
Fully Homomorphic Encryption

Craig Gentry

IBM Watson
MIT Guest Lecture
April 2010

The Goal

I want to delegate processing of my data,
without giving away access to it.

Application: Private Google Search

  Private search
  Do a Google search

  But encrypt my query, so that Google
cannot “see” it

  I still want to get the same results
  Results would be encrypted too

I want to delegate processing of my data,
without giving away access to it.

Application: Cloud Computing

 Storing my files on the cloud
  Encrypt them to protect my information
  Later, I want to retrieve the files containing

“cloud” within 5 words of “computing”.
  Cloud should return only these (encrypted) files,

without knowing the key

  Privacy combo: Encrypted query on encrypted data

I want to delegate processing of my data,
without giving away access to it.

Outline

 Why is it possible even in principle?
  A physical analogy for what we want
  What we want: fully homomorphic encryption (FHE)

  Rivest, Adleman, and Dertouzos defined FHE in
1978, but constructing FHE was open for 30 years

 Our FHE construction

Can we separate processing from access?

Actually, separating processing from access
even makes sense in the physical world…

An Analogy: Alice’s Jewelry Store

 Workers assemble raw materials into
jewelry

 But Alice is worried about theft
 How can the workers process the raw
materials without having access to them?

An Analogy: Alice’s Jewelry Store

 Alice puts materials in locked glovebox
  For which only she has the key

 Workers assemble jewelry in the box
 Alice unlocks box to get “results”

An Encryption Glovebox?

 Alice delegated processing without
giving away access.

 But does this work for encryption?
  Can we create an “encryption glovebox”

that would allow the cloud to process data
while it remains encrypted?

Public-key Encryption

  Three procedures: KeyGen, Enc, Dec
  (sk,pk)  KeyGen(λ)

  Generate random public/secret key-pair

  c  Enc(pk, m)
  Encrypt a message with the public key

  m  Dec(sk, c)
  Decrypt a ciphertext with the secret key

Homomorphic Public-key Encryption

 Another procedure: Eval (for Evaluate)
  c  Eval(pk, f, c1,…,ct)

  No info about m1, …, mt, f(m1, …mt) is leaked
  f(m1, …mt) is the “ring” made from raw

materials m1, …, mt inside the encryption box

Encryptions of
inputs m1,…,mt to f 	

function

Encryption of f(m1,…,mt).
I.e., Dec(sk, c) = f(m1, …mt)

Fully Homomorphic Public-key Encryption

 Another procedure: Eval (for Evaluate)
  c  Eval(pk, f, c1,…,ct)

  FHE scheme should:
 Work for any well-defined function f
 Be efficient

Encryptions of
inputs m1,…,mt to f 	

function

Encryption of f(m1,…,mt).
I.e., Dec(sk, c) = f(m1, …mt)

Back to Our Applications

  Private Google search
  Encrypt bits of my query: ci  Enc(pk, mi)
  Send pk and the ci’s to Google
  Google expresses its search algorithm as a

boolean function f of a user query
  Google sends c  Eval(pk, f, c1,…,ct)
  I decrypt to obtain my result f(m1, …, mt)

c  Eval(pk, f, c1,…,ct),
Dec(sk, c) = f(m1, …, mt)

Back to Our Applications

 Cloud Computing with Privacy
  Encrypt bits of my files ci  Enc(pk, mi)
  Store pk and the ci’s on the cloud
  Later, I send query :“cloud” within 5 words

of “computing”
  Let f be the boolean function representing

the cloud’s response if data was unencrypted
  Cloud sends c  Eval(pk, f, c1,…,ct)
  I decrypt to obtain my result f(m1, …, mt)

c  Eval(pk, f, c1,…,ct),
Dec(sk, c) = f(m1, …, mt)

Previous Schemes

 Only “somewhat homomorphic”
  Can only handle some functions f

 RSA works for MULT function (mod N)
c = c1 x … x ct =(m1 x … x mt)e (mod N)

c  Eval(pk, f, c1,…,ct),
Dec(sk, c) = f(m1, …, mt)

c1 = m1
e c2 = m2

e ct = mt
e

X

“Somewhat Homomorphic” Schemes

 RSA works for MULT gates (mod N)
  Paillier, GM, work for ADD, XOR
 BGN05 works for quadratic formulas
 MGH08 works for low-degree polynomials

  size of c  Eval(pk, f, c1,…,ct) grows
exponentially with degree of polynomial f.

