
1

6.857 L17

Secure Processors

Srini Devadas

2

Distributed Computation

Example: Distributed Computation on the Internet (SETI@home, etc.)

DistComp()
{
 x = Receive();
 result = Func(x);
 Send(result);
}

Internet

•  Cannot trust owners
–  Cannot trust software and its result

•  Need a secure platform
–  Dispatcher can authenticate “hardware” and “software”
–  Guarantees the integrity and privacy of “execution”

Job Dispatcher

3

Some Approaches

Sensors to detect attacks"
•  Expensive and non-scalable"
•  Continually battery-powered"

Tamper-Proof Package: IBM 4758

Trusted Platform Module (TPM)

A separate chip (TPM) for
security functions"

•  Decrypted “secondary” keys 
 can be read out from the bus"
•  Because TPM is passive,  
 can reset and modify registers"
•  Certifying operating system 
 logistically difficult"

4

Single-Chip Secure Processor

•  Build a secure platform with a “single-chip” processor as
the only trusted hardware component

Protected Environment"

Memory"

I/O"

Security
Kernel

(trusted part
of an OS)

•  A single chip is easier and cheaper to protect
•  The processor can be authenticated, identifies the

security kernel, and protects program state in off-chip
memory

Protect

Identify

5

Authenticating the Processor

•  Each processor should be unique
–  Contains a unique secret key SK

•  Use public key cryptography
–  A key infrastructure (such as PKI) certifies the public key
–  PK can check if a message is signed with SK
–  If a message is encrypted with PK, then only SK can decrypt it

properly

Sign a message with the key
 A server can authenticate the processor

Encrypt with the public key
 Only the processor can decrypt

Processor with
a secret key

Processor’s
Public Key

6

Authenticating Software

•  The processor identifies security kernel by computing the
kernel’s hash (during bootup)
–  Cryptographic hash works as a unique fingerprint
–  Security kernel identifies application programs

•  H(Kernel) is included in a signature by the processor
–  Security kernel includes H(App) in the signature

H(Kernel), H(App) in a signature
 A server can authenticate the processor,

the security kernel, and the application

Application
(DistComp)

Security
Kernel H(Kernel)

H(App)

7

Is one concerned with physical attack?

•  Storing digital information in a device in a way that is
resistant to physical attacks is difficult and expensive
–  Adversaries can physically extract secret keys from EEPROM

while processor is off
–  Trusted party must embed and test secret keys in a secure

location
–  EEPROM adds additional complexity to manufacturing

•  PUFs (see L16) generate volatile keys that are
harder to extract – however, keys are not
completely reliable!

EEPROM/Fuses

Processor Probe

PUFs (Recap)
 and

 Reliable PUFs

8

9

An Arbiter-Based Silicon PUF

•  Compare two paths with an identical delay in design
–  Random process variation determines which path is faster
–  An arbiter outputs 1-bit digital response

…"

n-bit!
Challenge!

Rising  
Edge!

1 if top!
path is !
faster,!
else 0!

D Q
1

1

0

0

1

1

0

0

1

1

0

0

1 0 1 0 0 1

0 1

G
Response!

10

Arbiter PUF Experiments: 64 and 512 stages

64 stage

512 stage

Using a PUF as a Key Generator

•  Are only going to generate a fixed number of bits
from a PUF
–  Assume small enough number of bits to preclude

modeling attacks or that bits are kept secret

•  Cannot afford any errors!

•  Important question: How to correct errors
guaranteeing limited leakage of information?
–  Need to quantify entropy of PUF
–  Need to analyze/quantify leakage due to redundant

syndrome bits

11

12

Reliable Response Generation:
Initialization

•  To initialize the circuit, an error correcting syndrome is
generated from the reference PUF circuit output
–  Syndrome is public information
–  Can be stored on-chip, off-chip, or on a remote server

•  For example, BCH(127,36,31) code will correct up to 15
errors out of 127 bits to generate 36-bit secret
–  91-bit syndrome gives away 91 bits of codeword
–  Failure probability will be dependent on PUF error rate

PUF
Circuit

Encoding
m

n Before
First Use:
Initialization Syndrome

(public information)

13

Reliable Response Generation:
In the Field

•  In the field, the syndrome will be used to re-generate the
same PUF reference output from the circuit

In the Field:
Response
Generation

PUF
Circuit

Syndrome

Decoding

m

n n

Reliable
PUF

Error Correction Complexity

•  Some examples of BCH codes that are
necessary to correct “raw” PUF outputs
–  (127, 36, 31) gives 36 secret bits, corrects 15 errors;

need to run 4 times to get 128-bit secret
–  (255, 63, 61) gives 63 secret bits, corrects 30 errors;

need to run twice

•  BCH engine complexity grows quadratically with
code word size

14

15

Private/Public Key Pair Generation

•  PUF response is used as a random seed to a private/
public key generation algorithm
–  No secret needs to be handled by a manufacturer

•  A device generates a key pair on-chip, and outputs a
public key
–  The public key needs to be endorsed
–  No one needs to know private key

