
Fully Homomorphic Encryption

Craig Gentry

IBM Watson
MIT Guest Lecture
April 2010

The Goal

I want to delegate processing of my data,
without giving away access to it.

Application: Private Google Search

  Private search
  Do a Google search

  But encrypt my query, so that Google
cannot “see” it

  I still want to get the same results
  Results would be encrypted too

I want to delegate processing of my data,
without giving away access to it.

Application: Cloud Computing

 Storing my files on the cloud
  Encrypt them to protect my information
  Later, I want to retrieve the files containing

“cloud” within 5 words of “computing”.
  Cloud should return only these (encrypted) files,

without knowing the key

  Privacy combo: Encrypted query on encrypted data

I want to delegate processing of my data,
without giving away access to it.

Outline

 Why is it possible even in principle?
  A physical analogy for what we want
  What we want: fully homomorphic encryption (FHE)

  Rivest, Adleman, and Dertouzos defined FHE in
1978, but constructing FHE was open for 30 years

 Our FHE construction

Can we separate processing from access?

Actually, separating processing from access
even makes sense in the physical world…

An Analogy: Alice’s Jewelry Store

 Workers assemble raw materials into
jewelry

 But Alice is worried about theft
 How can the workers process the raw
materials without having access to them?

An Analogy: Alice’s Jewelry Store

 Alice puts materials in locked glovebox
  For which only she has the key

 Workers assemble jewelry in the box
 Alice unlocks box to get “results”

An Encryption Glovebox?

 Alice delegated processing without
giving away access.

 But does this work for encryption?
  Can we create an “encryption glovebox”

that would allow the cloud to process data
while it remains encrypted?

Public-key Encryption

  Three procedures: KeyGen, Enc, Dec
  (sk,pk) KeyGen(λ)

  Generate random public/secret key-pair

  c Enc(pk, m)
  Encrypt a message with the public key

  m Dec(sk, c)
  Decrypt a ciphertext with the secret key

Homomorphic Public-key Encryption

 Another procedure: Eval (for Evaluate)
  c Eval(pk, f, c1,…,ct)

  No info about m1, …, mt, f(m1, …mt) is leaked
  f(m1, …mt) is the “ring” made from raw

materials m1, …, mt inside the encryption box

Encryptions of
inputs m1,…,mt to f 	

function

Encryption of f(m1,…,mt).
I.e., Dec(sk, c) = f(m1, …mt)

Fully Homomorphic Public-key Encryption

 Another procedure: Eval (for Evaluate)
  c Eval(pk, f, c1,…,ct)

  FHE scheme should:
 Work for any well-defined function f
 Be efficient

Encryptions of
inputs m1,…,mt to f 	

function

Encryption of f(m1,…,mt).
I.e., Dec(sk, c) = f(m1, …mt)

Back to Our Applications

  Private Google search
  Encrypt bits of my query: ci Enc(pk, mi)
  Send pk and the ci’s to Google
  Google expresses its search algorithm as a

boolean function f of a user query
  Google sends c Eval(pk, f, c1,…,ct)
  I decrypt to obtain my result f(m1, …, mt)

c Eval(pk, f, c1,…,ct),
Dec(sk, c) = f(m1, …, mt)

Back to Our Applications

 Cloud Computing with Privacy
  Encrypt bits of my files ci Enc(pk, mi)
  Store pk and the ci’s on the cloud
  Later, I send query :“cloud” within 5 words

of “computing”
  Let f be the boolean function representing

the cloud’s response if data was unencrypted
  Cloud sends c Eval(pk, f, c1,…,ct)
  I decrypt to obtain my result f(m1, …, mt)

c Eval(pk, f, c1,…,ct),
Dec(sk, c) = f(m1, …, mt)

Previous Schemes

 Only “somewhat homomorphic”
  Can only handle some functions f

 RSA works for MULT function (mod N)
c = c1 x … x ct =(m1 x … x mt)e (mod N)

c Eval(pk, f, c1,…,ct),
Dec(sk, c) = f(m1, …, mt)

c1 = m1
e c2 = m2

e ct = mt
e

X

“Somewhat Homomorphic” Schemes

 RSA works for MULT gates (mod N)
  Paillier, GM, work for ADD, XOR
 BGN05 works for quadratic formulas
 MGH08 works for low-degree polynomials

  size of c Eval(pk, f, c1,…,ct) grows
exponentially with degree of polynomial f.