 No FHE scheme
  Rivest, Adleman and Dertouzos proposed the

idea in 1978.

FHE: What does “Efficient” Mean?

  Here is a trivial (inefficient) FHE scheme:
  (f, c1,…,cn) = c* Eval(pk, f, c1,…,cn)
  Dec(sk, c*) decrypts individual ci’s, applies f to mi’s

(The worker does nothing. Alice assembles the
jewelry by herself.)

  But the point is to delegate processing!
 What we want:

  c* is a “normal” compact ciphertext
  Time to decrypt c* is independent of f.

Efficiency of FHE

 KeyGen, Enc, and Dec all run in time
polynomial in the security param λ.
  In particular, the time needed to decrypt

c  Eval(pk, f, c1,…,ct) is independent of f.

  Eval(pk, f, c1,…,ct) runs in time g(λ) • Sf,
where g is a poly and Sf is the size of the
boolean circuit (# of gates) to compute f.
  Sf = O(Tf • log Tf), Tf is Turing complexity of f

Outline

Not my original STOC09 scheme.
Rather, a simpler scheme by

Marten van Dijk, me, Shai Halevi,
and Vinod Vaikuntanathan

Smart and
Vercauteren recently

proposed an
optimization of the
STOC09 scheme.

 Why is it possible even in principle?
  A physical analogy for what we want
  What we want: fully homomorphic encryption (FHE)

  Rivest, Adleman, and Dertouzos defined FHE in
1978, but constructing FHE was open for 30 years

 Our FHE construction

Step 1: Construct a Useful
“Somewhat Homomorphic”

Scheme

Why a somewhat homomorphic scheme?

 Can’t we construct a FHE scheme
directly?
  If I knew how, I would tell you.
  Later: somewhat homomorphic → FHE

  If somewhat homomorphic scheme has a
certain property (bootstrappability)

A homomorphic symmetric encryption

 Shared secret key: odd number p
  To encrypt a bit m in {0,1}:

  Choose at random small r, large q

  Output c = m + 2r + pq
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

Noise much
smaller than p

The “noise”

A homomorphic symmetric encryption

 Shared secret key: odd number 101
  To encrypt a bit m in {0,1}:

  Choose at random small r, large q

  Output c = m + 2r + pq
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

Noise much
smaller than p

The “noise”

A homomorphic symmetric encryption

 Shared secret key: odd number 101
  To encrypt a bit m in {0,1}: (say, m=1)

  Choose at random small r, large q

  Output c = m + 2r + pq
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

The “noise” Noise much
smaller than p

A homomorphic symmetric encryption

 Shared secret key: odd number 101
  To encrypt a bit m in {0,1}: (say, m=1)

  Choose at random small r (=5), large q (=9)

  Output c = m + 2r + pq
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

The “noise” Noise much
smaller than p

A homomorphic symmetric encryption

 Shared secret key: odd number 101
  To encrypt a bit m in {0,1}: (say, m=1)

  Choose at random small r (=5), large q (=9)

  Output c = m + 2r + pq = 11 + 909 = 920
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

The “noise”

A homomorphic symmetric encryption

 Shared secret key: odd number 101
  To encrypt a bit m in {0,1}: (say, m=1)

  Choose at random small r (=5), large q (=9)

  Output c = m + 2r + pq = 11 + 909 = 920
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2 = 11 mod 2 = 1

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

The “noise”

Homomorphic Public-Key Encryption

 Secret key is an odd p as before
  Public key is many “encryptions of 0”

  xi = qip + 2ri

  Encpk(m) = subset-sum(xi’s)+m
 Decsk(c) = (c mod p) mod 2
  Eval as before

[]x0 for i=1,2,…,n

[+2r]x0

Security of E

 Approximate GCD (approx-gcd) Problem:
  Given many xi = si + qip, output p
  Example params: si ~ 2λ, p ~ 2λ^2, qi ~ 2λ^5,

where λ is security parameter
  Best known attacks (lattices) require 2λ time

 Reduction:
  if approx-gcd is hard, E is semantically secure

Why is E homomorphic?

