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The Goal 

I want to delegate processing of my data, 
without giving away access to it. 



Application: Private Google Search 

  Private search 
  Do a Google search 

  But encrypt my query, so that Google 
cannot “see” it 

  I still want to get the same results 
  Results would be encrypted too 

I want to delegate processing of my data, 
without giving away access to it. 



Application: Cloud Computing 

 Storing my files on the cloud 
  Encrypt them to protect my information 
  Later, I want to retrieve the files containing 

“cloud” within 5 words of “computing”. 
  Cloud should return only these (encrypted) files, 

without knowing the key 

  Privacy combo: Encrypted query on encrypted data 

I want to delegate processing of my data, 
without giving away access to it. 



Outline 

 Why is it possible even in principle?  
  A physical analogy for what we want 
  What we want: fully homomorphic encryption (FHE) 

  Rivest, Adleman, and Dertouzos defined FHE in 
1978, but constructing FHE was open for 30 years 

 Our FHE construction  



Can we separate processing from access? 

Actually, separating processing from access 
even makes sense in the physical world… 



An Analogy: Alice’s Jewelry Store 

 Workers assemble raw materials into 
jewelry 

 But Alice is worried about theft 
 How can the workers process the raw 
materials without having access to them? 



An Analogy: Alice’s Jewelry Store 

 Alice puts materials in locked glovebox 
  For which only she has the key 

 Workers assemble jewelry in the box 
 Alice unlocks box to get “results” 



An Encryption Glovebox? 

 Alice delegated processing without 
giving away access. 

 But does this work for encryption? 
  Can we create an “encryption glovebox” 

that would allow the cloud to process data 
while it remains encrypted? 



Public-key Encryption 

  Three procedures: KeyGen, Enc, Dec 
  (sk,pk)  KeyGen(λ) 

  Generate random public/secret key-pair 

  c  Enc(pk, m) 
  Encrypt a message with the public key 

  m  Dec(sk, c) 
  Decrypt a ciphertext with the secret key 



Homomorphic Public-key Encryption 

 Another procedure: Eval (for Evaluate) 
  c  Eval(pk, f, c1,…,ct) 

  No info about m1, …, mt, f(m1, …mt) is leaked 
  f(m1, …mt) is the “ring” made from raw 

materials m1, …, mt inside the encryption box 

Encryptions of 
inputs m1,…,mt to f 	


function 

Encryption of f(m1,…,mt). 
I.e., Dec(sk, c) = f(m1, …mt)  



Fully Homomorphic Public-key Encryption 

 Another procedure: Eval (for Evaluate) 
  c  Eval(pk, f, c1,…,ct) 

  FHE scheme should:  
 Work for any well-defined function f 
 Be efficient 

Encryptions of 
inputs m1,…,mt to f 	


function 

Encryption of f(m1,…,mt). 
I.e., Dec(sk, c) = f(m1, …mt)  



Back to Our Applications 

  Private Google search 
  Encrypt bits of my query: ci  Enc(pk, mi) 
  Send pk and the ci’s to Google 
  Google expresses its search algorithm as a 

boolean function f of a user query 
  Google sends c  Eval(pk, f, c1,…,ct) 
  I decrypt to obtain my result f(m1, …, mt) 

c  Eval(pk, f, c1,…,ct), 
Dec(sk, c) = f(m1, …, mt) 



Back to Our Applications 

 Cloud Computing with Privacy 
  Encrypt bits of my files ci  Enc(pk, mi) 
  Store pk and the ci’s on the cloud 
  Later, I send query :“cloud” within 5 words 

of “computing” 
  Let f be the boolean function representing 

the cloud’s response if data was unencrypted 
  Cloud sends c  Eval(pk, f, c1,…,ct) 
  I decrypt to obtain my result f(m1, …, mt) 

c  Eval(pk, f, c1,…,ct), 
Dec(sk, c) = f(m1, …, mt) 



Previous Schemes 

 Only “somewhat homomorphic” 
  Can only handle some functions f 

 RSA works for MULT function (mod N) 
c = c1 x … x ct =(m1 x … x mt)e (mod N) 

c  Eval(pk, f, c1,…,ct), 
Dec(sk, c) = f(m1, …, mt) 

c1 = m1
e  c2 = m2

e  ct = mt
e  

X 



“Somewhat Homomorphic” Schemes 

 RSA works for MULT gates (mod N) 
  Paillier, GM, work for ADD, XOR 
 BGN05 works for quadratic formulas 
 MGH08 works for low-degree polynomials 

  size of c  Eval(pk, f, c1,…,ct) grows 
exponentially with degree of polynomial f. 