 No FHE scheme
  Rivest, Adleman and Dertouzos proposed the

idea in 1978.

FHE: What does “Efficient” Mean?

  Here is a trivial (inefficient) FHE scheme:
  (f, c1,…,cn) = c* Eval(pk, f, c1,…,cn)
  Dec(sk, c*) decrypts individual ci’s, applies f to mi’s

(The worker does nothing. Alice assembles the
jewelry by herself.)

  But the point is to delegate processing!
 What we want:

  c* is a “normal” compact ciphertext
  Time to decrypt c* is independent of f.

Efficiency of FHE

 KeyGen, Enc, and Dec all run in time
polynomial in the security param λ.
  In particular, the time needed to decrypt

c Eval(pk, f, c1,…,ct) is independent of f.

  Eval(pk, f, c1,…,ct) runs in time g(λ) • Sf,
where g is a poly and Sf is the size of the
boolean circuit (# of gates) to compute f.
  Sf = O(Tf • log Tf), Tf is Turing complexity of f

Outline

Not my original STOC09 scheme.
Rather, a simpler scheme by

Marten van Dijk, me, Shai Halevi,
and Vinod Vaikuntanathan

Smart and
Vercauteren recently

proposed an
optimization of the
STOC09 scheme.

 Why is it possible even in principle?
  A physical analogy for what we want
  What we want: fully homomorphic encryption (FHE)

  Rivest, Adleman, and Dertouzos defined FHE in
1978, but constructing FHE was open for 30 years

 Our FHE construction

Step 1: Construct a Useful
“Somewhat Homomorphic”

Scheme

Why a somewhat homomorphic scheme?

 Can’t we construct a FHE scheme
directly?
  If I knew how, I would tell you.
  Later: somewhat homomorphic → FHE

  If somewhat homomorphic scheme has a
certain property (bootstrappability)

A homomorphic symmetric encryption

 Shared secret key: odd number p
  To encrypt a bit m in {0,1}:

  Choose at random small r, large q

  Output c = m + 2r + pq
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

Noise much
smaller than p

The “noise”

A homomorphic symmetric encryption

 Shared secret key: odd number 101
  To encrypt a bit m in {0,1}:

  Choose at random small r, large q

  Output c = m + 2r + pq
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

Noise much
smaller than p

The “noise”

A homomorphic symmetric encryption

 Shared secret key: odd number 101
  To encrypt a bit m in {0,1}: (say, m=1)

  Choose at random small r, large q

  Output c = m + 2r + pq
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

The “noise” Noise much
smaller than p

A homomorphic symmetric encryption

 Shared secret key: odd number 101
  To encrypt a bit m in {0,1}: (say, m=1)

  Choose at random small r (=5), large q (=9)

  Output c = m + 2r + pq
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

The “noise” Noise much
smaller than p

A homomorphic symmetric encryption

 Shared secret key: odd number 101
  To encrypt a bit m in {0,1}: (say, m=1)

  Choose at random small r (=5), large q (=9)

  Output c = m + 2r + pq = 11 + 909 = 920
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

The “noise”

A homomorphic symmetric encryption

 Shared secret key: odd number 101
  To encrypt a bit m in {0,1}: (say, m=1)

  Choose at random small r (=5), large q (=9)

  Output c = m + 2r + pq = 11 + 909 = 920
  Ciphertext is close to a multiple of p
  m = LSB of distance to nearest multiple of p

  To decrypt c:
  Output m = (c mod p) mod 2 = 11 mod 2 = 1

  m = c – p • [c/p] mod 2
 = c – [c/p] mod 2
 = LSB(c) XOR LSB([c/p])

The “noise”

Homomorphic Public-Key Encryption

 Secret key is an odd p as before
  Public key is many “encryptions of 0”

  xi = qip + 2ri

  Encpk(m) = subset-sum(xi’s)+m
 Decsk(c) = (c mod p) mod 2
  Eval as before

[]x0 for i=1,2,…,n

[+2r]x0

Security of E

 Approximate GCD (approx-gcd) Problem:
  Given many xi = si + qip, output p
  Example params: si ~ 2λ, p ~ 2λ^2, qi ~ 2λ^5,

where λ is security parameter
  Best known attacks (lattices) require 2λ time

 Reduction:
  if approx-gcd is hard, E is semantically secure

Why is E homomorphic?

