Fully Homomorphic Encryption

Craig Gentry

IBM Watson

MIT Guest Lecture April 2010

The Goal

I want to delegate <u>processing</u> of my data, without giving away <u>access</u> to it.

Application: Private Google Search

I want to delegate <u>processing</u> of my data, without giving away <u>access</u> to it.

- Private search
 - Do a Google search
 - But encrypt my query, so that Google cannot "see" it
 - I still want to get the same results
 - Results would be encrypted too

Application: Cloud Computing

I want to delegate <u>processing</u> of my data, without giving away <u>access</u> to it.

- Storing my files on the cloud
 - Encrypt them to protect my information
 - Later, I want to retrieve the files containing "cloud" within 5 words of "computing".
 - Cloud should return only these (encrypted) files, without knowing the key
- Privacy combo: Encrypted query on encrypted data

Outline

- Why is it possible even in principle?
 - A physical analogy for what we want
 - What we want: <u>fully homomorphic encryption (FHE)</u>
 - Rivest, Adleman, and Dertouzos defined FHE in 1978, but constructing FHE was open for 30 years
- Our FHE construction

Can we separate processing from access?

Actually, separating <u>processing</u> from <u>access</u> even makes sense in the physical world...

An Analogy: Alice's Jewelry Store

- Workers assemble raw materials into jewelry
- But Alice is worried about theft

 How can the workers <u>process</u> the raw

An Analogy: Alice's Jewelry Store

- Alice puts materials in locked glovebox
 - For which only she has the key
- Workers assemble jewelry in the box

Alice unlocks box to get "results"

An Encryption Glovebox?

- Alice delegated <u>processing</u> without giving away <u>access</u>.
- But does this work for encryption?
 - Can we create an "encryption glovebox" that would allow the cloud to process data while it remains encrypted?

Public-key Encryption

- ☐ Three procedures: KeyGen, Enc, Dec
 - $(sk,pk) \leftarrow KeyGen(\lambda)$
 - Generate random public/secret key-pair
 - \blacksquare c \leftarrow Enc(pk, m)
 - Encrypt a message with the public key
 - \blacksquare m \leftarrow Dec(sk, c)
 - Decrypt a ciphertext with the secret key

Homomorphic Public-key Encryption

- Another procedure: Eval (for Evaluate)
 - \blacksquare $c \leftarrow Eval(pk, f, c_1,...,c_t)$

function

Encryption of $f(m_1,...,m_t)$. I.e., $Dec(sk, c) = f(m_1, ...m_t)$ Encryptions of inputs m₁,...,m_t to f

- No info about $m_1, ..., m_t$, $f(m_1, ...m_t)$ is leaked
- $f(m_1, ...m_t)$ is the "ring" made from raw materials $m_1, ..., m_t$ inside the encryption box

Fully Homomorphic Public-key Encryption

- Another procedure: Eval (for Evaluate)
 - \blacksquare $c \leftarrow Eval(pk, f, c_1,...,c_t)$

function

Encryption of $f(m_1,...,m_t)$. I.e., $Dec(sk, c) = f(m_1, ...m_t)$ Encryptions of inputs m₁,...,m_t to f

- FHE scheme should:
 - Work for any well-defined function f
 - > Be efficient

Back to Our Applications

$$c \leftarrow Eval(pk, f, c_1,...,c_t),$$

 $Dec(sk, c) = f(m_1, ..., m_t)$

- Private Google search
 - Encrypt bits of my query: $c_i \leftarrow Enc(pk, m_i)$
 - Send pk and the c_i's to Google
 - Google expresses its search algorithm as a boolean function f of a user query
 - Google sends $c \leftarrow Eval(pk, f, c_1,...,c_t)$
 - I decrypt to obtain my result f(m₁, ..., m_t)

Back to Our Applications

$$c \leftarrow Eval(pk, f, c_1,...,c_t),$$

 $Dec(sk, c) = f(m_1, ..., m_t)$

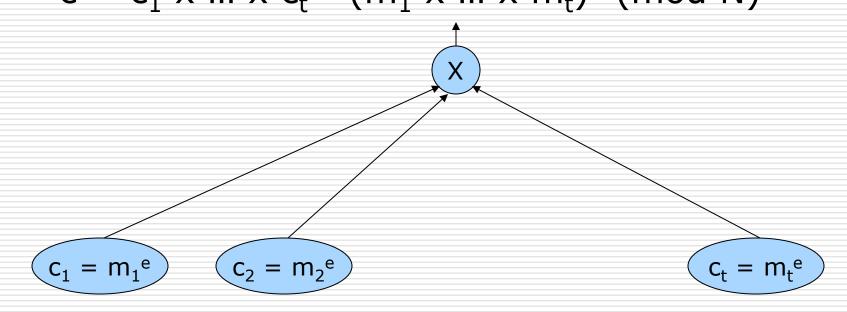
- Cloud Computing with Privacy
 - Encrypt bits of my files $c_i \leftarrow Enc(pk, m_i)$
 - Store pk and the c_i's on the cloud
 - Later, I send query :"cloud" within 5 words of "computing"
 - Let f be the boolean function representing the cloud's response if data was unencrypted
 - Cloud sends $c \leftarrow Eval(pk, f, c_1,...,c_t)$
 - I decrypt to obtain my result f(m₁, ..., m_t)

Previous Schemes

$$c \leftarrow Eval(pk, f, c_1,...,c_t),$$

 $Dec(sk, c) = f(m_1, ..., m_t)$

- Only "somewhat homomorphic"
 - Can only <u>handle</u> some functions f
- □ RSA works for MULT function (mod N) $c = c_1 \times ... \times c_t = (m_1 \times ... \times m_t)^e$ (mod N)



"Somewhat Homomorphic" Schemes

- RSA works for MULT gates (mod N)
- Paillier, GM, work for ADD, XOR
- BGN05 works for quadratic formulas
- MGH08 works for low-degree polynomials
 - size of c ← Eval(pk, f, c₁,...,c_t) grows exponentially with degree of polynomial f.
- No FHE scheme
 - Rivest, Adleman and Dertouzos proposed the idea in 1978.