 No FHE scheme 
  Rivest, Adleman and Dertouzos proposed the 

idea in 1978. 



FHE: What does “Efficient” Mean? 

  Here is a trivial (inefficient) FHE scheme: 
  (f, c1,…,cn) = c* Eval(pk, f, c1,…,cn) 
  Dec(sk, c*) decrypts individual ci’s, applies f to mi’s 

(The worker does nothing. Alice assembles the      
jewelry by herself.) 

  But the point is to delegate processing! 
 What we want:  

  c* is a “normal” compact ciphertext 
  Time to decrypt c* is independent of f. 



Efficiency of FHE 

 KeyGen, Enc, and Dec all run in time 
polynomial in the security param λ. 
  In particular, the time needed to decrypt         

c  Eval(pk, f, c1,…,ct) is independent of f. 

  Eval(pk, f, c1,…,ct) runs in time g(λ) • Sf, 
where g is a poly and Sf is the size of the 
boolean circuit (# of gates) to compute f. 
  Sf = O(Tf • log Tf), Tf is Turing complexity of f 



Outline 

Not my original STOC09 scheme.  
Rather, a simpler scheme by 

Marten van Dijk, me, Shai Halevi, 
and Vinod Vaikuntanathan 

Smart and 
Vercauteren recently 

proposed an 
optimization of the 
STOC09 scheme. 

 Why is it possible even in principle?  
  A physical analogy for what we want 
  What we want: fully homomorphic encryption (FHE) 

  Rivest, Adleman, and Dertouzos defined FHE in 
1978, but constructing FHE was open for 30 years 

 Our FHE construction 



Step 1: Construct a Useful 
“Somewhat Homomorphic” 

Scheme 



Why a somewhat homomorphic scheme? 

 Can’t we construct a FHE scheme 
directly? 
  If I knew how, I would tell you. 
  Later: somewhat homomorphic → FHE 

  If somewhat homomorphic scheme has a 
certain property (bootstrappability) 



A homomorphic symmetric encryption  

 Shared secret key: odd number p 
  To encrypt a bit m in {0,1}: 

  Choose at random small r, large q 

  Output c = m + 2r + pq 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2 

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])      

Noise much 
smaller than p 

The “noise” 



A homomorphic symmetric encryption  

 Shared secret key: odd number 101 
  To encrypt a bit m in {0,1}: 

  Choose at random small r, large q 

  Output c = m + 2r + pq 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2 

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])     

Noise much 
smaller than p 

The “noise” 



A homomorphic symmetric encryption  

 Shared secret key: odd number 101 
  To encrypt a bit m in {0,1}: (say, m=1) 

  Choose at random small r, large q 

  Output c = m + 2r + pq 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2   

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])    

The “noise” Noise much 
smaller than p 



A homomorphic symmetric encryption  

 Shared secret key: odd number 101 
  To encrypt a bit m in {0,1}: (say, m=1) 

  Choose at random small r (=5), large q (=9) 

  Output c = m + 2r + pq 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2 

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])     

The “noise” Noise much 
smaller than p 



A homomorphic symmetric encryption  

 Shared secret key: odd number 101 
  To encrypt a bit m in {0,1}: (say, m=1) 

  Choose at random small r (=5), large q (=9) 

  Output c = m + 2r + pq = 11 + 909 = 920 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2 

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])     

The “noise” 



A homomorphic symmetric encryption  

 Shared secret key: odd number 101 
  To encrypt a bit m in {0,1}: (say, m=1) 

  Choose at random small r (=5), large q (=9) 

  Output c = m + 2r + pq = 11 + 909 = 920 
  Ciphertext is close to a multiple of p 
  m = LSB of distance to nearest multiple of p  

