorem. The MD6 mode of operation
is indifferentiable from a random oracle
(viewing compression function as RO)

�Proof: Construct simulator for
compression function that makes it
consistent with any VIL RO and MD6
mode of operation…

�Advantage: ϵ ≤ 2 q2 / 21024

where q = number of calls (measured in
terms of compression function calls).

0

1

2

3

level

Indifferentiability (II)

�Theorem. MD6 compression function f π is
indifferentiable from a FIL random oracle
(with respect to random permutation π).

�Proof: Construct simulator S for π and π-1

that makes it consistent with FIL RO and
comp. fn. construction.

�Advantage: ϵ ≤≤≤≤ q / 21024 + 2q2 / 24672

N

�(N)

C

�

π

π

Differential attacks don’t work

�Theorem. Any standard differential
attack has less chance of finding
collision than standard birthday attack.

�*Proven only for MD6 with large number
of rounds.

Summary

�MD6 is:
– Arguably secure against known

attacks
– Relatively simple
– Highly parallelizable
– Reasonably efficient

MD6 Team
� Dan Bailey
� Sarah Cheng
� Christopher Crutchfield
� Yevgeniy Dodis
� Elliott Fleming
� Asif Khan
� Jayant Krishnamurthy
� Yuncheng Lin
� Leo Reyzin
� Emily Shen
� Jim Sukha
� Eran Tromer
� Yiqun Lisa Yin

� Juniper Networks
� Cilk Arts
� NSF

THE END

MD6
03744327e1e959fbdcdf7331e959cb2c28101166

Round constants Si

�Since they only change every 16 steps,
let S’j be the round constant for round j .

�S’0 = 0x0123456789abcdef

�S’j+1 = (S’j <<< 1) ⊕ (S’j ∧ mask)
�mask = 0x7311c2812425cfa0

Software Implementations

Software implementations

�Simplicity of MD6:
– Same implementation for all digest sizes.

– Same implementation for SHA-3
Reference or SHA-3 Optimized Versions.

– Only optimization is loop-unrolling (16
steps within one round).

NIST SHA-3 Reference
Platforms

49 MB/sec22 MB/secMD6-512

82 MB/sec38 MB/secMD6-224

202 MB/sec38 MB/secSHA-512

59 MB/sec27 MB/secMD6-384

77 MB/sec35 MB/secMD6-256

97 MB/sec44 MB/secMD6-160

64-bit32-bit

Multicore efficiency

SHA-256

MD6-256

Cilk!

Efficiency on a GPU

�Standard
$100
NVidia
GPU

�375
MB/sec
on one
card

8-bit processor (Atmel)

�With L=0 (sequential mode), uses less
than 1KB RAM.

�20 MHz clock
�110 msec/comp. fn for MD6-224

(gcc actual)
�44 msec/comp. fn for MD6-224

(assembler est.)

Hardware Implementations

FPGA Implementation (MD6-512)

�Xilinx XUP FPGA (14K logic slices)
�5.3K slices for round-at-a-time
�7.9K slices for two-rounds-at-a-time
�100MHz clock
�240 MB/sec (two-rounds-at-a-time)

(Independent of digest size due to
memory bottleneck)