FHE: What does "Efficient" Mean?

- Here is a trivial (inefficient) FHE scheme:
 - $(f, c_1,...,c_n) = c^* \leftarrow Eval(pk, f, c_1,...,c_n)$
 - Dec(sk, c*) decrypts individual c_i's, applies f to m_i's

(The worker does nothing. Alice assembles the jewelry by herself.)

- But the point is to delegate processing!
- What we want:
 - c* is a "normal" compact ciphertext
 - Time to decrypt c* is independent of f.

Efficiency of FHE

- KeyGen, Enc, and Dec all run in time polynomial in the security param λ.
 - In particular, the time needed to decrypt $c \leftarrow \text{Eval}(pk, f, c_1,...,c_t)$ is *independent* of f.
- \square Eval(pk, f, c₁,...,c_t) runs in time g(λ) S_f, where g is a poly and S_f is the size of the boolean circuit (# of gates) to compute f.
 - \blacksquare S_f = O(T_f log T_f), T_f is Turing complexity of f

Outline

- Why is it possible even in principle?
 - A physical analogy for what we want
 - What we want: <u>fully homomorphic encryption (FHE)</u>
 - Rivest, Adleman, and Dertouzos defined FHE in 1978, but constructing FHE was open for 30 years
- Our FHE construction

Not my original STOC09 scheme.
Rather, a simpler scheme by
Marten van Dijk, me, Shai Halevi,
and Vinod Vaikuntanathan

Smart and
Vercauteren recently
proposed an
optimization of the
STOC09 scheme.

Step 1: Construct a Useful "Somewhat Homomorphic" Scheme

Why a somewhat homomorphic scheme?

- Can't we construct a FHE scheme directly?
 - If I knew how, I would tell you.
 - Later: somewhat homomorphic → FHE
 - If somewhat homomorphic scheme has a certain property (bootstrappability)

- Shared secret key: odd number p
- \square To encrypt a bit m in $\{0,1\}$:
 - Choose at random small r, large q
 - The "noise"

 Output c = m + 2r + pq

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output $m = (c \mod p) \mod 2$
 - - = LSB(c) XOR LSB([c/p])

- Shared secret key: odd number 101
- \square To encrypt a bit m in $\{0,1\}$:
 - Choose at random small r, large q
 - The "noise"

 Output c = m + 2r + pq

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output $m = (c \mod p) \mod 2$
 - - = LSB(c) XOR LSB([c/p])

- Shared secret key: odd number 101
- \square To encrypt a bit m in $\{0,1\}$: (say, m=1)
 - Choose at random small r, large q

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output $m = (c \mod p) \mod 2$
 - > m = c p [c/p] mod 2
 = c [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

- Shared secret key: odd number 101
- \square To encrypt a bit m in $\{0,1\}$: (say, m=1)
 - Choose at random small r (=5), large q (=9)
 - Output c = m + 2r + pq

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output $m = (c \mod p) \mod 2$
 - - = LSB(c) XOR LSB([c/p])

- Shared secret key: odd number 101
- \square To encrypt a bit m in $\{0,1\}$: (say, m=1)
 - Choose at random small r (=5), large q (=9)
 - The "noise"

 Output $c = \frac{m + 2r}{m + 2r} + pq = 11 + 909 = 920$
 - Ciphertext is close to a multiple of p
 - m = LSB of distance to nearest multiple of p
- □ To decrypt c:
 - Output $m = (c \mod p) \mod 2$
 - \rightarrow m = c p [c/p] mod 2
 - $= c [c/p] \mod 2$
 - = LSB(c) XOR LSB([c/p])

- Shared secret key: odd number 101
- \square To encrypt a bit m in $\{0,1\}$: (say, m=1)
 - Choose at random small r (=5), large q (=9)
 - The "noise"

 Output $c = \frac{m + 2r}{m + 2r} + pq = 11 + 909 = 920$
 - Ciphertext is close to a multiple of p
 - m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output m = (c mod p) mod 2 = 11 mod 2 = 1
 - \triangleright m = c p [c/p] mod 2
 - $= c [c/p] \mod 2$
 - = LSB(c) XOR LSB([c/p])

Homomorphic Public-Key Encryption

- Secret key is an odd p as before
- Public key is many "encryptions of 0"
 - $\mathbf{x}_{i} = [q_{i}p + 2r_{i}]_{x0} \text{ for } i=1,2,...,n$
- \square Enc_{pk}(m) = [subset-sum(x_i's)+m+2r]_{x0}
- \square $Dec_{sk}(c) = (c mod p) mod 2$
- Eval as before

Security of E

- Approximate GCD (approx-gcd) Problem:
 - Given many $x_i = s_i + q_i p$, output p
 - Example params: $s_i \sim 2^{\lambda}$, $p \sim 2^{\lambda^2}$, $q_i \sim 2^{\lambda^5}$, where λ is security parameter
 - \triangleright Best known attacks (lattices) require 2^{λ} time
- ☐ Reduction:
 - if approx-gcd is hard, E is semantically secure

Why is E homomorphic?

