Fully Homomorphic Encryption

Craig Gentry
IBM Watson

MIT Guest Lecture
April 2010

The Goal

I want to delegate processing of my data,
without giving away access to it.

Application: Private Google Search

I want to delegate processing of my data,
without giving away access to it.

1 Private search

B Do a Google search

» But encrypt my query, so that Google
cannot “see” it

H] still want to get the same results
» Results would be encrypted too

Application: Cloud Computing

I want to delegate processing of my data,
without giving away access to it.

d Storing my files on the cloud
B Encrypt them to protect my information

B |Later, I want to retrieve the files containing
“cloud” within 5 words of “computing”.

» Cloud should return only these (encrypted) files,
without knowing the key

d Privacy combo: Encrypted query on encrypted data

Outline

/EI Why is it possible even in principle?
B A physical analogy for what we want
B What we want: fully homomorphic encryption (FHE)

B Rijvest, Adleman, and Dertouzos defined FHE in

~

\ 1978, but constructing FHE was open for 30 year5/

(J Our FHE construction

Can we separate processing from access?

Actually, separating processing from access
even makes sense in the physical world...

An Analogy: Alice’s Jewelry Store

J Workers assemble raw materials into
jewelry

1 But Alice is worried about theft

How can the workers process the raw

materials without having accessat
e = £9

o

An Analogy: Alice’s Jewelry Store

 Alice puts materials in locked glovebox
B For which only she has the key

1 Workers assemble jewelry in the box
J Alice unlocks box to get “results”

An Encryption Glovebox?

 Alice delegated processing without
giving away access.

 But does this work for encryption?

B Can we create an “encryption glovebox”
that would allow the cloud to process data
while it remains encrypted?

Public-key Encryption

d Three procedures: KeyGen, Enc, Dec
B (sk,pk) € KeyGen(A)
» Generate random public/secret key-pair
B c < Enc(pk, m)
» Encrypt a message with the public key
B m < Dec(sk, ¢)
» Decrypt a ciphertext with the secret key

Homomorphic Public-key Encryption

d Another procedure: Eval (for Evaluate)
B c < Eval(pk, f, cq,...,C)

Encryptions of
inputs my,...,m, to f

Encryption of f(my,...,m,).

I.e., Dec(sk, c) = f(my, ...m,)

® No info about my, ..., m, f(m,, ..m,) is leaked

® f(m,, ..m) is the “ring” made from raw
materials my, ..., m, inside the encryption box

Fully Homomorphic Public-key Encryption

d Another procedure: Eval (for Evaluate)
B c < Eval(pk, f, cq,...,C)

Encryptions of
inputs my,...,m, to f

Encryption of f(my,...,m,).

I.e., Dec(sk, c) = f(my, ...m,)

B FHE scheme should:
» Work for any well-defined function f
> Be efficient

c € Eval(pk, f, cq,...,C.),

Back to Our Applications pecsk o) = fm.. . my)

d Private Google search
B Encrypt bits of my query: ¢ € Enc(pk, m;)
B Send pk and the ¢'s to Google

B Google expresses its search algorithm as a
boolean function f of a user query

B Google sends ¢ < Eval(pk, f, cq,...,C)
B [decrypt to obtain my result f(my, ..., m)

c € Eval(pk, f, cq,...,C.),

Back to Our Applications pecsk o) = fm.. . my)

d Cloud Computing with Privacy
Encrypt bits of my files ¢ €« Enc(pk, m;)

Store

pk and the ¢’s on the cloud

Later, I send query :“cloud” within 5 words
of “computing”

Let f
the ¢

e the boolean function representing
oud’s response if data was unencrypted

Cloud

sends ¢ < Eval(pk, f, c4,...,C)

I decrypt to obtain my result f(my, ..., m)

c € Eval(pk, f, cq,...,C.),

Previous Schemes Dec(sk. €) = fme.)

d Only "somewhat homomorphic”
B Can only handle some functions f

d RSA works for MULT function (mod N)
C=C; X..XC=(My X..xm)e (mod N)

“Somewhat Homomorphic” Schemes

J RSA works for MULT gates (mod N)
1 Paillier, GM, work for ADD, XOR
d BGNOS5 works for quadratic formulas

d MGHO8 works for low-degree polynomials

B size of c < Eval(pk, f, c4,...,C,) grows
exponentially with degree of polynomial f.

