
Fully Homomorphic Encryption 

Craig Gentry 

IBM Watson 
MIT Guest Lecture 
April 2010 



The Goal 

I want to delegate processing of my data, 
without giving away access to it. 



Application: Private Google Search 

  Private search 
  Do a Google search 

  But encrypt my query, so that Google 
cannot “see” it 

  I still want to get the same results 
  Results would be encrypted too 

I want to delegate processing of my data, 
without giving away access to it. 



Application: Cloud Computing 

 Storing my files on the cloud 
  Encrypt them to protect my information 
  Later, I want to retrieve the files containing 

“cloud” within 5 words of “computing”. 
  Cloud should return only these (encrypted) files, 

without knowing the key 

  Privacy combo: Encrypted query on encrypted data 

I want to delegate processing of my data, 
without giving away access to it. 



Outline 

 Why is it possible even in principle?  
  A physical analogy for what we want 
  What we want: fully homomorphic encryption (FHE) 

  Rivest, Adleman, and Dertouzos defined FHE in 
1978, but constructing FHE was open for 30 years 

 Our FHE construction  



Can we separate processing from access? 

Actually, separating processing from access 
even makes sense in the physical world… 



An Analogy: Alice’s Jewelry Store 

 Workers assemble raw materials into 
jewelry 

 But Alice is worried about theft 
 How can the workers process the raw 
materials without having access to them? 



An Analogy: Alice’s Jewelry Store 

 Alice puts materials in locked glovebox 
  For which only she has the key 

 Workers assemble jewelry in the box 
 Alice unlocks box to get “results” 



An Encryption Glovebox? 

 Alice delegated processing without 
giving away access. 

 But does this work for encryption? 
  Can we create an “encryption glovebox” 

that would allow the cloud to process data 
while it remains encrypted? 



Public-key Encryption 

  Three procedures: KeyGen, Enc, Dec 
  (sk,pk)  KeyGen(λ) 

  Generate random public/secret key-pair 

  c  Enc(pk, m) 
  Encrypt a message with the public key 

  m  Dec(sk, c) 
  Decrypt a ciphertext with the secret key 



Homomorphic Public-key Encryption 

 Another procedure: Eval (for Evaluate) 
  c  Eval(pk, f, c1,…,ct) 

  No info about m1, …, mt, f(m1, …mt) is leaked 
  f(m1, …mt) is the “ring” made from raw 

materials m1, …, mt inside the encryption box 

Encryptions of 
inputs m1,…,mt to f 	



function 

Encryption of f(m1,…,mt). 
I.e., Dec(sk, c) = f(m1, …mt)  



Fully Homomorphic Public-key Encryption 

 Another procedure: Eval (for Evaluate) 
  c  Eval(pk, f, c1,…,ct) 

  FHE scheme should:  
 Work for any well-defined function f 
 Be efficient 

Encryptions of 
inputs m1,…,mt to f 	



function 

Encryption of f(m1,…,mt). 
I.e., Dec(sk, c) = f(m1, …mt)  



Back to Our Applications 

  Private Google search 
  Encrypt bits of my query: ci  Enc(pk, mi) 
  Send pk and the ci’s to Google 
  Google expresses its search algorithm as a 

boolean function f of a user query 
  Google sends c  Eval(pk, f, c1,…,ct) 
  I decrypt to obtain my result f(m1, …, mt) 

c  Eval(pk, f, c1,…,ct), 
Dec(sk, c) = f(m1, …, mt) 



Back to Our Applications 

 Cloud Computing with Privacy 
  Encrypt bits of my files ci  Enc(pk, mi) 
  Store pk and the ci’s on the cloud 
  Later, I send query :“cloud” within 5 words 

of “computing” 
  Let f be the boolean function representing 

the cloud’s response if data was unencrypted 
  Cloud sends c  Eval(pk, f, c1,…,ct) 
  I decrypt to obtain my result f(m1, …, mt) 

c  Eval(pk, f, c1,…,ct), 
Dec(sk, c) = f(m1, …, mt) 