 Basically because:
  If you add or multiply two near-multiples of p,

you get another near multiple of p…

Why is E homomorphic?

  c1=m1+2r1+q1p, c2=m2+2r2+q2p

  c1+c2 = (m1+m2) + 2(r1+r2) + (q1+q2)p
  (m1+m2)+2(r1+r2) still much smaller than p
c1+c2 mod p = (m1+m2) + 2(r1+r2)

  c1 x c2 = (m1+2r1)(m2+2r2)
 +(c1q2+q1c2-q1q2)p

  (m1+2r1)(m2+2r2) still much smaller than p
c1xc2 mod p = (m1+2r1)(m2+2r2)
(c1xc2 mod p) mod 2 = m1xm2 mod 2

Noise: Distance to nearest multiple of p

Why is E homomorphic?

  c1=m1+2r1+q1p, …, ct=mt+2rt+qtp

  Let f be a multivariate poly with integer
coefficients (sequence of +’s and x’s)

  Let c = EvalE(pk, f, c1, …, ct) = f(c1, …, ct)

  f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp

  Then (c mod p) mod 2 = f(m1, …, mt) mod 2

Suppose this noise is much smaller than p

That’s what we want!

Why is E somewhat homomorphic?

 What if |f(m1+2r1, …, mt+2rt)| > p/2?
  c = f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp

  Nearest p-multiple to c is q’p for q’ ≠ q
  (c mod p) = f(m1+2r1, …, mt+2rt) + (q-q’)p
  (c mod p) mod 2

 = f(m1, …, mt) + (q-q’) mod 2
 = ???

 We say E can handle f if:
  |f(x1, …, xt)| < p/4
  whenever all |xi| < B, where B is a bound on

the noise of a fresh ciphertext output by EncE

Example of a Function that E Handle

  Elementary symmetric poly of degree d:
 f(x1, …, xt) = x1·x2·xd + … + xt-d+1·xt-d+2·xt

  If |xi| < B, then, |f(x1, …, xt)| < td·Bd

 E can handle f if:
 td·Bd < p/4 → basically if: d < (log p)/(log tB)

  Example params: B ~ 2λ, p ~ 2λ^2
  EvalE can handle an elem symm poly of

degree approximately λ.

Step 2: Somewhat Homomorphic → FHE
(if somewhat homomorphic scheme has a

certain property: bootstrappability)

Back to Alice’s Jewelry Store

  Suppose Alice’s boxes are defective.
  After the worker works on the jewel for 1 minute,

the gloves stiffen!
  Some complicated pieces take 10 minutes to make.
  Can Alice still use her boxes?
  Hint: you can put one box inside another.

Back to Alice’s Jewelry Store

  Yes! Alice gives worker more boxes with a copy of her key
  Worker assembles jewel inside box #1 for 1 minute.
  Then, worker puts box #1 inside box #2!
  With box #2’s gloves, worker opens box #1 with key, takes

jewel out, and continues assembling till box #2’s gloves stiffen.
  And so on…

Back to Alice’s Jewelry Store

  Yes! Alice gives worker a boxes with a copy of her key
  Worker assembles jewel inside box #1 for 1
  Then, worker puts box #1 inside box #2!
  With box #2’s gloves, worker opens box #1 with key, takes

jewel out, and continues assembling till box #2’s gloves stiffen.

Cool! I can use my defective
gloveboxes to get my workers to
assemble arbitrarily complicated
pieces, if there is enough time
(before the gloves stiffen) to
unlock a box and do a little work
on the piece!

Back to Alice’s Jewelry Store

  Yes! Alice gives worker a boxes with a copy of her key
  Worker assembles jewel inside box #1 for 1
  Then, worker puts box #1 inside box #2!
  With box #2’s gloves, worker opens box #1 with key, takes

jewel out, and continues assembling till box #2’s gloves stiffen.