(d No FHE scheme

B Rivest, Adleman and Dertouzos proposed the
idea in 1978.

FHE: What does “Efficient” Mean?

d Here is a trivial (inefficient) FHE scheme:
m (f, c,..C,) =c* <Eval(pk, f, c4,...,C,)
B Dec(sk, c*) decrypts individual ¢'s, applies f to m,’s
(The worker does nothing. Alice assembles the
jewelry by herself.)
1 But the point is to delegate processing!

1 What we want:

B c’is a “normal” compact ciphertext
B Time to decrypt c* is independent of f.

Efficiency of FHE

d KeyGen, Enc, and Dec all run in time
polynomial in the security param A.

B In particular, the time needed to decrypt
c < Eval(pk, f, c4,...,C.) is Independent of f.

4 Eval(pk, f, c4,...,¢) runs in time g(A) « S,
where g is a poly and S; is the size of the
boolean circuit (# of gates) to compute f.

B S = 0O(T:elog Tf), T is Turing complexity of f

Outline

d Why is it possible even in principle?
B A physical analogy for what we want
B What we want: fully homomorphic encryption (FHE)

B Rijvest, Adleman, and Dertouzos defined FHE in
1978, but constructing FHE was open for 30 years

1 Our FHE construction

Not my original STOC09 scheme: Smart and
Rather, a simpler scheme by Vercauteren recently

. : : roposed an
Marten van Dijk, me, Shai Halevi, optFmi;ation of the

and Vinod Vaikuntanathan STOCO09 scheme.

Step 1: Construct a Useful
“Somewhat Homomorphic”
Scheme

Why a somewhat homomorphic scheme?

1 Can’t we construct a FHE scheme
directly?
m If I knew how, I would tell you.

B Later: somewhat homomorphic — FHE

» If somewhat homomorphic scheme has a
certain property (bootstrappability)

A homomorphic symmetric encryption

d Shared secret key: odd number p
d To encrypt a bit min {0,1}:
B Choose at random small r, large g

The "noise” Noise much
B Qutputc=m + 2r + pq

» Ciphertext is close to a multiple of p
» m = LSB of distance to nearest multiple of p

 To decrypt c:

B Output m = (¢ mod p) mod 2
» M = c-p-[c/p] mod 2
= Cc - [c/p] mod 2
- = LSB(c) XOR LSB([¢/p])

A homomorphic symmetric encryption

d Shared secret key: odd number 101
d To encrypt a bit min {0,1}:
B Choose at random small r, large g
The “noise” i h
B Outputc=m + 2r + pq
» Ciphertext is close to a multiple of p
» m = LSB of distance to nearest multiple of p
 To decrypt c:

B Output m = (¢ mod p) mod 2
» M = c-p-[c/p] mod 2
= Cc - [c/p] mod 2
- = LSB(c) XOR LSB([¢/p])

A homomorphic symmetric encryption

d Shared secret key: odd number 101
d To encrypt a bit min {0,1}: (say, m=1)

B Choose at random small r, large g

The "noise” Noise much
B Qutputc=m + 2r + pq

» Ciphertext is close to a multiple of p
» m = LSB of distance to nearest multiple of p

d To decrypt c:
B Output m = (¢ mod p) mod 2
» M = c-p-[c/p] mod 2
= Cc - [c/p] mod 2
=—roieo—don—cTorae—————

A homomorphic symmetric encryption

d Shared secret key: odd number 101
d To encrypt a bit min {0,1}: (say, m=1)