  To decrypt c: 
  Output m = (c mod p) mod 2 = 11 mod 2 = 1 

  m  =   c – p • [c/p] mod 2 
  =   c – [c/p] mod 2  
   =   LSB(c)  XOR  LSB([c/p])     

The “noise” 



Homomorphic Public-Key Encryption 

 Secret key is an odd p as before 
  Public key is many “encryptions of 0” 

  xi = qip + 2ri 

  Encpk(m) =  subset-sum(xi’s)+m 
 Decsk(c) = (c mod p) mod 2 
  Eval as before 

[            ]x0 for i=1,2,…,n 

[                             +2r]x0  



Security of E 

 Approximate GCD (approx-gcd) Problem: 
  Given many xi = si + qip, output p 
  Example params: si ~ 2λ, p ~ 2λ^2, qi ~ 2λ^5, 

where λ is security parameter 
  Best known attacks (lattices) require 2λ time 

 Reduction:  
  if approx-gcd is hard, E is semantically secure 



Why is E homomorphic? 

 Basically because: 
  If you add or multiply two near-multiples of p, 

you get another near multiple of p… 



Why is E homomorphic? 

  c1=m1+2r1+q1p,   c2=m2+2r2+q2p 

  c1+c2 = (m1+m2) + 2(r1+r2) + (q1+q2)p 
  (m1+m2)+2(r1+r2) still much smaller than p 
c1+c2 mod p = (m1+m2) + 2(r1+r2) 

  c1 x c2 = (m1+2r1)(m2+2r2) 
    +(c1q2+q1c2-q1q2)p  

  (m1+2r1)(m2+2r2) still much smaller than p 
c1xc2 mod p = (m1+2r1)(m2+2r2)  
(c1xc2 mod p) mod 2 = m1xm2 mod 2 

Noise: Distance to nearest multiple of p 



Why is E homomorphic? 

  c1=m1+2r1+q1p, …, ct=mt+2rt+qtp 

  Let f be a multivariate poly with integer 
coefficients (sequence of +’s and x’s) 

  Let c = EvalE(pk, f, c1, …, ct) = f(c1, …, ct) 

  f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp 

  Then (c mod p) mod 2 = f(m1, …, mt) mod 2 

Suppose this noise is much smaller than p 

That’s what we want! 



Why is E somewhat homomorphic? 

 What if |f(m1+2r1, …, mt+2rt)| > p/2? 
  c = f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp 

  Nearest p-multiple to c is q’p for q’ ≠ q 
  (c mod p) = f(m1+2r1, …, mt+2rt) + (q-q’)p 
  (c mod p) mod 2   

  =   f(m1, …, mt) + (q-q’) mod 2 
  =   ??? 

 We say E can handle f if: 
  |f(x1, …, xt)| < p/4 
  whenever all |xi| < B, where B is a bound on 

the noise of a fresh ciphertext output by EncE 



Example of a Function that E Handle 

  Elementary symmetric poly of degree d: 
    f(x1, …, xt) = x1·x2·xd + … + xt-d+1·xt-d+2·xt 

  If |xi| < B, then, |f(x1, …, xt)| < td·Bd 

 E can handle f if: 
     td·Bd < p/4  →  basically if:  d < (log p)/(log tB) 

  Example params: B ~ 2λ, p ~ 2λ^2 
  EvalE can handle an elem symm poly of 

degree approximately λ. 



Step 2: Somewhat Homomorphic → FHE  
(if somewhat homomorphic scheme has a 

certain property: bootstrappability) 



Back to Alice’s Jewelry Store 

  Suppose Alice’s boxes are defective. 
  After the worker works on the jewel for 1 minute, 

the gloves stiffen! 
  Some complicated pieces take 10 minutes to make. 
  Can Alice still use her boxes? 
  Hint: you can put one box inside another. 