Previous Schemes 

 Only “somewhat homomorphic” 
  Can only handle some functions f 

 RSA works for MULT function (mod N) 
c = c1 x … x ct =(m1 x … x mt)e (mod N) 

c  Eval(pk, f, c1,…,ct), 
Dec(sk, c) = f(m1, …, mt) 

c1 = m1
e  c2 = m2

e  ct = mt
e  

X 



“Somewhat Homomorphic” Schemes 

 RSA works for MULT gates (mod N) 
  Paillier, GM, work for ADD, XOR 
 BGN05 works for quadratic formulas 
 MGH08 works for low-degree polynomials 

  size of c  Eval(pk, f, c1,…,ct) grows 
exponentially with degree of polynomial f. 

 No FHE scheme 
  Rivest, Adleman and Dertouzos proposed the 

idea in 1978. 



FHE: What does “Efficient” Mean? 

  Here is a trivial (inefficient) FHE scheme: 
  (f, c1,…,cn) = c* Eval(pk, f, c1,…,cn) 
  Dec(sk, c*) decrypts individual ci’s, applies f to mi’s 

(The worker does nothing. Alice assembles the      
jewelry by herself.) 

  But the point is to delegate processing! 
 What we want:  

  c* is a “normal” compact ciphertext 
  Time to decrypt c* is independent of f. 



Efficiency of FHE 

 KeyGen, Enc, and Dec all run in time 
polynomial in the security param λ. 
  In particular, the time needed to decrypt         

c  Eval(pk, f, c1,…,ct) is independent of f. 

  Eval(pk, f, c1,…,ct) runs in time g(λ) • Sf, 
where g is a poly and Sf is the size of the 
boolean circuit (# of gates) to compute f. 
  Sf = O(Tf • log Tf), Tf is Turing complexity of f 



Outline 

Not my original STOC09 scheme.  
Rather, a simpler scheme by 

Marten van Dijk, me, Shai Halevi, 
and Vinod Vaikuntanathan 

Smart and 
Vercauteren recently 

proposed an 
optimization of the 
STOC09 scheme. 

 Why is it possible even in principle?  
  A physical analogy for what we want 
  What we want: fully homomorphic encryption (FHE) 

  Rivest, Adleman, and Dertouzos defined FHE in 
1978, but constructing FHE was open for 30 years 

 Our FHE construction 



Step 1: Construct a Useful 
“Somewhat Homomorphic” 

Scheme 



Why a somewhat homomorphic scheme? 

 Can’t we construct a FHE scheme 
directly? 
  If I knew how, I would tell you. 
  Later: somewhat homomorphic → FHE 

  If somewhat homomorphic scheme has a 
certain property (bootstrappability) 



A homomorphic symmetric encryption  

 Shared secret key: odd number p 
  To encrypt a bit m in {0,1}: 

  Choose at random small r, large q 

  Output c = m + 2r + pq 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2 

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])      

Noise much 
smaller than p 

The “noise” 



A homomorphic symmetric encryption  

 Shared secret key: odd number 101 
  To encrypt a bit m in {0,1}: 

  Choose at random small r, large q 

  Output c = m + 2r + pq 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2 

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])     

Noise much 
smaller than p 

The “noise” 



A homomorphic symmetric encryption  

 Shared secret key: odd number 101 
  To encrypt a bit m in {0,1}: (say, m=1) 

  Choose at random small r, large q 

  Output c = m + 2r + pq 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2   

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])    

The “noise” Noise much 
smaller than p 



A homomorphic symmetric encryption  

 Shared secret key: odd number 101 
  To encrypt a bit m in {0,1}: (say, m=1) 

  Choose at random small r (=5), large q (=9) 

  Output c = m + 2r + pq 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2 

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])     

The “noise” Noise much 
smaller than p 



A homomorphic symmetric encryption  

 Shared secret key: odd number 101 
  To encrypt a bit m in {0,1}: (say, m=1) 