A weird question: Is it safe to
put a key inside a glove box?
What if the key can unlock the
box from the inside?

Back to Alice’s Jewelry Store

  Yes! Alice gives worker a boxes with a copy of her key
  Worker assembles jewel inside box #1 for 1
  Then, worker puts box #1 inside box #2!
  With box #2’s gloves, worker opens box #1 with key, takes

jewel out, and continues assembling till box #2’s gloves stiffen.

In any case, it definitely should
be safe to have distinct keys,
and to put the key for box #1
inside box #2, and so on…

How is it Analogous?

  Alice’s jewelry store: Worker can assemble
any piece if gloves can “handle” unlocking a
box (plus a bit) before they stiffen

  Encryption:
  If E can handle DecE (plus a bit), then we

can use E to construct a FHE scheme EFHE

Warm-up: Applying Eval to DecE

Blue means box #2.
It also means encrypted
under key PK2.

Red means box #1.
It also means encrypted
under key PK1.

SK1

m

Decryption
(unlocking)

function

m

m c1

Warm-up: Applying Eval to DecE

Applying Eval to (DecE then AddE)

SK1

m1

DecE func
then AddE

m1

+

m2

m2

m1

m2

Blue means box #2.
It also means encrypted
under key PK2.

Red means box #1.
It also means encrypted
under key PK1.

Applying Eval to (DecE then MultE)

SK1

m1

DecE func
then MultE

m1

x

m2

m2

m1

m2

Blue means box #2.
It also means encrypted
under key PK2.

Red means box #1.
It also means encrypted
under key PK1.

If E can evaluate (DecE then AddE)
and (DecE then MultE), then we call

E “bootstrappable” (a self-
referential property).

And now the recursion…

m3

×

m4

Blue means
encrypted
under PK2.

Green
means
encrypted
under PK3. m1

+

m2

SK2

DecE func
then MultE

(m1 + m2)

×

(m3 × m4)

And so on...

Arbitrary Functions

  Suppose E is bootstrappable – i.e., it can handle
DecE augmented by AddE and MultE efficiently.

  Then, there is a scheme Ed that evaluates
arbitrary functions with d “levels”.

  Ciphertexts: Same size in Ed as in E.
  Public key:

  Consists of (d+1) E pub keys: pk0, …, pkd

  and encrypted secret keys: {Enc(pki, sk(i-1))}

  Size: linear in d. Constant in d, if you assume
encryption is “circular secure.”
  The question of circular security is like whether it is

“safe” to put a key for box i inside box i.

Step 2b: Bootstrappable Yet?
Is our Somewhat Homomorphic
Scheme Already Bootstrappable?

Can EvalE handle DecE?

  The boolean function DecE(p,c) sets:

 m = LSB(c) XOR LSB([c/p])

 Can E handle (i.e., Evaluate) DecE
followed by AddE or MultE?
  If so, then E is bootstrappable, and we can

use E to construct an FHE scheme EFHE.

 Most complicated part:

 f(c,p-1) = LSB([c×p-1])

  The numbers c and p-1 are in binary rep.

Multiplying Numbers

  Let’s multiply a and b, rep’d in binary:

 (at, …, a0) × (bt, …, b0)

  It involves adding the t+1 numbers:

f(c,p-1) = LSB([c×p-1])

a0bt a0bt-1 … a0b1 a0b0

a1bt a1bt-1 a1bt-2 … a1b1 0

… … … … … … …

atbt … atb1 atb0 0 … 0 0

Adding Two Numbers f(c,p-1) = LSB([c×p-1])

x1y1+x1x0y0+
y1x0y0

x0y0

x2 x1 x0

y2 y1 y0

x2+y2+x1y1+
x1x0y0+y1x0y0

x1+y1+x0y0 x0+y0

Carries:

Sum:

 Adding two t-bit numbers:
  Bit of the sum = up to t-degree poly of input bits

Adding Many Numbers f(c,p-1) = LSB([c×p-1])

x2 x1 x0

y2 y1 y0

z2 z1 z0

x2+y2+z2 x1+y1+z1 x0+y0+z0

x2y2+x2z2
+y2z2

x1y1+x1z1
+y1z1

x0y0+x0z0
+y0z0

  3-for-2 trick:
  3 numbers → 2 numbers with same sum
  Output bits are up to degree-2 in input bits

  t numbers → 2 numbers with same sum
  Output bits are degree 2log3/2 t = tlog3/2 2 = t1.71

Back to Multiplying f(c,p-1) = LSB([c×p-1])

 Multiplying two t-bit numbers:
  Add t t-bit numbers of degree 2
  3-for-2 trick → two t-bit numbers, deg. 2t1.71.
  Adding final two numbers→ deg. t(2t1.71) = 2t2.71.