Back to Alice’s Jewelry Store 

  Yes! Alice gives worker more boxes with a copy of her key 
  Worker assembles jewel inside box #1 for 1 minute. 
  Then, worker puts box #1 inside box #2! 
  With box #2’s gloves, worker opens box #1 with key, takes 

jewel out, and continues assembling till box #2’s gloves stiffen. 
  And so on… 



Back to Alice’s Jewelry Store 

  Yes! Alice gives worker a boxes with a copy of her key 
  Worker assembles jewel inside box #1 for 1 
  Then, worker puts box #1 inside box #2! 
  With box #2’s gloves, worker opens box #1 with key, takes 

jewel out, and continues assembling till box #2’s gloves stiffen. 

Cool!  I can use my defective 
gloveboxes to get my workers to 
assemble arbitrarily complicated 
pieces, if there is enough time 
(before the gloves stiffen) to 
unlock a box and do a little work 
on the piece! 



Back to Alice’s Jewelry Store 

  Yes! Alice gives worker a boxes with a copy of her key 
  Worker assembles jewel inside box #1 for 1 
  Then, worker puts box #1 inside box #2! 
  With box #2’s gloves, worker opens box #1 with key, takes 

jewel out, and continues assembling till box #2’s gloves stiffen. 

A weird question: Is it safe to 
put a key inside a glove box?  
What if the key can unlock the 
box from the inside? 



Back to Alice’s Jewelry Store 

  Yes! Alice gives worker a boxes with a copy of her key 
  Worker assembles jewel inside box #1 for 1 
  Then, worker puts box #1 inside box #2! 
  With box #2’s gloves, worker opens box #1 with key, takes 

jewel out, and continues assembling till box #2’s gloves stiffen. 

In any case, it definitely should 
be safe to have distinct keys, 
and to put the key for box #1 
inside box #2, and so on… 



How is it Analogous? 

  Alice’s jewelry store: Worker can assemble 
any piece if gloves can “handle” unlocking a 
box (plus a bit) before they stiffen 

  Encryption:  
  If E can handle DecE (plus a bit), then we 

can use E to construct a FHE scheme EFHE 



Warm-up: Applying Eval to DecE 

Blue means box #2.       
It also means encrypted 
under key PK2. 

Red means box #1.      
It also means encrypted 
under key PK1. 

SK1 

m 

Decryption 
(unlocking) 

function 

m 

m c1 



Warm-up: Applying Eval to DecE 



Applying Eval to (DecE then AddE) 

SK1 

m1 

DecE func 
then AddE 

m1  

+ 

m2 

m2 

m1 

m2 

Blue means box #2.       
It also means encrypted 
under key PK2. 

Red means box #1.      
It also means encrypted 
under key PK1. 



Applying Eval to (DecE then MultE) 

SK1 

m1 

DecE func 
then MultE 

m1  

x 

m2 

m2 

m1 

m2 

Blue means box #2.       
It also means encrypted 
under key PK2. 

Red means box #1.      
It also means encrypted 
under key PK1. 

If E can evaluate (DecE then AddE) 
and (DecE then MultE), then we call 

E “bootstrappable” (a self-
referential property). 



And now the recursion… 

m3  

×  

m4 

Blue means 
encrypted 
under PK2. 

Green 
means 
encrypted 
under PK3. m1  

+ 

m2 

SK2 

DecE func 
then MultE 

(m1 + m2) 

× 

(m3 × m4) 

And so on... 



Arbitrary Functions 

  Suppose E is bootstrappable – i.e., it can handle 
DecE augmented by AddE and MultE efficiently. 

  Then, there is a scheme Ed that evaluates 
arbitrary functions with d “levels”. 

  Ciphertexts: Same size in Ed as in E. 
  Public key:  

  Consists of (d+1) E pub keys: pk0, …, pkd 

  and encrypted secret keys: {Enc(pki, sk(i-1))} 

  Size: linear in d.  Constant in d, if you assume 
encryption is “circular secure.” 
  The question of circular security is like whether it is 

“safe” to put a key for box i inside box i. 



Step 2b: Bootstrappable Yet?             
Is our Somewhat Homomorphic 
Scheme Already Bootstrappable? 



Can EvalE handle DecE? 