  Choose at random small r (=5), large q (=9) 

  Output c = m + 2r + pq = 11 + 909 = 920 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2 

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])     

The “noise” 



A homomorphic symmetric encryption  

 Shared secret key: odd number 101 
  To encrypt a bit m in {0,1}: (say, m=1) 

  Choose at random small r (=5), large q (=9) 

  Output c = m + 2r + pq = 11 + 909 = 920 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2 = 11 mod 2 = 1 

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])     

The “noise” 



Homomorphic Public-Key Encryption 

 Secret key is an odd p as before 
  Public key is many “encryptions of 0” 

  xi = qip + 2ri 

  Encpk(m) =  subset-sum(xi’s)+m 
 Decsk(c) = (c mod p) mod 2 
  Eval as before 

[            ]x0 for i=1,2,…,n 

[                             +2r]x0  



Security of E 

 Approximate GCD (approx-gcd) Problem: 
  Given many xi = si + qip, output p 
  Example params: si ~ 2λ, p ~ 2λ^2, qi ~ 2λ^5, 

where λ is security parameter 
  Best known attacks (lattices) require 2λ time 

 Reduction:  
  if approx-gcd is hard, E is semantically secure 



Why is E homomorphic? 

 Basically because: 
  If you add or multiply two near-multiples of p, 

you get another near multiple of p… 



Why is E homomorphic? 

  c1=m1+2r1+q1p,   c2=m2+2r2+q2p 

  c1+c2 = (m1+m2) + 2(r1+r2) + (q1+q2)p 
  (m1+m2)+2(r1+r2) still much smaller than p 
c1+c2 mod p = (m1+m2) + 2(r1+r2) 

  c1 x c2 = (m1+2r1)(m2+2r2) 
    +(c1q2+q1c2-q1q2)p  

  (m1+2r1)(m2+2r2) still much smaller than p 
c1xc2 mod p = (m1+2r1)(m2+2r2)  
(c1xc2 mod p) mod 2 = m1xm2 mod 2 

Noise: Distance to nearest multiple of p 



Why is E homomorphic? 

  c1=m1+2r1+q1p, …, ct=mt+2rt+qtp 

  Let f be a multivariate poly with integer 
coefficients (sequence of +’s and x’s) 

  Let c = EvalE(pk, f, c1, …, ct) = f(c1, …, ct) 

  f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp 

  Then (c mod p) mod 2 = f(m1, …, mt) mod 2 

Suppose this noise is much smaller than p 

That’s what we want! 



Why is E somewhat homomorphic? 

 What if |f(m1+2r1, …, mt+2rt)| > p/2? 
  c = f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp 

  Nearest p-multiple to c is q’p for q’ ≠ q 
  (c mod p) = f(m1+2r1, …, mt+2rt) + (q-q’)p 
  (c mod p) mod 2   

  =   f(m1, …, mt) + (q-q’) mod 2 
  =   ??? 

 We say E can handle f if: 
  |f(x1, …, xt)| < p/4 
  whenever all |xi| < B, where B is a bound on 

the noise of a fresh ciphertext output by EncE 



Example of a Function that E Handle 

  Elementary symmetric poly of degree d: 
    f(x1, …, xt) = x1·x2·xd + … + xt-d+1·xt-d+2·xt 

  If |xi| < B, then, |f(x1, …, xt)| < td·Bd 

 E can handle f if: 
     td·Bd < p/4  →  basically if:  d < (log p)/(log tB) 

  Example params: B ~ 2λ, p ~ 2λ^2 
  EvalE can handle an elem symm poly of 

degree approximately λ. 



Step 2: Somewhat Homomorphic → FHE  
(if somewhat homomorphic scheme has a 

certain property: bootstrappability) 



Back to Alice’s Jewelry Store 

  Suppose Alice’s boxes are defective. 
  After the worker works on the jewel for 1 minute, 

the gloves stiffen! 
  Some complicated pieces take 10 minutes to make. 
  Can Alice still use her boxes? 
  Hint: you can put one box inside another. 



