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Distributed Computation 

Example: Distributed Computation on the Internet (SETI@home, etc.) 

DistComp() 
{ 
    x = Receive(); 
    result = Func(x); 
    Send(result); 
} 

Internet 

•  Cannot trust owners 
–  Cannot trust software and its result 

•  Need a secure platform 
–  Dispatcher can authenticate “hardware” and “software” 
–  Guarantees the integrity and privacy of “execution”  

Job Dispatcher 
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Some Approaches 




Sensors to detect attacks"
•   Expensive and non-scalable"
•   Continually battery-powered"

Tamper-Proof Package: IBM 4758 

Trusted Platform Module (TPM) 



A separate chip (TPM) for 
security functions"

•   Decrypted “secondary” keys 
   can be read out from the bus"
•   Because TPM is passive,  
   can reset and modify registers"
•   Certifying operating system 
   logistically difficult"
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Single-Chip Secure Processor 

•  Build a secure platform with a “single-chip” processor as 
the only trusted hardware component 

Protected Environment"

Memory"

I/O"

Security 
Kernel 

(trusted part 
of an OS) 

•  A single chip is easier and cheaper to protect 
•  The processor can be authenticated, identifies the 

security kernel, and protects program state in off-chip 
memory 

Protect 

Identify 



5 

Authenticating the Processor 

•  Each processor should be unique 
–  Contains a unique secret key SK 

•  Use public key cryptography 
–  A key infrastructure (such as PKI) certifies the public key 
–  PK can check if a message is signed with SK 
–  If a message is encrypted with PK, then only SK can decrypt it 

properly 

Sign a message with the key 
 A server can authenticate the processor 

Encrypt with the public key 
 Only the processor can decrypt 

Processor  with 
a secret key 

Processor’s 
Public Key 
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Authenticating Software 

•  The processor identifies security kernel by computing the 
kernel’s hash (during bootup) 
–  Cryptographic hash works as a unique fingerprint 
–  Security kernel identifies application programs 

•  H(Kernel) is included in a signature by the processor 
–  Security kernel includes H(App) in the signature 

H(Kernel), H(App) in a signature 
 A server can authenticate the processor, 

the security kernel, and the application 

Application  
(DistComp)


Security 
Kernel  H(Kernel) 

H(App) 
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Is one concerned with physical attack? 

•  Storing digital information in a device in a way that is 
resistant to physical attacks is difficult and expensive 
–  Adversaries can physically extract secret keys from EEPROM 

while processor is off 
–  Trusted party must embed and test secret keys in a secure 

location 
–  EEPROM adds additional complexity to manufacturing 

•  PUFs (see L16) generate volatile keys that are 
harder to extract – however, keys are not 
completely reliable! 

EEPROM/Fuses 

Processor Probe 



PUFs (Recap) 
 and 

 Reliable PUFs 
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An Arbiter-Based Silicon PUF 

•  Compare two paths with an identical delay in design 
–  Random process variation determines which path is faster 
–  An arbiter outputs 1-bit digital response 

…"

n-bit!
Challenge!

Rising  
Edge!

1 if top!
path is !
faster,!
else 0!
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Arbiter PUF Experiments: 64 and 512 stages 

64 stage 

512 stage 



Using a PUF as a Key Generator 

•  Are only going to generate a fixed number of bits 
from a PUF 
–  Assume small enough number of bits to preclude 

modeling attacks or that bits are kept secret 

•  Cannot afford any errors! 

•  Important question: How to correct errors 
guaranteeing limited leakage of information? 
–  Need to quantify entropy of PUF 
–  Need to analyze/quantify leakage due to redundant 

syndrome bits 

11 
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Reliable Response Generation: 
Initialization 

•  To initialize the circuit, an error correcting syndrome is 
generated from the reference PUF circuit output 
–  Syndrome is public information 
–  Can be stored on-chip, off-chip, or on a remote server 

•  For example, BCH(127,36,31) code will correct up to 15 
errors out of 127 bits to generate 36-bit secret 
–  91-bit syndrome gives away 91 bits of codeword 
–  Failure probability will be dependent on PUF error rate 

PUF 
Circuit 

Encoding 
m 

n Before 
First Use: 
Initialization Syndrome 

(public information) 
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Reliable Response Generation: 
In the Field 

•  In the field, the syndrome will be used to re-generate the 
same PUF reference output from the circuit 

In the Field: 
Response 
Generation 

PUF 
Circuit 

Syndrome 

Decoding 

m 

n n 

Reliable 
PUF 



Error Correction Complexity 

•  Some examples of BCH codes that are 
necessary to correct “raw” PUF outputs 
–  (127, 36, 31) gives 36 secret bits, corrects 15 errors; 

need to run 4 times to get 128-bit secret 
–  (255, 63, 61) gives 63 secret bits, corrects 30 errors; 

need to run twice 

•  BCH engine complexity grows quadratically with 
code word size 

14 
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Private/Public Key Pair Generation 

•  PUF response is used as a random seed to a private/ 
public key generation algorithm 
–  No secret needs to be handled by a manufacturer 

•  A device generates a key pair on-chip, and outputs a 
public key 
–  The public key needs to be endorsed 
–  No one needs to know private key 

Seed 

Private key 

Public key RSA Key 
Generation 

Reliable 
PUF 
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Single-Chip Secure Processor 

•  Build a secure platform with a “single-chip” processor as 
the only trusted hardware component 