- Basically because:
 - If you add or multiply two near-multiples of p, you get another near multiple of p...

Why is E homomorphic?

- \Box $c_1 = m_1 + 2r_1 + q_1p$, $c_2 = m_2 + 2r_2 + q_2p$
- Noise: Distance to nearest multiple of p $C_1+C_2 = (m_1+m_2) + 2(r_1+r_2) + (q_1+q_2)p$
 - $(m_1+m_2)+2(r_1+r_2)$ still much smaller than p
 - $\rightarrow c_1 + c_2 \mod p = (m_1 + m_2) + 2(r_1 + r_2)$
- \Box $c_1 \times c_2 = (m_1 + 2r_1)(m_2 + 2r_2)$ $+(c_1q_2+q_1c_2-q_1q_2)p$
 - $(m_1+2r_1)(m_2+2r_2)$ still much smaller than p
 - $\rightarrow c_1 x c_2 \mod p = (m_1 + 2r_1)(m_2 + 2r_2)$
 - \rightarrow (c₁xc₂ mod p) mod 2 = m₁xm₂ mod 2

Why is E homomorphic?

- \Box $c_1 = m_1 + 2r_1 + q_1p$, ..., $c_t = m_t + 2r_t + q_tp$
- Let f be a multivariate poly with integer coefficients (sequence of +'s and x's)
- Let $c = \text{Eval}_{E}(pk, f, c_1, ..., c_t) = f(c_1, ..., c_t)$ Suppose this noise is much smaller than p
 - \blacksquare f(c₁, ..., c_t) = f(m₁+2r₁, ..., m_t+2r_t) + qp
 - Then (c mod p) mod $2 = f(m_1, ..., m_t)$ mod 2

That's what we want!

Why is E *somewhat* homomorphic?

- \square What if $|f(m_1+2r_1, ..., m_t+2r_t)| > p/2?$
 - $c = f(c_1, ..., c_t) = f(m_1 + 2r_1, ..., m_t + 2r_t) + qp$
 - Nearest p-multiple to c is q'p for q' ≠ q
 - (c mod p) = $f(m_1+2r_1, ..., m_t+2r_t) + (q-q')p$
 - (c mod p) mod 2
 - = $f(m_1, ..., m_t) + (q-q') \mod 2$
 - = ???
- We say E can <u>handle</u> f if:
 - $|f(x_1, ..., x_t)| < p/4$
 - whenever all |x_i| < B, where B is a bound on the noise of a fresh ciphertext output by Enc_F

Example of a Function that E Handle

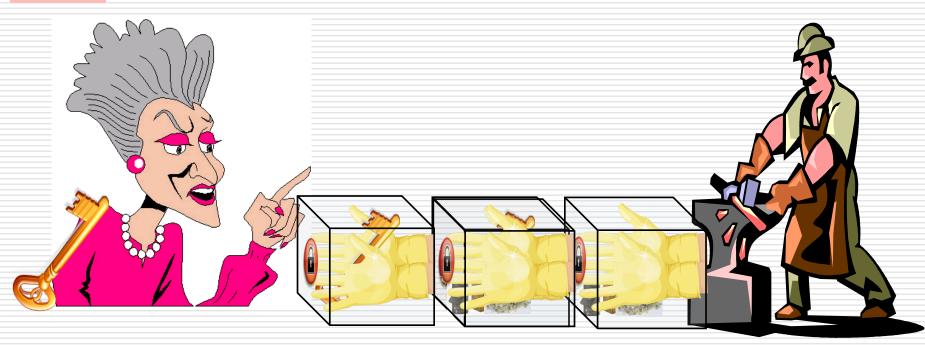
- □ Elementary symmetric poly of degree d:
 - $f(x_1, ..., x_t) = x_1 \cdot x_2 \cdot x_d + ... + x_{t-d+1} \cdot x_{t-d+2} \cdot x_t$
- \Box If $|x_i| < B$, then, $|f(x_1, ..., x_t)| < t^{d} B^{d}$
- E can handle f if:
 - $t^{d} \cdot B^{d} < p/4 \rightarrow basically if: d < (log p)/(log tB)$
- \square Example params: B $\sim 2^{\lambda}$, p $\sim 2^{\lambda^2}$
 - **Eval**_E can handle an elem symm poly of degree approximately λ.

Step 2: Somewhat Homomorphic → FHE (if somewhat homomorphic scheme has a certain property: bootstrappability)

Back to Alice's Jewelry Store

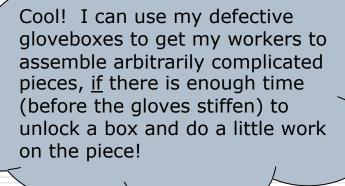
- Suppose Alice's boxes are defective.
 - After the worker works on the jewel for 1 minute, the gloves stiffen!
- Some complicated pieces take 10 minutes to make.
- Can Alice still use her boxes?
- Hint: you can put one box inside another.