Back to Alice’s Jewelry Store 

  Yes! Alice gives worker more boxes with a copy of her key 
  Worker assembles jewel inside box #1 for 1 minute. 
  Then, worker puts box #1 inside box #2! 
  With box #2’s gloves, worker opens box #1 with key, takes 

jewel out, and continues assembling till box #2’s gloves stiffen. 
  And so on… 



Back to Alice’s Jewelry Store 

  Yes! Alice gives worker a boxes with a copy of her key 
  Worker assembles jewel inside box #1 for 1 
  Then, worker puts box #1 inside box #2! 
  With box #2’s gloves, worker opens box #1 with key, takes 

jewel out, and continues assembling till box #2’s gloves stiffen. 

Cool!  I can use my defective 
gloveboxes to get my workers to 
assemble arbitrarily complicated 
pieces, if there is enough time 
(before the gloves stiffen) to 
unlock a box and do a little work 
on the piece! 



Back to Alice’s Jewelry Store 

  Yes! Alice gives worker a boxes with a copy of her key 
  Worker assembles jewel inside box #1 for 1 
  Then, worker puts box #1 inside box #2! 
  With box #2’s gloves, worker opens box #1 with key, takes 

jewel out, and continues assembling till box #2’s gloves stiffen. 

A weird question: Is it safe to 
put a key inside a glove box?  
What if the key can unlock the 
box from the inside? 



Back to Alice’s Jewelry Store 

  Yes! Alice gives worker a boxes with a copy of her key 
  Worker assembles jewel inside box #1 for 1 
  Then, worker puts box #1 inside box #2! 
  With box #2’s gloves, worker opens box #1 with key, takes 

jewel out, and continues assembling till box #2’s gloves stiffen. 

In any case, it definitely should 
be safe to have distinct keys, 
and to put the key for box #1 
inside box #2, and so on… 



How is it Analogous? 

  Alice’s jewelry store: Worker can assemble 
any piece if gloves can “handle” unlocking a 
box (plus a bit) before they stiffen 

  Encryption:  
  If E can handle DecE (plus a bit), then we 

can use E to construct a FHE scheme EFHE 



Warm-up: Applying Eval to DecE 

Blue means box #2.       
It also means encrypted 
under key PK2. 

Red means box #1.      
It also means encrypted 
under key PK1. 

SK1 

m 

Decryption 
(unlocking) 

function 

m 

m c1 



Warm-up: Applying Eval to DecE 



Applying Eval to (DecE then AddE) 

SK1 

m1 

DecE func 
then AddE 

m1  

+ 

m2 

m2 

m1 

m2 

Blue means box #2.       
It also means encrypted 
under key PK2. 

Red means box #1.      
It also means encrypted 
under key PK1. 



Applying Eval to (DecE then MultE) 

SK1 

m1 

DecE func 
then MultE 

m1  

x 

m2 

m2 

m1 

m2 

Blue means box #2.       
It also means encrypted 
under key PK2. 

Red means box #1.      
It also means encrypted 
under key PK1. 

If E can evaluate (DecE then AddE) 
and (DecE then MultE), then we call 

E “bootstrappable” (a self-
referential property). 



And now the recursion… 

m3  

×  

m4 

Blue means 
encrypted 
under PK2. 

Green 
means 
encrypted 
under PK3. m1  

+ 

m2 

SK2 

DecE func 
then MultE 

(m1 + m2) 

× 

(m3 × m4) 

And so on... 



Arbitrary Functions 

  Suppose E is bootstrappable – i.e., it can handle 
DecE augmented by AddE and MultE efficiently. 

  Then, there is a scheme Ed that evaluates 
arbitrary functions with d “levels”. 