  The boolean function DecE(p,c) sets: 

   m =  LSB(c)  XOR  LSB([c/p]) 

 Can E handle (i.e., Evaluate) DecE 
followed by AddE or MultE? 
  If so, then E is bootstrappable, and we can 

use E to construct an FHE scheme EFHE. 

 Most complicated part:  

    f(c,p-1) = LSB([c×p-1]) 

  The numbers c and p-1 are in binary rep. 



Multiplying Numbers 

  Let’s multiply a and b, rep’d in binary: 

   (at, …, a0) × (bt, …, b0)  

  It involves adding the t+1 numbers: 

f(c,p-1) = LSB([c×p-1]) 

a0bt a0bt-1 … a0b1 a0b0 

a1bt a1bt-1 a1bt-2 … a1b1 0 

…  … … … … … … 

atbt … atb1 atb0 0 …  0 0 



Adding Two Numbers f(c,p-1) = LSB([c×p-1]) 

x1y1+x1x0y0+ 
y1x0y0 

x0y0 

x2 x1 x0 

y2 y1 y0 

x2+y2+x1y1+ 
x1x0y0+y1x0y0 

x1+y1+x0y0 x0+y0 

Carries: 

Sum: 

 Adding two t-bit numbers: 
  Bit of the sum = up to t-degree poly of input bits 



Adding Many Numbers f(c,p-1) = LSB([c×p-1]) 

x2 x1 x0 

y2 y1 y0 

z2 z1 z0 

x2+y2+z2 x1+y1+z1 x0+y0+z0 

x2y2+x2z2
+y2z2 

x1y1+x1z1
+y1z1 

x0y0+x0z0
+y0z0 

  3-for-2 trick:  
  3 numbers → 2 numbers with same sum 
  Output bits are up to degree-2 in input bits 

  t numbers → 2 numbers with same sum 
  Output bits are degree 2log3/2 t = tlog3/2 2 = t1.71 



Back to Multiplying f(c,p-1) = LSB([c×p-1]) 

 Multiplying two t-bit numbers: 
  Add t t-bit numbers of degree 2 
  3-for-2 trick → two t-bit numbers, deg. 2t1.71. 
  Adding final two numbers→ deg. t(2t1.71) = 2t2.71. 

 Consider f(c,p-1) = LSB([c×p-1]) 
  p-1 must have log c > log p bits of precision to 

ensure the rounding is correct 
  So, f has degree at least 2(log p)2.71. 

 Can our scheme E handle a polynomial f 
of such high degree? 
  Unfortunately, no. 



Why Isn’t E Bootstrappable? 

 Recall: E can handle f if: 
  |f(x1, …, xt)| < p/4 
  whenever all |xi| < B, where B is a bound on the 

noise of a fresh ciphertext output by EncE 

  If f has degree > log p, then |f(x1, …, xt)| 
could definitely be bigger than p 
  E is (apparently) not bootstrappable… 

f(c,p-1) = LSB([c×p-1]) 



Step 3 (Final Step): Modify our  
Somewhat Homomorphic Scheme to 

Make it Bootstrappable 



The Goal 

 Modify E → get E* that is bootstrappable. 
  Properties of E* 

  E* can handle any function that E can 
  DecE* is a lower-degree poly than DecE, so 

that E* can handle it 



How do we “simplify” decryption? 

  Crazy idea: Put hint about sk in E* public key!        
Hint lets anyone post-process the ciphertext, 
leaving less work for DecE* to do. 

  This idea is used in server-aided cryptography. 

Old 
decryption 
algorithm 

m 

c sk 

DecE 



How do we “simplify” decryption? 

Old 
decryption 
algorithm 

m 

c sk 

DecE 

c h(sk, r) 

Post-
Process 

sk* 

m 

DecE* 

c* 

Processed 
ciphertext c* 

New 
approach 

The hint 
about sk 

in pub key 

Hint in pub key lets anyone post-process the ciphertext, 
leaving less work for DecE* to do. 



How do we “simplify” decryption? 

Old 
decryption 
algorithm 

m 

c sk 

DecE 

c h(sk, r) 

Post-
Process 

sk* 

m 

DecE* 

c* 

Processed 
ciphertext c* 

New 
approach 

The hint 
about sk 

in pub key 

(Post-Process, DecE*) should work on 
any c that DecE works on 



How do we “simplify” decryption? 