Back to Alice's Jewelry Store



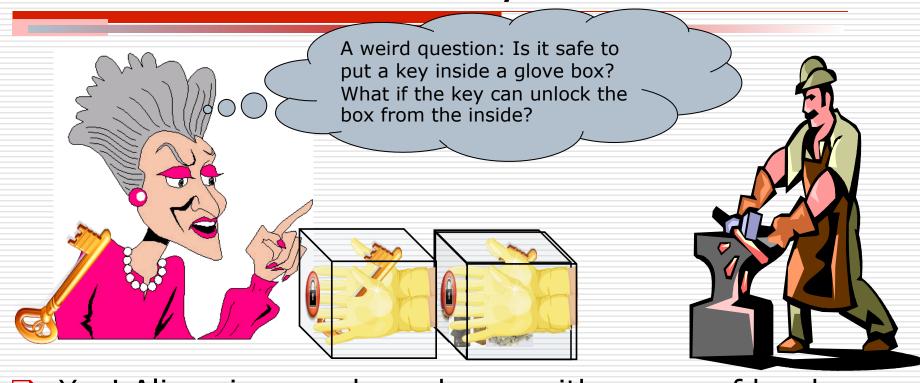
- Yes! Alice gives worker more boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1 minute.
- Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.
- And so on...

Back to Alice's Jow



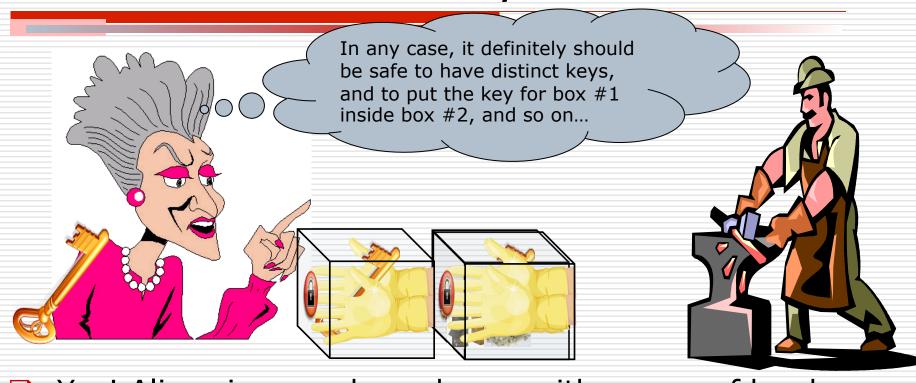
- Yes! Alice gives worker a boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1
- Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.

Back to Alice's Jewelry Store



- Yes! Alice gives worker a boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1
- Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.

Back to Alice's Jewelry Store



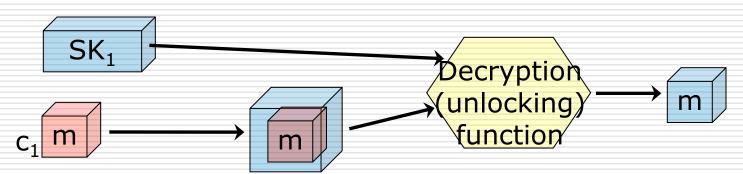
- Yes! Alice gives worker a boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1
- Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.

How is it Analogous?

- Alice's jewelry store: Worker can assemble any piece if gloves can "handle" unlocking a box (plus a bit) before they stiffen
- Encryption:
 - If E can handle Dec_E (plus a bit), then we can use E to construct a FHE scheme E^{FHE}

Warm-up: Applying Eval to Dec

Blue means box #2. It also means encrypted under key PK₂.



Red means box #1. It also means encrypted under key PK_1 .

Warm-up: Applying Eval to Dec

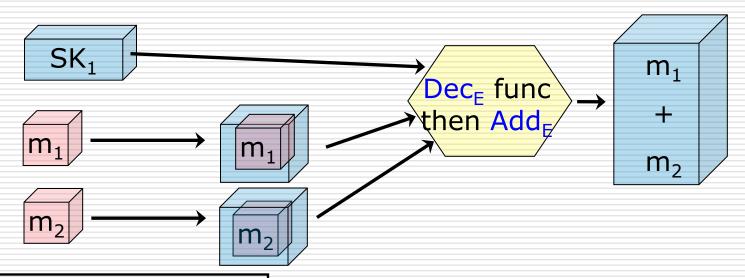
- \square Suppose c = Enc(pk, m)
- Dec_E($sk_1^{(1)}$, ..., $sk_1^{(t)}$, $c_1^{(1)}$, ..., $c_1^{(u)}$) = m, where I have split sk and c into bits
- Let $sk_1^{(1)}$ and $c_1^{(1)}$, be ciphertexts that encrypt $sk_1^{(1)}$ and $c_1^{(1)}$, and so on, under pk_2 .
- Then,

Eval(pk_2 , Dec_E , $sk_1^{(1)}$, ..., $sk_1^{(t)}$, $c_1^{(1)}$, ..., $c_1^{(1)}$) = m

i.e., a ciphertext that encrypts m under pk₂.

Applying Eval to (Dec_E then Add_E)

Blue means box #2. It also means encrypted under key PK₂.

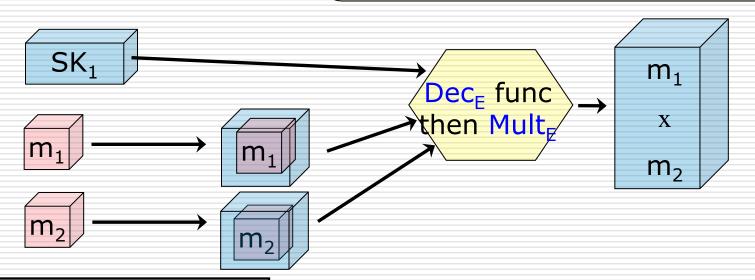


Red means box #1. It also means encrypted under key PK₁.