 Consider f(c,p-1) = LSB([c×p-1])
  p-1 must have log c > log p bits of precision to

ensure the rounding is correct
  So, f has degree at least 2(log p)2.71.

 Can our scheme E handle a polynomial f
of such high degree?
  Unfortunately, no.

Why Isn’t E Bootstrappable?

 Recall: E can handle f if:
  |f(x1, …, xt)| < p/4
  whenever all |xi| < B, where B is a bound on the

noise of a fresh ciphertext output by EncE

  If f has degree > log p, then |f(x1, …, xt)|
could definitely be bigger than p
  E is (apparently) not bootstrappable…

f(c,p-1) = LSB([c×p-1])

Step 3 (Final Step): Modify our
Somewhat Homomorphic Scheme to

Make it Bootstrappable

The Goal

 Modify E → get E* that is bootstrappable.
  Properties of E*

  E* can handle any function that E can
  DecE* is a lower-degree poly than DecE, so

that E* can handle it

How do we “simplify” decryption?

  Crazy idea: Put hint about sk in E* public key!
Hint lets anyone post-process the ciphertext,
leaving less work for DecE* to do.

  This idea is used in server-aided cryptography.

Old
decryption
algorithm

m

c sk

DecE

How do we “simplify” decryption?

Old
decryption
algorithm

m

c sk

DecE

c h(sk, r)

Post-
Process

sk*

m

DecE*

c*

Processed
ciphertext c*

New
approach

The hint
about sk

in pub key

Hint in pub key lets anyone post-process the ciphertext,
leaving less work for DecE* to do.

How do we “simplify” decryption?

Old
decryption
algorithm

m

c sk

DecE

c h(sk, r)

Post-
Process

sk*

m

DecE*

c*

Processed
ciphertext c*

New
approach

The hint
about sk

in pub key

(Post-Process, DecE*) should work on
any c that DecE works on

How do we “simplify” decryption?

Old
decryption
algorithm

m

c sk

DecE

c h(sk, r)

Post-
Process

sk*

m

DecE*

c*

Processed
ciphertext c*

New
approach

The hint
about sk

in pub key

E* is semantically secure if E is, if h(sk,r) is computationally
indistinguishable from h(0,r’) given sk, but not sk*.

Concretely, what is hint about p?
  E*’s pub key includes real numbers

  r1,r2, …, rn ∈ [0,2]
  ∃ sparse set S for which Σi∈S ri = 1/p

 Security: Sparse Subset Sum Prob (SSSP)
  Given integers x1, …, xn with a subset S with

Σi∈S xi = 0, output S.
  Studied w.r.t. server-aided cryptosystems
  Potentially hard when n > log max{|xi|}.

•  Then, there are exponentially many subsets T
(not necessarily sparse) such that Σi∈S xi = 0

  Params: n ~ λ5 and |S| ~ λ.
  Reduction:

  If SSSP is hard, our hint is indist. from h(0,r)

How E* works…

  EncE*, EvalE* output ψi=c x ri mod 2, i=1,…,n

  Together with c itself
  The ψi have about log n bits of precision

 New secret key is bit-vector s1,…,sn
  si=1 if i∈S, si=0 otherwise

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2

  E* can handle any function E can:
  c/p = c Σi siri = Σi siψi, mod 2, up to precision
  Precision errors do not changing the rounding