Seed

Private key

Public key RSA Key
Generation

Reliable
PUF

16

Single-Chip Secure Processor

•  Build a secure platform with a “single-chip” processor as
the only trusted hardware component

Protected Environment"

Memory"

I/O"

Security
Kernel

(trusted part
of an OS)

•  The processor can be authenticated, identifies the
security kernel, and protects program state in off-chip
memory

Protect

Identify

Off-Chip Memory Protection

17

18

Microsoft Xbox (2002)

•  Southbridge ASIC
–  Secure boot code
–  128-bit secret key

•  Flash ROM
–  Encrypted Bootloader

•  Broken by tapping bus
–  Read the 128-bit key
–  Cost about $50

From Andrew “Bunnie” Huang’s Webpage

Bootloader/OS Secure boot
RC4/128-bit key

Observation
-  Adversary can easily
 read anything on off-
 chip bus

19

Memory Encryption

•  Encrypt a cache block to protect privacy
–  Must be randomized to prevent comparing two blocks

•  Use a fast symmetric key block cipher (3DES, AES)
–  The same processor encrypts and decrypts
–  16 Byte input  16 Byte encrypted output

•  Decryption can add latency to each memory access

Processor External Memory

ENCRYPT

DECRYPT

write

read

20

Direct Encryption: encrypt

Processor

Memory

L2 Block

B[1]

B[2]

B[3]

B[4]

RV

Random #

AESK

AESK

AESK

AESK

EB[1] EB[2] EB[3] EB[4] RV

21

Direct Encryption: decrypt

Processor

Memory
EB[1] EB[2] EB[3] EB[4] RV

B[1]

B[2]

B[3]

B[4]

AESK
-1

AESK
-1

AESK
-1

AESK
-1

L2 Miss!!

Memory
Request

Read

•  AES operation can start only after encrypted blocks are
read from memory
 Decryption directly impacts off-chip latency

22

Counter-Mode Encryption: encrypt

Processor

Memory

B[1]

B[2]

B[3]

B[4]

Counter

(Addr,TS,1)

(Addr,TS,2)

(Addr,TS,3)

(Addr,TS,4)

Time Stamp (TS)

AESK

AESK

AESK

AESK

One-Time-Pad (OTP)

EB[1] EB[2] EB[3] EB[4] TS

To Memory

23

Counter-Mode Encryption: decrypt

Processor

Memory
EB[1] EB[2] EB[3] EB[4]

B[1]

B[2]

B[3]

B[4]

AESK

AESK

AESK

AESK

L2 Miss!!

Memory
Request

Read

•  AES can be performed in parallel to memory accesses
 Reduces the overhead by 40% on average

TS

(Addr,TS,1)

(Addr,TS,2)

(Addr,TS,3)

(Addr,TS,4)

24

Integrity Verification

•  Integrity Verification
–  Check if a value from external memory is the most recent value

stored at the address by the processor

Processor External Memory

write

read

INTEGRITY
VERIFICATION

ENCRYPT /
DECRYPT

25

MAC-based Integrity Verification?

•  Message Authentication Code (MAC) is often used to authenticate a
network message

•  Store MAC(address, value) on writes, and check the MAC on reads
(used by XOM architecture from Stanford)
–  Does NOT work  Replay attacks

•  Need to securely remember the off-chip memory state

Keyed MAC

Processor Untrusted RAM

write

read

V
E

RI
F
Y

124,
MAC(0x45, 124)

Address 0x45

120,
MAC(0x45, 120) IGNORE

26

Hash Trees (Merkle Trees)

V1 V3 V4

L2 block

Untrusted Memory

Processor

Data Values
MISS V2 READ

VERIFY

h1=h(V1.V2) h2=h(V3.V4)

root = h(h1.h2)

VERIFY

Construct a hash tree
•  On-chip Storage:

16-20 Bytes
•  Read/Write Cost:

logarithmic
  10x slowdown

27

cache

Cached Hash Trees

V1 V2 V3 V4

Untrusted Memory

Processor

cache
MISS

cache

h1=h(V1.V2) h2=h(V3.V4)

root = h(h1.h2)

VERIFY

VERIFY

MISS

VERIFY

DONE!

Cache hashes on-chip
  On-chip cache is

trusted
  Stop checking

earlier

28

Hiding Verification Latency

•  Integrity verification takes at least 1 hash computation
–  SHA-1 has 80 rounds  80 cycles to compute

•  Speculatively use the value and check in the background
–  Not a security problem for most instructions
–  No need for precise exception; simply abort

•  Except for instructions that can compromise security
–  Example: signing with a private (secret) key

Load data
load r0,(r1)!
addi r0,r0,#3!
store (r1),r0!

Integrity Verification
Use data Store Result

Exception?

29

Security Review

•  Have we built a secure computing system?

Flash/HDD

Kernel

SDRAM

SDRAM Secure
-  Identified using hashes

Secure
- Integrity verification and encryption

For greater physical security use PUFs and techniques from
smart cards and physical intrusion detection circuitry (IBM
4758)