Applying Eval to (Dec_E then Mult_E)

Blue means box #2. It also means encrypted under key PK₂.

If E can evaluate (Dec_E then Add_E) and (Dec_E then Mult_E), then we call E "bootstrappable" (a self-referential property).

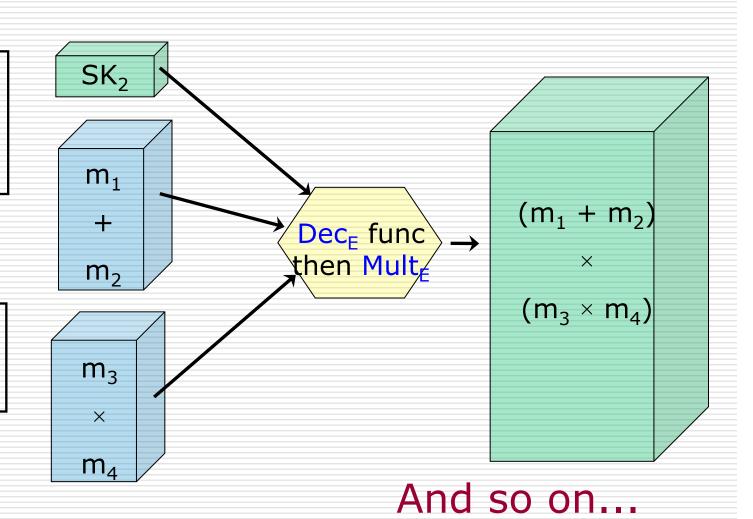


Red means box #1. It also means encrypted under key PK₁.

And now the recursion...

Green means encrypted under PK₃.

Blue means encrypted under PK₂.



Arbitrary Functions

- Suppose E is bootstrappable i.e., it can handle Dec_E augmented by Add_E and Mult_E efficiently.
- ☐ Then, there is a scheme E_d that evaluates arbitrary functions with d "levels".
- Ciphertexts: Same size in E_d as in E.
- Public key:
 - Consists of (d+1) E pub keys: pk₀, ..., pk_d
 - and encrypted secret keys: {Enc(pk_i, sk_(i-1))}
 - Size: linear in d. Constant in d, if you assume encryption is "circular secure."
 - The question of circular security is like whether it is "safe" to put a key for box i inside box i.

Step 2b: Bootstrappable Yet? Is our Somewhat Homomorphic Scheme Already Bootstrappable?

Can Eval_E handle Dec_E?

 \square The boolean function $Dec_{F}(p,c)$ sets:

$$m = LSB(c) \times LSB([c/p])$$

- Can E handle (i.e., Evaluate) Dec_E followed by Add_E or Mult_E?
 - If so, then E is bootstrappable, and we can use E to construct an FHE scheme EFHE.
- Most complicated part:

$$f(c,p^{-1}) = LSB([c \times p^{-1}])$$

■ The numbers c and p^{-1} are in binary rep.

Multiplying Numbers $f(c,p^{-1}) = LSB([c \times p^{-1}])$

Let's multiply a and b, rep'd in binary:

$$(a_t, ..., a_0) \times (b_t, ..., b_0)$$

☐ It involves adding the t+1 numbers:

			a_0b_t	a_0b_{t-1}	 a_0b_1	a_0b_0
		a_1b_t	a_1b_{t-1}	a1b _{t-2}	 a_1b_1	0
ð	a _t b _t	 a _t b ₁	a_tb_0	0	 0	0

Adding Two Numbers $f(c,p^{-1}) = LSB([c \times p^{-1}])$

Carries:	$x_1y_1 + x_1x_0y_0 + y_1x_0y_0$	x_0y_0	
	X_2	X_1	\mathbf{x}_0
	y ₂	y_1	y ₀
<u>Sum</u> :	$x_2+y_2+x_1y_1+ x_1x_0y_0+y_1x_0y_0$	$x_1+y_1+x_0y_0$	x ₀ +y ₀

- Adding two t-bit numbers:
 - Bit of the sum = up to t-degree poly of input bits

Adding Many Numbers $f(c,p^{-1}) = LSB([c \times p^{-1}])$

- □ 3-for-2 trick:
 - 3 numbers → 2 numbers with same sum
 - Output bits are up to degree-2 in input bits

	X_2	X_1	X_0
	y ₂	y ₁	y ₀
	Z_2	Z ₁	z_0
	$x_2+y_2+z_2$	$x_1+y_1+z_1$	$x_0 + y_0 + z_0$
$x_2y_2+x_2z_2$	$x_1y_1+x_1z_1$	$x_0 y_0 + x_0 z_0$	
$+y_2z_2$	$+y_1Z_1$	$+y_0z_0$	

- t numbers → 2 numbers with same sum
- Output bits are degree 2^{log_{3/2} t} = t^{log_{3/2} 2} = t^{1.71}

Back to Multiplying

 $f(c,p^{-1}) = LSB([c \times p^{-1}])$

- Multiplying two t-bit numbers:
 - Add t t-bit numbers of degree 2
 - 3-for-2 trick \rightarrow two t-bit numbers, deg. 2t^{1.71}.
 - Adding final two numbers \rightarrow deg. $t(2t^{1.71}) = 2t^{2.71}$.
- $\Box \text{ Consider } f(c,p^{-1}) = LSB([c \times p^{-1}])$
 - p⁻¹ must have log c > log p bits of precision to ensure the rounding is correct
 - So, f has degree at least $2(\log p)^{2.71}$.
- Can our scheme E handle a polynomial f of such high degree?
 - Unfortunately, no.