  Precision errors from ψi imprecision < 1/8
  c/p is with 1/4 of an integer

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

Let b0 be
the binary

rep of
Hamming

weight

b0,log n … b0,1 b0,0

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

Let b-1 be
the binary

rep of
Hamming

weight

b0,log n … b0,1 b0,0

b-1,log n … b-1,1 b-1,0

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

Let b-log n be
the binary

rep of
Hamming

weight

b0,log n … b0,1 b0,0

b-1,log n … b-1,1 b-1,0

… … … …

b-log n,log n … b-log n,1 b-log n,0

A Different Way to Add Numbers

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

Only log n
numbers with
log n bits of

precision. Easy
to handle.

b0,log n … b0,1 b0,0

b-1,log n … b-1,1 b-1,0

… … … …

b-log n,log n … b-log n,1 b-log n,0

Computing Sparse Hamming Wgt.

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

an,0 an,-1 … an,-log n

Computing Sparse Hamming Wgt.

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2
a1,0 a1,-1 … a1,-log n

0 0 … 0

0 0 … 0

a4,0 a4,-1 … a4,-log n

0 0 … 0

… … … …

an,0 an,-1 … an,-log n

Computing Sparse Hamming Wgt.

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2

a1

0

0

a4,0

0

…

an

 Binary rep of Hamming wgt of
x = (x1, …, xn) in {0,1}n given by:

e2^[log n](x) mod2, …, e2(x) mod2, e1(x) mod2
 where ek is the elem symm poly of deg k

 Since we know a priori that
Hamming wgt is |S|, we only need

e2^[log |S|](x) mod2, …, e2(x) mod2, e1(x) mod2
 up to deg < |S|

 Set |S| < λ, then E* is bootstrappable.

Yay! We have a FHE scheme!

Performance

 Well, a little slow…
  In E, a ciphertext is ci is about λ5 bits.
  DecE* works in time quasi-linear in λ5.
  Applying EvalE* to DecE* takes quasi-λ10.

  To bootstrap E* to E*FHE, and to compute
EvalE*FHE(pk, f, c1, …, ct), we apply EvalE* to
DecE* once for each Add and Mult gate of f.

  Total time: quasi- λ10 • Sf, where Sf is the
circuit complexity of f.

Performance

 STOC09 lattice-based scheme performs
better:
  Applying Eval to Dec takes Õ(λ6)

computation if you want 2λ security
against known attacks.

  Comparison: RSA also takes Õ(λ6); also,
in ElGamal (using finite fields).

 More optimizations on the way!

? ?
Thank You! Questions?

Hardness of Approximate-GCD

 Several lattice-based approaches for
solving approximate-GCD
  Related to Simultaneous Diophantine

Approximation (SDA)
  Studied in [Hawgrave-Graham01]

  We considered some extensions of his attacks

 All run out of steam when |qi|>|p|2
  In our case |p| ~ n2, |qi| ~ n5 » |p|2

Relation to SDA

  xi = qip + ri (ri « p « qi), i = 0,1,2,…
  yi = xi/x0 = (qi+si)/q0, si ~ ri/p « 1
  y1, y2, … is an instance of SDA

  q0 is a denominator that approximates all yi’s

 Use Lagarias’s algorithm:
  Consider the rows of this matrix:
  Find a short vector in the

lattice that they span
  <q0,q1,…,qt>·L is short
  Hopefully we will find it

R x1 x2 … xt
 -x0
 -x0

 …
 -x0

L=

Relation to SDA (cont.)

 When will Lagarias’ algorithm succeed?
  <q0,q1,…,qt>·L should be shortest in lattice

  In particular shorter than ~det(L)1/t+1

  This only holds for t > log Q/log P
  The dimension of the lattice is t+1
  Quality of lattice-reduction deteriorates

exponentially with t
  When log Q > (log P)2 (so t>log P),

LLL-type reduction isn’t good enough
anymore

Minkowski
bound

Relation to SDA (cont.)

 When will Lagarias’ algorithm succeed?
  <q0,q1,…,qt>·L should be shortest in lattice

  In particular shorter than ~det(L)1/t+1

  This only holds for t > log Q/log P
  The dimension of the lattice is t+1
  Rule of thumb: takes 2t/k time to get 2k

approximation of SVP/CVP in lattice of dim t.
  2(log Q)/(log P)^2 = 2λ time to get 2(log P) = P approx.

Minkowski
bound