 Basically because:
  If you add or multiply two near-multiples of p,

you get another near multiple of p…

Why is E homomorphic?

  c1=m1+2r1+q1p, c2=m2+2r2+q2p

  c1+c2 = (m1+m2) + 2(r1+r2) + (q1+q2)p
  (m1+m2)+2(r1+r2) still much smaller than p
c1+c2 mod p = (m1+m2) + 2(r1+r2)

  c1 x c2 = (m1+2r1)(m2+2r2)
 +(c1q2+q1c2-q1q2)p

  (m1+2r1)(m2+2r2) still much smaller than p
c1xc2 mod p = (m1+2r1)(m2+2r2)
(c1xc2 mod p) mod 2 = m1xm2 mod 2

Noise: Distance to nearest multiple of p

Why is E homomorphic?

  c1=m1+2r1+q1p, …, ct=mt+2rt+qtp

  Let f be a multivariate poly with integer
coefficients (sequence of +’s and x’s)

  Let c = EvalE(pk, f, c1, …, ct) = f(c1, …, ct)

  f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp

  Then (c mod p) mod 2 = f(m1, …, mt) mod 2

Suppose this noise is much smaller than p

That’s what we want!

Why is E somewhat homomorphic?

 What if |f(m1+2r1, …, mt+2rt)| > p/2?
  c = f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp

  Nearest p-multiple to c is q’p for q’ ≠ q
  (c mod p) = f(m1+2r1, …, mt+2rt) + (q-q’)p
  (c mod p) mod 2

 = f(m1, …, mt) + (q-q’) mod 2
 = ???

 We say E can handle f if:
  |f(x1, …, xt)| < p/4
  whenever all |xi| < B, where B is a bound on

the noise of a fresh ciphertext output by EncE

Example of a Function that E Handle

  Elementary symmetric poly of degree d:
 f(x1, …, xt) = x1·x2·xd + … + xt-d+1·xt-d+2·xt

  If |xi| < B, then, |f(x1, …, xt)| < td·Bd

 E can handle f if:
 td·Bd < p/4 → basically if: d < (log p)/(log tB)

  Example params: B ~ 2λ, p ~ 2λ^2
  EvalE can handle an elem symm poly of

degree approximately λ.

Step 2: Somewhat Homomorphic → FHE
(if somewhat homomorphic scheme has a

certain property: bootstrappability)

Back to Alice’s Jewelry Store

  Suppose Alice’s boxes are defective.
  After the worker works on the jewel for 1 minute,

the gloves stiffen!
  Some complicated pieces take 10 minutes to make.
  Can Alice still use her boxes?
  Hint: you can put one box inside another.

Back to Alice’s Jewelry Store

  Yes! Alice gives worker more boxes with a copy of her key
  Worker assembles jewel inside box #1 for 1 minute.
  Then, worker puts box #1 inside box #2!
  With box #2’s gloves, worker opens box #1 with key, takes

jewel out, and continues assembling till box #2’s gloves stiffen.
  And so on…

Back to Alice’s Jewelry Store

  Yes! Alice gives worker a boxes with a copy of her key
  Worker assembles jewel inside box #1 for 1
  Then, worker puts box #1 inside box #2!
  With box #2’s gloves, worker opens box #1 with key, takes

jewel out, and continues assembling till box #2’s gloves stiffen.

Cool! I can use my defective
gloveboxes to get my workers to
assemble arbitrarily complicated
pieces, if there is enough time
(before the gloves stiffen) to
unlock a box and do a little work
on the piece!

Back to Alice’s Jewelry Store

  Yes! Alice gives worker a boxes with a copy of her key
  Worker assembles jewel inside box #1 for 1
  Then, worker puts box #1 inside box #2!
  With box #2’s gloves, worker opens box #1 with key, takes

jewel out, and continues assembling till box #2’s gloves stiffen.