 $f(c,p^{-1}) = LSB([c \times p^{-1}])$

Why Isn't E Bootstrappable?

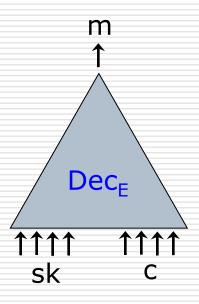
- ☐ Recall: E can <u>handle</u> f if:
 - $|f(x_1, ..., x_t)| < p/4$
 - whenever all |x_i| < B, where B is a bound on the noise of a fresh ciphertext output by Enc_F
- ☐ If f has degree > log p, then $|f(x_1, ..., x_t)|$ could definitely be bigger than p
 - E is (apparently) not bootstrappable...

Step 3 (Final Step): Modify our Somewhat Homomorphic Scheme to Make it Bootstrappable

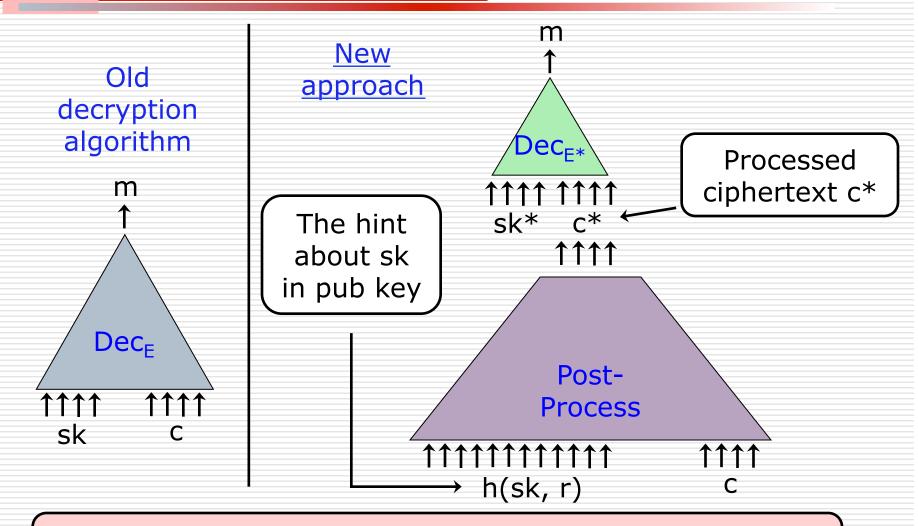
The Goal

- \square Modify E \rightarrow get E* that is bootstrappable.
- Properties of E*
 - E* can handle any function that E can
 - Dec_{E*} is a lower-degree poly than Dec_E, so that E* can handle it