B Choose at random small r (=5), large g (=9)
The “noise” Noise much
B Qutputc=m + 2r + pq

» Ciphertext is close to a multiple of p
» m = LSB of distance to nearest multiple of p

d To decrypt c:
B Output m = (¢ mod p) mod 2
» M = c-p-[c/p] mod 2
= Cc - [c/p] mod 2
=—roieo—don—cTorae—————

A homomorphic symmetric encryption

 Shared secret key: odd number 101

d To encrypt a bit min {0,1}: (say, m=1)

B Choose at random small r (=5), large g (=9)
The “noise”

B Outputc=m + 2r+pg=11 + 909 = 920
» Ciphertext is close to a multiple of p
» m = LSB of distance to nearest multiple of p

 To decrypt c:

B Output m = (¢ mod p) mod 2
» M = c-p-[c/p] mod 2
= Cc - [c/p] mod 2
- = LSB(c) XOR LSB([¢/p])

A homomorphic symmetric encryption

 Shared secret key: odd number 101

d To encrypt a bit min {0,1}: (say, m=1)

B Choose at random small r (=5), large g (=9)
The “noise”

B Outputc=m + 2r+pg=11 + 909 = 920
» Ciphertext is close to a multiple of p
» m = LSB of distance to nearest multiple of p

d To decrypt c:
B Outputm=(cmodp)mod2 =11 mod2 =1
> m = c-p-[c/p] mod 2
=—-c=[c/plnod=2
=—roieo—don—cTorae—————

Homomorphic Public-Key Encryption

J Secret key is an odd p as before

J Public key is many “encryptions of 0"
B X =[gp + 2r;],, fori=1,2,...,n

d Enc, (m) =[subset-sum(x;’s)+m+2r],,

1 Dec,(c) = (c mod p) mod 2

1 Eval as before

Security of E

d Approximate GCD (approx-gcd) Problem:
B Given many x; = s, + g.p, output p
B Example params: s, ~ 22, p ~ 22, q. ~ 2775,
where A is security parameter
> Best known attacks (lattices) require 2* time

d Reduction:
B if approx-gcd is hard, E is semantically secure

Why is E homomorphic?

J Basically because:

B If you add or multiply two near-multiples of p,
you get another near multiple of p...

Why is E homomorphic?

d ci=my+2r;+q.p, C=mM>5+2r,+Qg-,p

Noise: Distance to nearest multlsle of p

dc,+¢, = (m+m,) + 2(ry+r,) + (C|1+C|2)|3
B (m,+m,)+2(r;+r5) still much smaller than p
=2>C,+C, mod p = (M;+m,) + 2(r;+r5)

dc, x¢c, = (my+2r)(m,+2r,)

+(C40,+0:C,-0,0,)P
B (m,+2r,)(m,+2r5) still much smaller than p
=»C,XC, mod p = (Mm,+2r;)(Mm5+2r,)
= (Cc{XC, mod p) mod 2 = m;xm, mod 2

Why is E homomorphic?

d cy=m+2r;+qyp, ..., =M +2r.+qp

d Let f be a multivariate poly with integer
coefficients (sequence of +'s and x's)

4 Let ¢ = Eval(pk, f, ¢4, ..., ¢) = f(cy, ..., C)
Suppose this noise is much smaller than p
m f(c,, ..., ¢) = f(m+2ry, ..., MmA+2r) + gp

B Then (c mod p) mod 2 = f(m4, ..., m) mod 2

That's what we want!

Why is E somewhat homomorphic?

d What if [f(m+2r, ..., m+2r)]| > p/27?
= c = f(cy, ..., ¢) = f(My+2ry, ..., mA2r) + gp
» Nearest p-multiple to cis g'p for " #¢
= (cmodp) =f(m;+2ry, ..., mA+2r) + (g-9°)p
= (cmod p) mod 2
= f(my, ..., m) + (g-q’) mod 2
= ?2?2?

d We say E can handle f if:

= |f(Xy, 0 X)) < p/4
= whenever all [x;| < B, where B is a bound on
the noise of a fresh ciphertext output by Encg

Example of a Function that E Handle

d Elementary symmetric poly of degree d:
e
a If |x| < B, then, [f(xy, ..., X;)| < t9-Bd
J E can handle f if:
td-Bd < p/4 — basically if: d < (log p)/(log tB)
O Example params: B ~ 22, p ~ 2A"2

B Eval. can handle an elem symm poly of
degree approximately A.