A weird question: Is it safe to
put a key inside a glove box?
What if the key can unlock the
box from the inside?

Back to Alice’s Jewelry Store

  Yes! Alice gives worker a boxes with a copy of her key
  Worker assembles jewel inside box #1 for 1
  Then, worker puts box #1 inside box #2!
  With box #2’s gloves, worker opens box #1 with key, takes

jewel out, and continues assembling till box #2’s gloves stiffen.

In any case, it definitely should
be safe to have distinct keys,
and to put the key for box #1
inside box #2, and so on…

How is it Analogous?

  Alice’s jewelry store: Worker can assemble
any piece if gloves can “handle” unlocking a
box (plus a bit) before they stiffen

  Encryption:
  If E can handle DecE (plus a bit), then we

can use E to construct a FHE scheme EFHE

Warm-up: Applying Eval to DecE

Blue means box #2.
It also means encrypted
under key PK2.

Red means box #1.
It also means encrypted
under key PK1.

SK1

m

Decryption
(unlocking)

function

m

m c1

Warm-up: Applying Eval to DecE

Applying Eval to (DecE then AddE)

SK1

m1

DecE func
then AddE

m1

+

m2

m2

m1

m2

Blue means box #2.
It also means encrypted
under key PK2.

Red means box #1.
It also means encrypted
under key PK1.

Applying Eval to (DecE then MultE)

SK1

m1

DecE func
then MultE

m1

x

m2

m2

m1

m2

Blue means box #2.
It also means encrypted
under key PK2.

Red means box #1.
It also means encrypted
under key PK1.

If E can evaluate (DecE then AddE)
and (DecE then MultE), then we call

E “bootstrappable” (a self-
referential property).

And now the recursion…

m3

×

m4

Blue means
encrypted
under PK2.

Green
means
encrypted
under PK3. m1

+

m2

SK2

DecE func
then MultE

(m1 + m2)

×

(m3 × m4)

And so on...

Arbitrary Functions

  Suppose E is bootstrappable – i.e., it can handle
DecE augmented by AddE and MultE efficiently.

  Then, there is a scheme Ed that evaluates
arbitrary functions with d “levels”.

  Ciphertexts: Same size in Ed as in E.
  Public key:

  Consists of (d+1) E pub keys: pk0, …, pkd

  and encrypted secret keys: {Enc(pki, sk(i-1))}

  Size: linear in d. Constant in d, if you assume
encryption is “circular secure.”
  The question of circular security is like whether it is

“safe” to put a key for box i inside box i.

Step 2b: Bootstrappable Yet?
Is our Somewhat Homomorphic
Scheme Already Bootstrappable?

Can EvalE handle DecE?

  The boolean function DecE(p,c) sets:

 m = LSB(c) XOR LSB([c/p])

 Can E handle (i.e., Evaluate) DecE
followed by AddE or MultE?
  If so, then E is bootstrappable, and we can

use E to construct an FHE scheme EFHE.

 Most complicated part:

 f(c,p-1) = LSB([c×p-1])

  The numbers c and p-1 are in binary rep.

Multiplying Numbers

  Let’s multiply a and b, rep’d in binary:

 (at, …, a0) × (bt, …, b0)

  It involves adding the t+1 numbers:

f(c,p-1) = LSB([c×p-1])

a0bt a0bt-1 … a0b1 a0b0

a1bt a1bt-1 a1bt-2 … a1b1 0

… … … … … … …

atbt … atb1 atb0 0 … 0 0

Adding Two Numbers f(c,p-1) = LSB([c×p-1])

x1y1+x1x0y0+
y1x0y0

x0y0

x2 x1 x0

y2 y1 y0

x2+y2+x1y1+
x1x0y0+y1x0y0

x1+y1+x0y0 x0+y0

Carries:

Sum:

 Adding two t-bit numbers:
  Bit of the sum = up to t-degree poly of input bits

Adding Many Numbers f(c,p-1) = LSB([c×p-1])

x2 x1 x0

y2 y1 y0

z2 z1 z0

x2+y2+z2 x1+y1+z1 x0+y0+z0

x2y2+x2z2
+y2z2

x1y1+x1z1
+y1z1

x0y0+x0z0
+y0z0

  3-for-2 trick:
  3 numbers → 2 numbers with same sum
  Output bits are up to degree-2 in input bits

  t numbers → 2 numbers with same sum
  Output bits are degree 2log3/2 t = tlog3/2 2 = t1.71

