
Massachusetts Institute of Technology Handout 4
6.857: Network and Computer Security March 8, 2011
Professor Ron Rivest Due: March 18, 2011

Problem Set 3

This problem set is due online, at https://courses.csail.mit.edu/6.857/ on Sunday, March 20 by 11:59
PM. Please note that no late submissions will be accepted.

You are to work on this problem set with your assigned group of three or four people, or with your
project group. You should have received an email with your group assignment for this problem set. If not,
please email 6.857-tas@mit.edu. Be sure that all group members can explain the solutions. See Handout
1 (Course Information) for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must appear on a separate page. Mark
the top of each page with your group member names, the course number (6.857), the problem set number
and question, and the date. We have provided templates for LATEX and Microsoft Word on the course website
(see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we will distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on the
homework submission website.

Problem 3-1. Reflections on Trusting PRNGs1

A reliable random-number generator is important to any cryptosystem. Consider a broken random-number
generator that only outputs a limited set of values – an attacker can notice this and then just exhaustively
search each possible “random” choice by brute force.

However, chances are that the legitimate users of the system will notice such a lack of randomness quickly. A
malicious pseudo-random-number generator can be much more devious. In particular, by using cryptography
itself and indistinguishability results, it can ensure that numbers appear random to anyone who isn’t the
malicious party and holds information only the malicious party knows.

Consider the following two scenarios.

1.If Alice is sending a message to Bob signed via DSS, and Randy can predict (but not influence) her
random number generator, can he forge one or more messages? How bad is the break?

2.If Alice is generating an RSA keypair and using a “black box” key generator provided by Randy, can he
generate keys that appear random but let him compute Alice’s private key from her public key? Can
he further ensure that, even if another attacker Eve reverse-engineers the key generator and figures out
what Randy did, she still cannot compute Alice’s private key from the information in the key generator
and Alice’s public key? If so, how?

Problem 3-2. Discrete Logarithms and Matrices

Let p be a large prime, and let G be the following matrix over GF (p):[
2 3
3 5

]
Suppose you are given a matrix Y that is known to be of the form

Y = Gk

1This is a reference to Ken Thompson’s classic “Reflections on Trusting Trust”, which is only tangentially related to this
problem, but you should read it anyway if you haven’t.



2 6.857 : Handout 4: Problem Set 3

for some positive integer k, where k is less than the multiplicative order of G. (Here order(G) is the least t
such that Gt ≡ I, the 2× 2 identity matrix, modulo p.)

Write a Python or SAGE program that takes as input

a prime p, a 2× 2 matrix G modulo p, and a 2× 2 matrix Y modulo p,

and returns

• the order t of G

• Y ’s discrete log, k ≡ logG Y mod p, if it exists, otherwise “None”

Your algorithm should run in time proportional to the square root of the answer it returns. (Don’t search
linearly for t or k, but use one of the cute ideas given in the “Algorithms” section of the Wikipedia page on
Discrete Logarithms or in your textbooks. Don’t use any built-in SAGE functions for computing orders or
discrete logarithms.)

Turn in your code. Explain how it works.

Give the largest d such that your program can solve the above problem in less than one-half hour, modulo
p, where p is the first prime after 10d. (In sage: p = next_prime(10^d) )

Problem 3-3. BrokenSSL

On port 6857 of 6857.scripts.mit.edu can be found an HTTPS server. For some incomprehensible reason,
however, its RSA private key was generated by an OpenSSL implementation modified as follows:

--- openssl-0.9.8k/crypto/rsa/rsa_gen.c.orig 2011-03-09 03:51:07.540568227 -0500
+++ openssl-0.9.8k/crypto/rsa/rsa_gen.c 2011-03-09 04:06:45.240318197 -0500
@@ -101,7 +101,7 @@

r3 = BN_CTX_get(ctx);
if (r3 == NULL) goto err;

- bitsp=(bits+1)/2;
+ bitsp=(bits+1)/10;

bitsq=bits-bitsp;

/* We need the RSA components non-NULL */

In other words, instead of the length of p and q being roughly equal, one is a tenth the size of the other.
This should make the key fairly easy to break.

a. What is the public modulus N = pq and public exponent e?
There are a couple of ways to answer this. You can visit https://6857.scripts.mit.edu:6857/ in your
browser and look at the certificate information. You can also use the openssl s_client command
(run man s_client for more info).

b. What is the private key (p, q, d)?
(You do not need to show your work.)