Step 2: Somewhat Homomorphic — FHE
(if somewhat homomorphic scheme has a
certain property: bootstrappability)

Back to Alice’s Jewelry Store

d Suppose Alice’s boxes are defective.

B After the worker works on the jewel for 1 minute,
the gloves stiffen!

d Some complicated pieces take 10 minutes to make.
d Can Alice still use her boxes?
d Hint: you can put one box inside another.

Back to Alice’s Jewelry Store

':.'N \\)
V4
l @
e Nad= -
—r ".‘,%:*\‘\W" —r ‘?,*:‘%W’}

d Yes! Alice gives worker more boxes with a copy of her key
d Worker assembles jewel inside box #1 for 1 minute.
a
d

Then, worker puts box #1 inside box #2!

With box #2’s gloves, worker opens box #1 with key, takes
jewel out, and continues assembling till box #2’s gloves stiffen.

d And so on...

Cool! I can use my defective
gloveboxes to get my workers to
assemble arbitrarily complicated
pieces, if there is enough time
(before the gloves stiffen) to
unlock a box and do a little work

on the piece!
. /

Yes! Alice gives worker a boxes with a copy of her key
Worker assembles jewel inside box #1 for 1

Then, worker puts box #1 inside box #2!

With box #2’s gloves, worker opens box #1 with key, takes
jewel out, and continues assembling till box #2’s gloves stiffen.

Back to Alice’s Jewelry Store

A weird question: Is it safe to
put a key inside a glove box?

What if the key can unlock the
box from the inside?

d Yes! Alice gives worker a boxes with a copy of her key
d Worker assembles jewel inside box #1 for 1
a
d

Then, worker puts box #1 inside box #2!

With box #2’s gloves, worker opens box #1 with key, takes
jewel out, and continues assembling till box #2’s gloves stiffen.

Back to Alice’s Jewelry Store

In any case, it definitely should
be safe to have distinct keys,
and to put the key for box #1
inside box #2, and so on...

d Yes! Alice gives worker a boxes with a copy of her key
d Worker assembles jewel inside box #1 for 1
a
d

Then, worker puts box #1 inside box #2!

With box #2’s gloves, worker opens box #1 with key, takes
jewel out, and continues assembling till box #2’s gloves stiffen.

How is it Analogous?

d Alice’s jewelry store: Worker can assemble
any piece if gloves can “handle” unlocking a
box (plus a bit) before they stiffen

d Encryption:

= If E can handle Dec; (plus a bit), then we
can use E to construct a FHE scheme EFHE

Warm-up: Applying Eval to Dec.

Blue means box #2.
It also means encrypted
under key PK..

SK,

c,|Mm >

Red means box #1.
It also means encrypted
under key PKj.

Warm-up: Applying Eval to Dec,

d Suppose c = Enc(pk, m)

Ebecisics_s¢ 5 L=
where I have split sk and c into bits

d Let sk;(Y) and ¢;(1), be ciphertexts that
encrypt sk, and c;{1), and so on, under pk,.

d Then,
Eval(pk,, Decg, sk;1), ..., ski®, ¢;(1), ..., ¢;(1)) =m

i.e., a ciphertext that encrypts m under pk,.

Applying Eval to (Dec then Add;)

Blue means box #2.
It also means encrypted
under key PK..

SK, - m,
Dece func\ _,
—Z hen Add. +
m, > m, /

Red means box #1.
It also means encrypted
under key PKj.

Applying Eval to (Decc then Mult;)

Blue means box #2.
It also means encrypted
under key PK..