  Ciphertexts: Same size in Ed as in E. 
  Public key:  

  Consists of (d+1) E pub keys: pk0, …, pkd 

  and encrypted secret keys: {Enc(pki, sk(i-1))} 

  Size: linear in d.  Constant in d, if you assume 
encryption is “circular secure.” 
  The question of circular security is like whether it is 

“safe” to put a key for box i inside box i. 



Step 2b: Bootstrappable Yet?             
Is our Somewhat Homomorphic 
Scheme Already Bootstrappable? 



Can EvalE handle DecE? 

  The boolean function DecE(p,c) sets: 

   m =  LSB(c)  XOR  LSB([c/p]) 

 Can E handle (i.e., Evaluate) DecE 
followed by AddE or MultE? 
  If so, then E is bootstrappable, and we can 

use E to construct an FHE scheme EFHE. 

 Most complicated part:  

    f(c,p-1) = LSB([c×p-1]) 

  The numbers c and p-1 are in binary rep. 



Multiplying Numbers 

  Let’s multiply a and b, rep’d in binary: 

   (at, …, a0) × (bt, …, b0)  

  It involves adding the t+1 numbers: 

f(c,p-1) = LSB([c×p-1]) 

a0bt a0bt-1 … a0b1 a0b0 

a1bt a1bt-1 a1bt-2 … a1b1 0 

…  … … … … … … 

atbt … atb1 atb0 0 …  0 0 



Adding Two Numbers f(c,p-1) = LSB([c×p-1]) 

x1y1+x1x0y0+ 
y1x0y0 

x0y0 

x2 x1 x0 

y2 y1 y0 

x2+y2+x1y1+ 
x1x0y0+y1x0y0 

x1+y1+x0y0 x0+y0 

Carries: 

Sum: 

 Adding two t-bit numbers: 
  Bit of the sum = up to t-degree poly of input bits 



Adding Many Numbers f(c,p-1) = LSB([c×p-1]) 

x2 x1 x0 

y2 y1 y0 

z2 z1 z0 

x2+y2+z2 x1+y1+z1 x0+y0+z0 

x2y2+x2z2
+y2z2 

x1y1+x1z1
+y1z1 

x0y0+x0z0
+y0z0 

  3-for-2 trick:  
  3 numbers → 2 numbers with same sum 
  Output bits are up to degree-2 in input bits 

  t numbers → 2 numbers with same sum 
  Output bits are degree 2log3/2 t = tlog3/2 2 = t1.71 



Back to Multiplying f(c,p-1) = LSB([c×p-1]) 

 Multiplying two t-bit numbers: 
  Add t t-bit numbers of degree 2 
  3-for-2 trick → two t-bit numbers, deg. 2t1.71. 
  Adding final two numbers→ deg. t(2t1.71) = 2t2.71. 

 Consider f(c,p-1) = LSB([c×p-1]) 
  p-1 must have log c > log p bits of precision to 

ensure the rounding is correct 
  So, f has degree at least 2(log p)2.71. 

 Can our scheme E handle a polynomial f 
of such high degree? 
  Unfortunately, no. 



Why Isn’t E Bootstrappable? 

 Recall: E can handle f if: 
  |f(x1, …, xt)| < p/4 
  whenever all |xi| < B, where B is a bound on the 

noise of a fresh ciphertext output by EncE 

  If f has degree > log p, then |f(x1, …, xt)| 
could definitely be bigger than p 
  E is (apparently) not bootstrappable… 

f(c,p-1) = LSB([c×p-1]) 



Step 3 (Final Step): Modify our  
Somewhat Homomorphic Scheme to 

Make it Bootstrappable 



The Goal 

 Modify E → get E* that is bootstrappable. 
  Properties of E* 

  E* can handle any function that E can 
  DecE* is a lower-degree poly than DecE, so 

that E* can handle it 



How do we “simplify” decryption? 

  Crazy idea: Put hint about sk in E* public key!        
Hint lets anyone post-process the ciphertext, 
leaving less work for DecE* to do. 