An HTTPS connection consists of HTTP layered inside TLS (still colloquially called SSL, although properly
that refers to an older version of the protocol). TLS has the following rough structure when used with RSA
for key exchange:

• The client sends a ClientHello message, which consists of a list of supported sets of authentication,
encryption, and key exchange algorithms, and a random number.



6.857 : Handout 4: Problem Set 3 3

• The server chooses the best of these sets that it supports, and replies with a ServerHello message
consisting of the choice and a random number. It also sends a Certificate message.

• The client replies with a ClientKeyExchange message, which consists of a random number called the
“pre-master secret” encrypted to the server’s public key.

• Here it can also reply with a client certificate in case the server requested client authentication.

• Both parties combine the client random number, the server random number, and the pre-master secret
into a “master secret”, from which is derived all the keys for the chosen encryption and authentication
algorithms.

• This ends the handshake, and all future data is encrypted and integrity-protected with the negotiated
algorithms and the generated keys.

See RFC 5246 for the authoritative, gory details, but this should be more or less enough for this problem.
One reasonable implementation of TLS is the Python package TLS Lite from http://trevp.net/tlslite/.
Unlike many other libraries, this is pure Python, as opposed to just a way to access OpenSSL from Python
or some other high-level language; this makes it easier to understand how it works.

c. Connect to our server with TLS Lite, without a client certificate. What are the contents of the web
page at /ping?

>>> from socket import *
>>> from tlslite.TLSConnection import *
>>> s = socket.socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)
>>> s.connect(("6857.scripts.mit.edu", 6857))
>>> settings = HandshakeSettings()
>>> settings.minKeySize = 512
>>> t = TLSConnection(s)
>>> t.handshakeClientCert(settings=settings)
>>> t.write("GET /ping HTTP/1.1\r\n")
>>> t.write("Host: 6857.scripts.mit.edu\r\n")
>>> t.write("\r\n")
>>> t.read()
>>> t.read()
...

(If you’re having trouble with this step please e-mail 6857-tas or come to office hours — this isn’t
intended to be the difficult part of the problem set.)

Because this key setup procedure can potentially be computationally expensive, the ServerHello message
also includes a session ID. The client can request to use the same algorithms and master secret as an existing
connection by specifying its session ID in the ClientHello message. (By default a new session is created for
each connection.)

The ability to resume a session, however, makes attacking a server easier, since the attacker doesn’t have
to hijack an existing connection. While this isn’t a huge vulnerability, since after all if an attacker couldn’t
hijack an existing connection we wouldn’t really need TLS that much, we’ll take advantage of it to make the
attack simpler.

A client is accessing our server every minute using a client certificate, and retrieving a web page. At
http://6857.scripts.mit.edu/ps3 you can see the traffic logs of this client. Since you have broken the server’s
private key, you should be able to recover the pre-master secret.

d. Identify the client random number, server random number, encrypted pre-master secret, and session ID
from one of these leaked communications.



4 6.857 : Handout 4: Problem Set 3

The pre-master secret is always 48 bytes long. Before encryption, it was padded with the PKCS1 v1.5
scheme, which prepends a random string to it. (The full padding is 0x0002, a series of random bytes, 0x00,
and the message.)

e. Recover the 48-byte pre-master secret.

f. Resume the session you have attacked. What are the contents of the web page at /magic-words to an
authenticated user?
You can resume a session from an existing TLSConnection to a new one by retrieving the session
property from the first and passing it to handshakeClientCert for the second. Therefore, if you fake up
a Session object, you can “resume” a session you haven’t used before:

...
>>> sess = Session()
>>> from array import array
>>> sess._calcMasterSecret((3, 1),

array(’B’, [...]), # premaster secret
array(’B’, [...]), # client random
array(’B’, [...])) # server random

>>> sess.sessionID = array(’B’, [...])
>>> sess.cipherSuite = [...]
>>> sess._setResumable(True)
>>> s = socket.socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)
>>> s.connect(("6857.scripts.mit.edu", 6857))
>>> t = TLSConnection(s)
>>> t.handshakeClientCert(session=sess, settings=settings)
...