Back to Multiplying f(c,p-1) = LSB([c×p-1])

 Multiplying two t-bit numbers:
  Add t t-bit numbers of degree 2
  3-for-2 trick → two t-bit numbers, deg. 2t1.71.
  Adding final two numbers→ deg. t(2t1.71) = 2t2.71.

 Consider f(c,p-1) = LSB([c×p-1])
  p-1 must have log c > log p bits of precision to

ensure the rounding is correct
  So, f has degree at least 2(log p)2.71.

 Can our scheme E handle a polynomial f
of such high degree?
  Unfortunately, no.

Why Isn’t E Bootstrappable?

 Recall: E can handle f if:
  |f(x1, …, xt)| < p/4
  whenever all |xi| < B, where B is a bound on the

noise of a fresh ciphertext output by EncE

  If f has degree > log p, then |f(x1, …, xt)|
could definitely be bigger than p
  E is (apparently) not bootstrappable…

f(c,p-1) = LSB([c×p-1])

Step 3 (Final Step): Modify our
Somewhat Homomorphic Scheme to

Make it Bootstrappable

The Goal

 Modify E → get E* that is bootstrappable.
  Properties of E*

  E* can handle any function that E can
  DecE* is a lower-degree poly than DecE, so

that E* can handle it

How do we “simplify” decryption?

  Crazy idea: Put hint about sk in E* public key!
Hint lets anyone post-process the ciphertext,
leaving less work for DecE* to do.

  This idea is used in server-aided cryptography.

Old
decryption
algorithm

m

c sk

DecE

How do we “simplify” decryption?

Old
decryption
algorithm

m

c sk

DecE

c h(sk, r)

Post-
Process

sk*

m

DecE*

c*

Processed
ciphertext c*

New
approach

The hint
about sk

in pub key

Hint in pub key lets anyone post-process the ciphertext,
leaving less work for DecE* to do.

How do we “simplify” decryption?

Old
decryption
algorithm

m

c sk

DecE

c h(sk, r)

Post-
Process

sk*

m

DecE*

c*

Processed
ciphertext c*

New
approach

The hint
about sk

in pub key

(Post-Process, DecE*) should work on
any c that DecE works on

How do we “simplify” decryption?

Old
decryption
algorithm

m

c sk

DecE

c h(sk, r)

Post-
Process

sk*

m

DecE*

c*

Processed
ciphertext c*

New
approach

The hint
about sk

in pub key

E* is semantically secure if E is, if h(sk,r) is computationally
indistinguishable from h(0,r’) given sk, but not sk*.

Concretely, what is hint about p?
  E*’s pub key includes real numbers

  r1,r2, …, rn ∈ [0,2]
  ∃ sparse set S for which Σi∈S ri = 1/p

 Security: Sparse Subset Sum Prob (SSSP)
  Given integers x1, …, xn with a subset S with

Σi∈S xi = 0, output S.
  Studied w.r.t. server-aided cryptosystems
  Potentially hard when n > log max{|xi|}.

•  Then, there are exponentially many subsets T
(not necessarily sparse) such that Σi∈S xi = 0

  Params: n ~ λ5 and |S| ~ λ.
  Reduction:

  If SSSP is hard, our hint is indist. from h(0,r)

How E* works…

  EncE*, EvalE* output ψi=c x ri mod 2, i=1,…,n

  Together with c itself
  The ψi have about log n bits of precision

 New secret key is bit-vector s1,…,sn
  si=1 if i∈S, si=0 otherwise

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2

  E* can handle any function E can:
  c/p = c Σi siri = Σi siψi, mod 2, up to precision
  Precision errors do not changing the rounding