Old 
decryption 
algorithm 

m 

c sk 

DecE 

c h(sk, r) 

Post-
Process 

sk* 

m 

DecE* 

c* 

Processed 
ciphertext c* 

New 
approach 

The hint 
about sk 

in pub key 

E* is semantically secure if E is, if h(sk,r) is computationally 
indistinguishable from h(0,r’) given sk, but not sk*. 



Concretely, what is hint about p? 
  E*’s pub key includes real numbers 

  r1,r2, …, rn ∈ [0,2]  
  ∃ sparse set S for which Σi∈S ri = 1/p 

 Security: Sparse Subset Sum Prob (SSSP) 
  Given integers x1, …, xn with a subset S with 

Σi∈S xi = 0, output S. 
  Studied w.r.t. server-aided cryptosystems 
  Potentially hard when n > log max{|xi|}. 

•  Then, there are exponentially many subsets T        
(not necessarily sparse) such that Σi∈S xi = 0 

  Params: n ~ λ5 and |S| ~ λ. 
  Reduction: 

  If SSSP is hard, our hint is indist. from h(0,r) 



How E* works… 

  EncE*, EvalE* output ψi=c x ri mod 2, i=1,…,n 

  Together with c itself 
  The ψi have about log n bits of precision 

 New secret key is bit-vector s1,…,sn  
  si=1 if i∈S, si=0 otherwise 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 

  E* can handle any function E can: 
  c/p = c Σi siri = Σi siψi, mod 2, up to precision 
  Precision errors do not changing the rounding 

  Precision errors from ψi imprecision  < 1/8  
  c/p is with 1/4 of an integer 



A Different Way to Add Numbers 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 



A Different Way to Add Numbers 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

a2,0 a2,-1 …  a2,-log n 

a3,0 a3,-1 …  a3,-log n 

a4,0 a4,-1 …  a4,-log n 

a5,0 a5,-1 …  a5,-log n 

… … …  … 

an,0 an,-1 …  an,-log n 



A Different Way to Add Numbers 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

a2,0 a2,-1 …  a2,-log n 

a3,0 a3,-1 …  a3,-log n 

a4,0 a4,-1 …  a4,-log n 

a5,0 a5,-1 …  a5,-log n 

… … …  … 

an,0 an,-1 …  an,-log n 

Let b0 be 
the binary 

rep of 
Hamming 

weight 

b0,log n … b0,1 b0,0 



A Different Way to Add Numbers 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

a2,0 a2,-1 …  a2,-log n 

a3,0 a3,-1 …  a3,-log n 

a4,0 a4,-1 …  a4,-log n 

a5,0 a5,-1 …  a5,-log n 

… … …  … 

an,0 an,-1 …  an,-log n 

Let b-1 be 
the binary 

rep of 
Hamming 

weight 

b0,log n … b0,1 b0,0 

b-1,log n … b-1,1 b-1,0 



A Different Way to Add Numbers 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

a2,0 a2,-1 …  a2,-log n 

a3,0 a3,-1 …  a3,-log n 

a4,0 a4,-1 …  a4,-log n 

a5,0 a5,-1 …  a5,-log n 

… … …  … 

an,0 an,-1 …  an,-log n 

Let b-log n be 
the binary 

rep of 
Hamming 

weight 

b0,log n … b0,1 b0,0 

b-1,log n … b-1,1 b-1,0 

… … … … 

b-log n,log n … b-log n,1 b-log n,0 



A Different Way to Add Numbers 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

a2,0 a2,-1 …  a2,-log n 

a3,0 a3,-1 …  a3,-log n 

a4,0 a4,-1 …  a4,-log n 

a5,0 a5,-1 …  a5,-log n 

… … …  … 

an,0 an,-1 …  an,-log n 

Only log n 
numbers with 
log n bits of 

precision.  Easy 
to handle. 