/If E can evaluate (Dec; then AddE)\
and (Decg then Mult;), then we call
E “bootstrappable” (a self-

_ referential property).)

SK, -
m, > m, /
m, > m,

Red means box #1.
It also means encrypted
under key PKj.

Dec func
then Mult;

And now the recursion...

Green SK, |3
means
encrypted
under PKs. m,
= m, + m
+ Dece func\ _, 1)
m, hen Mult =
Blue means (mM; x m,)
encrypted -
under PK.. ==
X
My

And so on...

Arbitrary Functions

 Suppose E is bootstrappable - i.e., it can handle
Dece augmented by Add. and Mult; efficiently.

d Then, there is a scheme E, that evaluates
arbitrary functions with d “levels”.

4 Ciphertexts: Same size in E; as in E.

 Public key:
= Consists of (d+1) E pub keys: pk,, ..., pky
= and encrypted secret keys: {Enc(pk;, sk.;)}

= Sjze: linear in d. Constant in d, if you assume
encryption is “circular secure.”

» The question of circular security is like whether it is
“safe” to put a key for box i inside box 1.

Step 2b: Bootstrappable Yet?
Is our Somewhat Homomorphic
Scheme Already Bootstrappable?

Can Eval; handle Decg?

d The boolean function Decc(p,c) sets:
m = LSB(c) xorR LSB([c/p])

d Can E handle (i.e., Evaluate) Dec,
followed by Add. or Mult.?

B If so, then E is bootstrappable, and we can
use E to construct an FHE scheme EFHE,

d Most complicated part:
f(c,pt) = LSB([cxp])

B The numbers c and p-t are in binary rep.

Multiplying Numbers fcp) = LsB([cxp))

d Let’s multiply a and b, rep’d in binary:

S =————o—
4 It involves adding the t+1 numbers:

aghy agb; .. agh; agbg

a.b, = ab; aby, O = 0 0

Adding Two Numbers fc,p) = LsB(rexp1)

X1Y1+X1XpYot XoYo

Carries: |
X3 X1 Xo
Y- Y1 Yo
Xot+Y,+X Y+ X1+Y1+XoYo Xot+Yo

Sum: X1XoYoTY1XoYo

d Adding two t-bit numbers:
= Bit of the sum = up to t-degree poly of input bits

Adding Many Numbers fc,p) = LsB([cxp))

d 3-for-2 trick:

= 3 numbers — 2 numbers with same sum
= Qutput bits are up to degree-2 in input bits

X7 Xy Xo
Y> Y1 Yo
y2 Z, Zo

XotY,+z, Xyt+yi+zZ; Xpt+YoetZg
XoYo+XeZy, XiY1+X3Zy XoYotXpZg
+Y,2Z, +Y,2Z4 +YoZg

= t numbers — 2 numbers with same sum
= Qutput bits are degree 20932t = tlogs22 = tl1.71

Back to Multiplying f(c,pt) = LSB([cxpt])

d Multiplying two t-bit numbers:
= Add t t-bit numbers of degree 2
= 3-for-2 trick — two t-bit nhumbers, deg. 2t!-/1,
= Adding final two numbers— deg. t(2tl-71) = 2t271,

d Consider f(c,pt) = LSB([cxp1])
= p-l must have log ¢ > log p bits of precision to
ensure the rounding is correct

= So, f has degree at least 2(log p)%71.

d Can our scheme E handle a polynomial f
of such high degree?

= Unfortunately, no.

f(c,p*) = LSB([cxp])

Why Isn’t E Bootstrappable?

J Recall: E can handle f if:

= |f(Xy 0 X)| < p/4
= whenever all [x;] < B, where B is a bound on the
noise of a fresh ciphertext output by Enc,

4 If f has degree > log p, then |f(Xq, ..., X{)|
could definitely be bigger than p
= E is (apparently) not bootstrappable...