Protected Environment"

Memory"

I/O"

Security 
Kernel 

(trusted part 
of an OS) 

•  The processor can be authenticated, identifies the 
security kernel, and protects program state in off-chip 
memory 

Protect 

Identify 



Off-Chip Memory Protection 
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Microsoft Xbox (2002) 

•  Southbridge ASIC 
–  Secure boot code 
–  128-bit secret key 

•  Flash ROM 
–  Encrypted Bootloader 

•  Broken by tapping bus 
–  Read the 128-bit key 
–  Cost about $50 

From Andrew “Bunnie” Huang’s Webpage 

Bootloader/OS Secure boot 
RC4/128-bit key 

Observation 
-  Adversary can easily  
  read anything on off- 
  chip bus 
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Memory Encryption 

•  Encrypt a cache block to protect privacy 
–  Must be randomized to prevent comparing two blocks 

•  Use a fast symmetric key block cipher (3DES, AES) 
–  The same processor encrypts and decrypts 
–  16 Byte input  16 Byte encrypted output 

•  Decryption can add latency to each memory access 

Processor External Memory 

ENCRYPT 

DECRYPT 

write 

read 
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Direct Encryption: encrypt 

Processor 

Memory 

L2 Block 

B[1] 

B[2] 

B[3] 

B[4] 

RV 

Random # 

AESK 

AESK 

AESK 

AESK 

EB[1] EB[2] EB[3] EB[4] RV 
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Direct Encryption: decrypt 

Processor 

Memory 
EB[1] EB[2] EB[3] EB[4] RV 

B[1] 

B[2] 

B[3] 

B[4] 

AESK
-1 

AESK
-1 

AESK
-1 

AESK
-1 

L2 Miss!! 

Memory 
Request 

Read 

•  AES operation can start only after encrypted blocks are 
read from memory 
 Decryption directly impacts off-chip latency 
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Counter-Mode Encryption: encrypt 

Processor 

Memory 

B[1] 

B[2] 

B[3] 

B[4] 

Counter 

(Addr,TS,1) 

(Addr,TS,2) 

(Addr,TS,3) 

(Addr,TS,4) 

Time Stamp (TS) 

AESK
 

AESK
 

AESK
 

AESK
 

One-Time-Pad (OTP) 

EB[1] EB[2] EB[3] EB[4] TS 

To Memory 
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Counter-Mode Encryption: decrypt 

Processor 

Memory 
EB[1] EB[2] EB[3] EB[4] 

B[1] 

B[2] 

B[3] 

B[4] 

AESK
 

AESK
 

AESK
 

AESK
 

L2 Miss!! 

Memory 
Request 

Read 

•  AES can be performed in parallel to memory accesses 
 Reduces the overhead by 40% on average 

TS 

(Addr,TS,1) 

(Addr,TS,2) 

(Addr,TS,3) 

(Addr,TS,4) 
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Integrity Verification 

•  Integrity Verification 
–  Check if a value from external memory is the most recent value 

stored at the address by the processor 

Processor External Memory 

write 

read 

INTEGRITY 
VERIFICATION 

ENCRYPT / 
DECRYPT 
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MAC-based Integrity Verification? 

•  Message Authentication Code (MAC) is often used to authenticate a 
network message 

•  Store MAC(address, value) on writes, and check the MAC on reads 
(used by XOM architecture from Stanford) 
–  Does NOT work  Replay attacks 

•  Need to securely remember the off-chip memory state 

Keyed MAC 

Processor Untrusted RAM 

write 

read 

V
E

RI 
F
Y 

124,  
MAC(0x45, 124) 

Address 0x45 

120,  
MAC(0x45, 120) IGNORE 
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Hash Trees (Merkle Trees) 

V1 V3 V4 

L2 block 

Untrusted Memory 

Processor 

Data Values 
MISS V2 READ 

VERIFY 

h1=h(V1.V2) h2=h(V3.V4) 

root = h(h1.h2) 

VERIFY 

Construct a hash tree 
•  On-chip Storage: 

16-20 Bytes 
•  Read/Write Cost: 

logarithmic 
  10x slowdown 
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cache 

Cached Hash Trees   

V1 V2 V3 V4 

Untrusted Memory 

Processor 

cache 
MISS 

cache 

h1=h(V1.V2) h2=h(V3.V4) 

root = h(h1.h2) 

VERIFY 

VERIFY 

MISS 

VERIFY 

DONE! 

Cache hashes on-chip 
  On-chip cache is 

trusted 
  Stop checking 

earlier 
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Hiding Verification Latency


•  Integrity verification takes at least 1 hash computation 
–  SHA-1 has 80 rounds  80 cycles to compute 

•  Speculatively use the value and check in the background 
–  Not a security problem for most instructions 
–  No need for precise exception; simply abort 

•  Except for instructions that can compromise security 
–  Example: signing with a private (secret) key 

Load data 
load r0,(r1)!
addi r0,r0,#3!
store (r1),r0!

Integrity Verification  
Use data Store Result 

Exception? 
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Security Review 

•  Have we built a secure computing system? 

Flash/HDD 

Kernel 

SDRAM 

SDRAM Secure 
-  Identified using hashes 



Secure 
- Integrity verification and encryption 

For greater physical security use PUFs and techniques from 
smart cards and physical intrusion detection circuitry (IBM 
4758) 