b0,log n … b0,1 b0,0 

b-1,log n … b-1,1 b-1,0 

… … … … 

b-log n,log n … b-log n,1 b-log n,0 



Computing Sparse Hamming Wgt. 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

a2,0 a2,-1 …  a2,-log n 

a3,0 a3,-1 …  a3,-log n 

a4,0 a4,-1 …  a4,-log n 

a5,0 a5,-1 …  a5,-log n 

… … …  … 

an,0 an,-1 …  an,-log n 



Computing Sparse Hamming Wgt. 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 
a1,0 a1,-1 …  a1,-log n 

0 0 …  0 

0 0 …  0 

a4,0 a4,-1 …  a4,-log n 

0 0 …  0 

… … …  … 

an,0 an,-1 …  an,-log n 



Computing Sparse Hamming Wgt. 

 DecE*(s,c)= LSB(c) XOR LSB([Σi siψi]) mod 2 

a1 

0 

0 

a4,0 

0 

… 

an 

 Binary rep of Hamming wgt of          
x = (x1, …, xn) in {0,1}n given by: 

e2^[log n](x) mod2, …, e2(x) mod2, e1(x) mod2 
 where ek is the elem symm poly of deg k 

 Since we know a priori that 
Hamming wgt is |S|, we only need  

e2^[log |S|](x) mod2, …, e2(x) mod2, e1(x) mod2 
 up to deg < |S| 

 Set |S| < λ, then E* is bootstrappable. 



Yay! We have a FHE scheme! 



Performance 

 Well, a little slow… 
  In E, a ciphertext is ci is about λ5 bits. 
  DecE* works in time quasi-linear in λ5.  
  Applying EvalE* to DecE* takes quasi-λ10. 

  To bootstrap E* to E*FHE, and to compute 
EvalE*FHE(pk, f, c1, …, ct), we apply EvalE* to 
DecE* once for each Add and Mult gate of f. 

  Total time: quasi- λ10 • Sf, where Sf is the 
circuit complexity of f. 



Performance 

 STOC09 lattice-based scheme performs 
better: 
  Applying Eval to Dec takes Õ(λ6)  

computation if you want 2λ security 
against known attacks.  

  Comparison: RSA also takes Õ(λ6); also, 
in ElGamal (using finite fields). 

 More optimizations on the way! 



? ? 
Thank You!  Questions? 



Hardness of Approximate-GCD 

 Several lattice-based approaches for 
solving approximate-GCD 
  Related to Simultaneous Diophantine 

Approximation (SDA) 
  Studied in [Hawgrave-Graham01] 

  We considered some extensions of his attacks 

 All run out of steam when |qi|>|p|2 
  In our case |p| ~ n2, |qi| ~ n5 » |p|2 



Relation to SDA 

  xi = qip + ri (ri « p « qi), i = 0,1,2,… 
  yi = xi/x0 = (qi+si)/q0, si ~ ri/p « 1 
  y1, y2, … is an instance of SDA 

  q0 is a denominator that approximates all yi’s 

 Use Lagarias’s algorithm: 
  Consider the rows of this matrix: 
  Find a short vector in the 

lattice that they span 
  <q0,q1,…,qt>·L is short 
  Hopefully we will find it 

R x1 x2 … xt 
  -x0 
      -x0 

        … 
   -x0 

L= 



Relation to SDA (cont.) 

 When will Lagarias’ algorithm succeed? 
  <q0,q1,…,qt>·L should be shortest in lattice 

  In particular shorter than ~det(L)1/t+1 

  This only holds for t > log Q/log P 
  The dimension of the lattice is t+1 
  Quality of lattice-reduction deteriorates 

exponentially with t  
  When log Q > (log P)2 (so t>log P),  

LLL-type reduction isn’t good enough 
anymore 

Minkowski 
bound 



Relation to SDA (cont.) 

 When will Lagarias’ algorithm succeed? 
  <q0,q1,…,qt>·L should be shortest in lattice 

  In particular shorter than ~det(L)1/t+1 

  This only holds for t > log Q/log P 
  The dimension of the lattice is t+1 
  Rule of thumb: takes 2t/k time to get 2k 

approximation of SVP/CVP in lattice of dim t. 
  2(log Q)/(log P)^2 = 2λ time to get 2(log P) = P approx. 

Minkowski 
bound 