  This idea is used in server-aided cryptography. 

Old 
decryption 
algorithm 

m 

c sk 

DecE 



How do we “simplify” decryption? 

Old 
decryption 
algorithm 

m 

c sk 

DecE 

c h(sk, r) 

Post-
Process 

sk* 

m 

DecE* 

c* 

Processed 
ciphertext c* 

New 
approach 

The hint 
about sk 

in pub key 

Hint in pub key lets anyone post-process the ciphertext, 
leaving less work for DecE* to do. 



How do we “simplify” decryption? 

Old 
decryption 
algorithm 

m 

c sk 

DecE 

c h(sk, r) 

Post-
Process 

sk* 

m 

DecE* 

c* 

Processed 
ciphertext c* 

New 
approach 

The hint 
about sk 

in pub key 

(Post-Process, DecE*) should work on 
any c that DecE works on 



How do we “simplify” decryption? 

Old 
decryption 
algorithm 

m 

c sk 

DecE 

c h(sk, r) 

Post-
Process 

sk* 

m 

DecE* 

c* 

Processed 
ciphertext c* 

New 
approach 

The hint 
about sk 

in pub key 

E* is semantically secure if E is, if h(sk,r) is computationally 
indistinguishable from h(0,r’) given sk, but not sk*. 



Concretely, what is hint about p? 
  E*’s pub key includes real numbers 

  r1,r2, …, rn ∈ [0,2]  
  ∃ sparse set S for which Σi∈S ri = 1/p 

 Security: Sparse Subset Sum Prob (SSSP) 
  Given integers x1, …, xn with a subset S with 

Σi∈S xi = 0, output S. 
  Studied w.r.t. server-aided cryptosystems 
  Potentially hard when n > log max{|xi|}. 

•  Then, there are exponentially many subsets T        
(not necessarily sparse) such that Σi∈S xi = 0 

  Params: n ~ λ5 and |S| ~ λ. 
  Reduction: 

  If SSSP is hard, our hint is indist. from h(0,r) 



How E* works… 

  EncE*, EvalE* output ψi=c x ri mod 2, i=1,…,n 

  Together with c itself 
  The ψi have about log n bits of precision 

 New secret key is bit-vector s1,…,sn  
  si=1 if i∈S, si=0 otherwise 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 

  E* can handle any function E can: 
  c/p = c Σi siri = Σi siψi, mod 2, up to precision 
  Precision errors do not changing the rounding 

  Precision errors from ψi imprecision  < 1/8  
  c/p is with 1/4 of an integer 
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A Different Way to Add Numbers 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

a2,0 a2,-1 …  a2,-log n 

a3,0 a3,-1 …  a3,-log n 

a4,0 a4,-1 …  a4,-log n 

a5,0 a5,-1 …  a5,-log n 
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an,0 an,-1 …  an,-log n 

Let b-1 be 
the binary 

rep of 
Hamming 

weight 

b0,log n … b0,1 b0,0 

b-1,log n … b-1,1 b-1,0 



A Different Way to Add Numbers 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

a2,0 a2,-1 …  a2,-log n 

a3,0 a3,-1 …  a3,-log n 

a4,0 a4,-1 …  a4,-log n 

a5,0 a5,-1 …  a5,-log n 

… … …  … 

an,0 an,-1 …  an,-log n 

Let b-log n be 
the binary 

rep of 
Hamming 

weight 

b0,log n … b0,1 b0,0 

b-1,log n … b-1,1 b-1,0 

… … … … 

b-log n,log n … b-log n,1 b-log n,0 



A Different Way to Add Numbers 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

a2,0 a2,-1 …  a2,-log n 

a3,0 a3,-1 …  a3,-log n 

a4,0 a4,-1 …  a4,-log n 

a5,0 a5,-1 …  a5,-log n 

… … …  … 

an,0 an,-1 …  an,-log n 

Only log n 
numbers with 
log n bits of 

precision.  Easy 
to handle. 