  Precision errors from ψi imprecision < 1/8
  c/p is with 1/4 of an integer

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

Let b0 be
the binary

rep of
Hamming

weight

b0,log n … b0,1 b0,0

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

Let b-1 be
the binary

rep of
Hamming

weight

b0,log n … b0,1 b0,0

b-1,log n … b-1,1 b-1,0

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

Let b-log n be
the binary

rep of
Hamming

weight

b0,log n … b0,1 b0,0

b-1,log n … b-1,1 b-1,0

… … … …

b-log n,log n … b-log n,1 b-log n,0

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

Only log n
numbers with
log n bits of

precision. Easy
to handle.

b0,log n … b0,1 b0,0

b-1,log n … b-1,1 b-1,0

… … … …

b-log n,log n … b-log n,1 b-log n,0

Computing Sparse Hamming Wgt.

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

Computing Sparse Hamming Wgt.

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

0 0 … 0

0 0 … 0

a4,0 a4,-1 … a4,-log n

0 0 … 0

… … … …

an,0 an,-1 … an,-log n

Computing Sparse Hamming Wgt.

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2

a1

0

0

a4,0

0

…

an

 Binary rep of Hamming wgt of
x = (x1, …, xn) in {0,1}n given by:

e2^[log n](x) mod2, …, e2(x) mod2, e1(x) mod2
 where ek is the elem symm poly of deg k

 Since we know a priori that
Hamming wgt is |S|, we only need

e2^[log |S|](x) mod2, …, e2(x) mod2, e1(x) mod2
 up to deg < |S|

 Set |S| < λ, then E* is bootstrappable.

Yay! We have a FHE scheme!

Performance

 Well, a little slow…
  In E, a ciphertext is ci is about λ5 bits.
  DecE* works in time quasi-linear in λ5.
  Applying EvalE* to DecE* takes quasi-λ10.

  To bootstrap E* to E*FHE, and to compute
EvalE*FHE(pk, f, c1, …, ct), we apply EvalE* to
DecE* once for each Add and Mult gate of f.

  Total time: quasi- λ10 • Sf, where Sf is the
circuit complexity of f.

Performance

 STOC09 lattice-based scheme performs
better:
  Applying Eval to Dec takes Õ(λ6)

computation if you want 2λ security
against known attacks.

  Comparison: RSA also takes Õ(λ6); also,
in ElGamal (using finite fields).

 More optimizations on the way!

? ?
Thank You! Questions?

Hardness of Approximate-GCD

 Several lattice-based approaches for
solving approximate-GCD
  Related to Simultaneous Diophantine

Approximation (SDA)
  Studied in [Hawgrave-Graham01]

  We considered some extensions of his attacks

 All run out of steam when |qi|>|p|2
  In our case |p| ~ n2, |qi| ~ n5 » |p|2

Relation to SDA

  xi = qip + ri (ri « p « qi), i = 0,1,2,…
  yi = xi/x0 = (qi+si)/q0, si ~ ri/p « 1
  y1, y2, … is an instance of SDA

  q0 is a denominator that approximates all yi’s

 Use Lagarias’s algorithm:
  Consider the rows of this matrix:
  Find a short vector in the

lattice that they span
  <q0,q1,…,qt>·L is short
  Hopefully we will find it

R x1 x2 … xt
 -x0
 -x0

 …
 -x0

L=

Relation to SDA (cont.)

 When will Lagarias’ algorithm succeed?
  <q0,q1,…,qt>·L should be shortest in lattice

  In particular shorter than ~det(L)1/t+1

  This only holds for t > log Q/log P
  The dimension of the lattice is t+1
  Quality of lattice-reduction deteriorates

exponentially with t
  When log Q > (log P)2 (so t>log P),

LLL-type reduction isn’t good enough
anymore

Minkowski
bound

Relation to SDA (cont.)

 When will Lagarias’ algorithm succeed?
  <q0,q1,…,qt>·L should be shortest in lattice

  In particular shorter than ~det(L)1/t+1

  This only holds for t > log Q/log P
  The dimension of the lattice is t+1
  Rule of thumb: takes 2t/k time to get 2k

approximation of SVP/CVP in lattice of dim t.
  2(log Q)/(log P)^2 = 2λ time to get 2(log P) = P approx.

Minkowski
bound