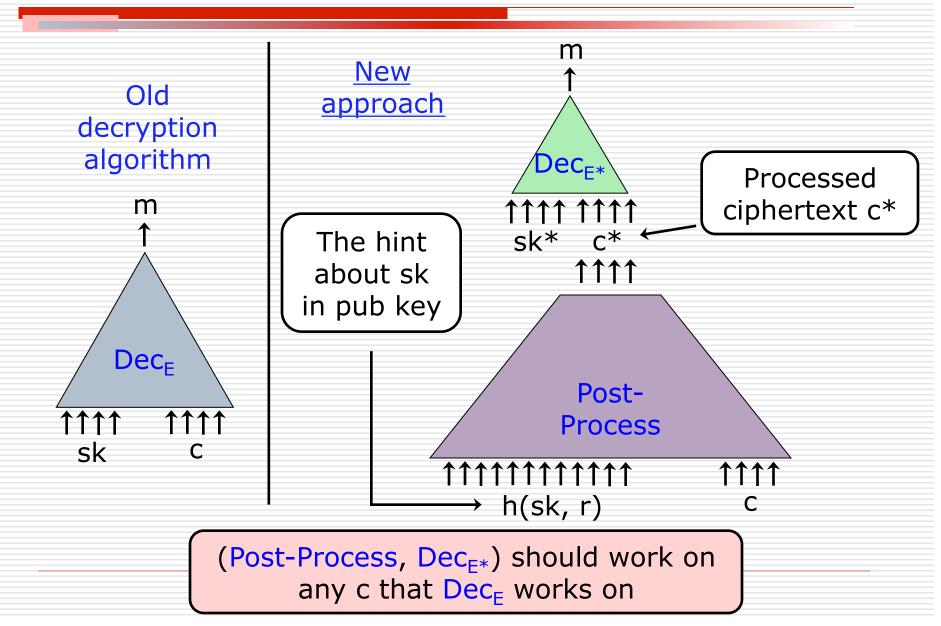
Old decryption algorithm

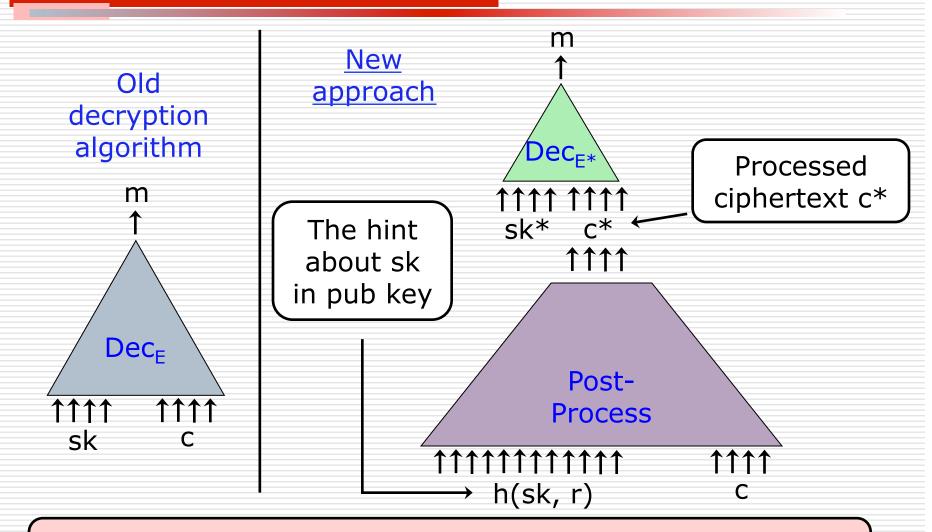


- □ Crazy idea: Put <u>hint</u> about sk in E* public key! Hint lets anyone <u>post-process</u> the ciphertext, leaving less work for Dec_{E*} to do.
- This idea is used in server-aided cryptography.



Hint in pub key lets anyone <u>post-process</u> the ciphertext, leaving less work for <u>Dec_{E*}</u> to do.





 E^* is semantically secure if E is, if h(sk,r) is computationally indistinguishable from h(0,r') given sk, but not sk*.

Concretely, what is hint about p?

- □ E*'s pub key includes real numbers
 - $r_1, r_2, ..., r_n \in [0,2]$
 - 3 sparse set S for which $\Sigma_{i \in S} r_i = 1/p$
- Security: Sparse Subset Sum Prob (SSSP)
 - Given integers x_1 , ..., x_n with a subset S with $\Sigma_{i \in S} x_i = 0$, output S.
 - Studied w.r.t. server-aided cryptosystems
 - \triangleright Potentially hard when n > log max{ $|x_i|$ }.
 - Then, there are exponentially many subsets T (not necessarily sparse) such that $\Sigma_{i \in S} x_i = 0$
 - \triangleright Params: n ~ λ ⁵ and |S| ~ λ .
 - Reduction:
 - If SSSP is hard, our hint is indist. from h(0,r)

How E* works...

- \square Enc_{E*}, Eval_{E*} output ψ_i =c x r_i mod 2, i=1,...,n
 - Together with c itself
 - The ψ_i have about log n bits of precision
- \square New secret key is bit-vector $s_1,...,s_n$
 - \blacksquare $s_i=1$ if $i \in S$, $s_i=0$ otherwise
- E* can handle any function E can:
 - \blacksquare c/p = c Σ_i s_ir_i = Σ_i s_i ψ_i , mod 2, up to precision
 - Precision errors do not changing the rounding
 - \triangleright Precision errors from ψ_i imprecision < 1/8
 - c/p is with 1/4 of an integer

 \square $Dec_{E^*}(s,c) = LSB(c) XOR LSB([\Sigma_i s_i \psi_i]) mod 2$

a _{1,0}	a _{1,-1}	***	a _{1,-log n}
a _{2,0}	a _{2,-1}		a _{2,-log n}
a _{3,0}	a _{3,-1}		a _{3,-log n}
a _{4,0}	a _{4,-1}		a _{4,-log n}
a _{5,0}	a _{5,-1}		a _{5,-log n}
$a_{n,0}$	a _{n,-1}		a _{n,-log n}

Let b₀ be the binary rep of Hamming weight

a _{1,0}	a _{1,-1}	 a _{1,-log n}
a _{2,0}	a _{2,-1}	 a _{2,-log n}
a _{3,0}	a _{3,-1}	 a _{3,-log n}
a _{4,0}	a _{4,-1}	 a _{4,-log n}
a _{5,0}	a _{5,-1}	 a _{5,-log n}
a _{n,0}	a _{n,-1}	 a _{n,-log n}

b _{0,log n}	 b _{0,1}	b _{0,0}

Let b₋₁ be the binary rep of Hamming weight

a _{1,0}	a _{1,-1}	 a _{1,-log n}
a _{2,0}	a _{2,-1}	 a _{2,-log n}
a _{3,0}	a _{3,-1}	 a _{3,-log n}
a _{4,0}	a _{4,-1}	 a _{4,-log n}
a _{5,0}	a _{5,-1}	 a _{5,-log n}
$a_{n,0}$	a _{n,-1}	 a _{n,-log n}

b _{0,log n}		b _{0,1}	b _{0,0}	
	b _{-1,log n}	•••	b _{-1,1}	b _{-1,0}

Let b_{-log n} be the binary rep of Hamming weight

a _{1,0}	a _{1,-1}	 1,-log n
a _{2,0}	a _{2,-1}	 a _{2,-log n}
a _{3,0}	a _{3,-1}	 a _{3,-log n}
a _{4,0}	a _{4,-1}	 a _{4,-log n}
a _{5,0}	a _{5,-1}	 a _{5,-log n}
		 \ /
$a_{n,0}$	a _{n,-1}	 a _{n,-log n}

b _{0,log n}		$b_{0,1}$	b _{0,0}			
	b _{-1,log n}		b _{-1,1}	b _{-1,0}		
			b _{-log n,log n}		b _{-log n,1}	b _{-log n,0}

Only log n numbers with log n bits of precision. Easy to handle.

a _{1,0}	a _{1,-1}	 a _{1,-log n}
a _{2,0}	a _{2,-1}	 a _{2,-log n}
a _{3,0}	a _{3,-1}	 a _{3,-log n}
a _{4,0}	a _{4,-1}	 a _{4,-log n}
a _{5,0}	a _{5,-1}	 a _{5,-log n}
a _{n,0}	a _{n,-1}	 a _{n,-log n}

b_{0,log n} ... b_{-1,log n}

b_{0,1} ...

b_{0,0}
b_{-1,1}
b_{-1,0}
...

b_{-log n,log n} ...