b0,log n … b0,1 b0,0 

b-1,log n … b-1,1 b-1,0 

… … … … 

b-log n,log n … b-log n,1 b-log n,0 



Computing Sparse Hamming Wgt. 
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Computing Sparse Hamming Wgt. 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

0 0 …  0 

0 0 …  0 

a4,0 a4,-1 …  a4,-log n 

0 0 …  0 

… … …  … 

an,0 an,-1 …  an,-log n 



Computing Sparse Hamming Wgt. 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 

a1 

0 

0 

a4,0 

0 

… 

an 

 Binary rep of Hamming wgt of          
x = (x1, …, xn) in {0,1}n given by: 

e2^[log n](x) mod2, …, e2(x) mod2, e1(x) mod2 
 where ek is the elem symm poly of deg k 

 Since we know a priori that 
Hamming wgt is |S|, we only need  

e2^[log |S|](x) mod2, …, e2(x) mod2, e1(x) mod2 
 up to deg < |S| 

 Set |S| < λ, then E* is bootstrappable. 



Yay! We have a FHE scheme! 



Performance 

 Well, a little slow… 
  In E, a ciphertext is ci is about λ5 bits. 
  DecE* works in time quasi-linear in λ5.  
  Applying EvalE* to DecE* takes quasi-λ10. 

  To bootstrap E* to E*FHE, and to compute 
EvalE*FHE(pk, f, c1, …, ct), we apply EvalE* to 
DecE* once for each Add and Mult gate of f. 

  Total time: quasi- λ10 • Sf, where Sf is the 
circuit complexity of f. 



Performance 

 STOC09 lattice-based scheme performs 
better: 
  Applying Eval to Dec takes Õ(λ6)  

computation if you want 2λ security 
against known attacks.  

  Comparison: RSA also takes Õ(λ6); also, 
in ElGamal (using finite fields). 

 More optimizations on the way! 



? ? 
Thank You!  Questions? 



Hardness of Approximate-GCD 

 Several lattice-based approaches for 
solving approximate-GCD 
  Related to Simultaneous Diophantine 

Approximation (SDA) 
  Studied in [Hawgrave-Graham01] 

  We considered some extensions of his attacks 

 All run out of steam when |qi|>|p|2 
  In our case |p| ~ n2, |qi| ~ n5 » |p|2 



Relation to SDA 

  xi = qip + ri (ri « p « qi), i = 0,1,2,… 
  yi = xi/x0 = (qi+si)/q0, si ~ ri/p « 1 
  y1, y2, … is an instance of SDA 

  q0 is a denominator that approximates all yi’s 

 Use Lagarias’s algorithm: 
  Consider the rows of this matrix: 
  Find a short vector in the 

lattice that they span 
  <q0,q1,…,qt>·L is short 
  Hopefully we will find it 

R x1 x2 … xt 
  -x0 
      -x0 

        … 
   -x0 

L= 



Relation to SDA (cont.) 

 When will Lagarias’ algorithm succeed? 
  <q0,q1,…,qt>·L should be shortest in lattice 

  In particular shorter than ~det(L)1/t+1 

  This only holds for t > log Q/log P 
  The dimension of the lattice is t+1 
  Quality of lattice-reduction deteriorates 

exponentially with t  
  When log Q > (log P)2 (so t>log P),  

LLL-type reduction isn’t good enough 
anymore 

Minkowski 
bound 



Relation to SDA (cont.) 

 When will Lagarias’ algorithm succeed? 
  <q0,q1,…,qt>·L should be shortest in lattice 

  In particular shorter than ~det(L)1/t+1 

  This only holds for t > log Q/log P 
  The dimension of the lattice is t+1 
  Rule of thumb: takes 2t/k time to get 2k 

approximation of SVP/CVP in lattice of dim t. 
  2(log Q)/(log P)^2 = 2λ time to get 2(log P) = P approx. 

Minkowski 
bound 