... b_{-log n,1}

b_{-log n,0}

Computing Sparse Hamming Wgt.

1	a _{1,0}	a _{1,-1}	 a _{1,-log n}
1	a _{2,0}	a _{2,-1}	 a _{2,-log n}
	a _{3,0}	a _{3,-1}	 a _{3,-log n}
	a _{4,0}	a _{4,-1}	 a _{4,-log n}
	a _{5,0}	a _{5,-1}	 a _{5,-log n}
1			 •••
	a _{n,0}	a _{n,-1}	 a _{n,-log n}

Computing Sparse Hamming Wgt.

 \square $Dec_{E^*}(s,c) = LSB(c) XOR LSB([\Sigma_i s_i \psi_i]) mod 2$

1	a _{1,0}	a _{1,-1}		a _{1,-log n}
1	0	0	•••	0
	0	0	***	0
	a _{4,0}	a _{4,-1}		a _{4,-log n}
	0	0	•••	0
1				
	$a_{n,0}$	a _{n,-1}		a _{n,-log n}

Computing Sparse Hamming Wgt.

a₁

0

0

 $a_{4,0}$

 a_n

- ☐ Binary rep of Hamming wgt of $\mathbf{x} = (x_1, ..., x_n)$ in $\{0,1\}^n$ given by:
- $e_{2^{\lceil \log n \rceil}}(\mathbf{x}) \mod 2, ..., e_2(\mathbf{x}) \mod 2, e_1(\mathbf{x}) \mod 2$ where e_k is the elem symm poly of deg k
- ☐ Since we know *a priori* that Hamming wgt is |S|, we only need
- $e_{2^{\lceil \log |S| \rceil}}(\mathbf{x}) \mod 2, ..., e_2(\mathbf{x}) \mod 2, e_1(\mathbf{x}) \mod 2$ up to deg < |S|
- \square Set $|S| < \lambda$, then E* is bootstrappable.

Yay! We have a FHE scheme!

Performance

- Well, a little slow...
 - In E, a ciphertext is c_i is about λ^5 bits.
 - Dec_{F*} works in time quasi-linear in λ^5 .
 - Applying $Eval_{E^*}$ to Dec_{E^*} takes quasi- λ^{10} .
 - To bootstrap E* to E*FHE, and to compute Eval_{E*FHE}(pk, f, c₁, ..., c_t), we apply Eval_{E*} to Dec_{F*} once for each Add and Mult gate of f.
 - ightharpoonup Total time: quasi- $λ^{10} \cdot S_f$, where S_f is the circuit complexity of f.

Performance

- STOC09 lattice-based scheme performs better:
 - Applying Eval to Dec takes $\tilde{O}(\lambda^6)$ computation if you want 2^{λ} security against known attacks.
 - Comparison: RSA also takes Õ(λ⁶); also, in ElGamal (using finite fields).
- More optimizations on the way!

Thank You! Questions?

Hardness of Approximate-GCD

- Several lattice-based approaches for solving approximate-GCD
 - Related to Simultaneous Diophantine Approximation (SDA)
 - Studied in [Hawgrave-Graham01]
 - We considered some extensions of his attacks
- \square All run out of steam when $|q_i| > |p|^2$
 - In our case $|p| \sim n^2$, $|q_i| \sim n^5 \gg |p|^2$

Relation to SDA

- $\Box x_i = q_i p + r_i (r_i \ll p \ll q_i), i = 0,1,2,...$
 - $y_i = x_i/x_0 = (q_i+s_i)/q_0, s_i \sim r_i/p \ll 1$
 - $y_1, y_2, ...$ is an instance of SDA
 - \rightarrow q₀ is a denominator that approximates all y_i's
- Use Lagarias's algorithm:
 - Consider the rows of this matrix:
 - Find a short vector in the lattice that they span
 - \blacksquare <q₀,q₁,...,q_t>·L is short
 - Hopefully we will find it

$$L = \begin{pmatrix} R & x_1 & x_2 & \dots & x_t \\ -x_0 & & & & \\ & -x_0 & & & & \\ & & & -x_0 & & \\ & & & & -x_0 \end{pmatrix}$$

Relation to SDA (cont.)

- When will Lagarias' algorithm succeed?
 - - \triangleright In particular shorter than \sim det(L)^{1/t+1}
 - This only holds for t > log Q/log P Minkowski bound
 - The dimension of the lattice is t+1
 - Quality of lattice-reduction deteriorates exponentially with t
 - When log Q > (log P)² (so t>log P), LLL-type reduction isn't good enough anymore

Relation to SDA (cont.)

- When will Lagarias' algorithm succeed?
 - - \triangleright In particular shorter than \sim det(L)^{1/t+1}
 - This only holds for t > log Q/log P Minkowski bound
 - The dimension of the lattice is t+1
 - Rule of thumb: takes 2^{t/k} time to get 2^k approximation of SVP/CVP in lattice of dim t.
 - \geq 2^{(log Q)/(log P)^2} = 2^{\lambda} time to get 2^(log P) = P approx.