Step 3 (Final Step): Modify our
Somewhat Homomorphic Scheme to
Make it Bootstrappable

The Goal

d Modify E — get E* that is bootstrappable.
 Properties of E*

B E* can handle any function that E can

B Dec.« is a lower-degree poly than Decg, so
that E* can handle it

How do we “simplify” decryption?

Old m
decryption £
algorithm
Dec;
(N
sk C

d Crazy idea: Put hint about sk in E* public key!
Hint lets anyone post-process the ciphertext,
leaving less work for Decg« to do.

d This idea is used in server-aided cryptography.

How do we “simplify” decryption?

m
Old ap%ch :
decryption /\
algorithm Cex Processed
m - ~ T ciphertext c*
T The hint sk* c*
_aboutsk ™M
_in pub key)
Dec;
Post-
TTET M1 Process
C
= CEEEEEIEEET: 1711
> h(sk, r) C

Hint in pub key lets anyone post-process the ciphertext,
leaving less work for Decg« to do.

How do we “simplify” decryption?

m
Old ap%ch :
decryption /\
algorithm Cex Processed
m - ~ T ciphertext c*
T The hint sk* c*
_aboutsk ™M
_in pub key)
Dec;
Post-
TTET M1 Process
C
= CEEEEEIEEET: 1711
> h(sk, r) C

((Post-Process, Decg«) should work on]
L any c that Dec; works on)

How do we “simplify” decryption?

m
Old ap%ch :
decryption /\
algorithm Cex Processed
m - ~ T ciphertext c*
T The hint sk* c*
_aboutsk ™M
_in pub key)
Dec;
Post-
TTET M1 Process
C
= CEEEEEIEEET: 1711
> h(sk, r) C

E* is semantically secure if E is, if h(sk,r) is computationally
indistinguishable from h(0,r’) given sk, but not sk*.

Concretely, what is hint about p?

d E*’s pub key includes real numbers
B c[0U.Z2]
B Jsparse set S for which 2. r, = 1/p

 Security: Sparse Subset Sum Prob (SSSP)

B Given integers x4, ..., X, with a subset S with
3.c X; = 0, output S.
» Studied w.r.t. server-aided cryptosystems
» Potentially hard when n > log max{|x| }.

e Then, there are exponentially many subsets T
(not necessarily sparse) such that ¢ X, = 0

> Params: n ~ A2 and |S| ~ A.
B Reduction:
» If SSSP is hard, our hint is indist. from h(O,r)

How E* works...

d Encg«, Evales output y,=c x r mod 2, i=1,...,n
B Together with c itself
B The y, have about log n bits of precision
d New secret key is bit-vector s,,...,S,
B s=1if ieS, 5,=0 otherwise
1 Dece«(s,c)= LSB(c) Xor LSB([Z; sap;]) mod 2
J E* can handle any function E can:
B c/p=cZ3sr =2 sy, mod 2, up to precision
B Precision errors do not changing the rounding

» Precision errors from v, imprecision < 1/8
» ¢/p is with 1/4 of an integer

A Different Way to Add Numbers

 Decg«(s,c)= LSB(c) xOR LSB([Z; siy;]) mod 2

A Different Way to Add Numbers

 Decg«(s,c)= LSB(c) xOR LSB([Z; siy;]) mod 2

di o d; -1 A1 -log n
ds o s 4 a3 _log n
ds o ds _q A3 -log n
ds,0 dg -1 A4 -log n
aS,O a5,—1 a5,—Iog n

an,O an,—1 an,—Iog n

A Different Way to Add Numbers

1 Decg«(s,c)= LSB(c) x0OR LSB([Z; siy;]) mod 2

Let b, be d; o di -1 A1 -log n

the binary ds o s 4 a3 _log n

EEp O.f ds o dsz 4 A3 _log n
Hamming

weight d4,0 dg,-1 d4,-log n

aS,O a5,—1 a5,—Iog n

an,O an,—1 an,—Iog n

I:)O,Iog n I30,1 I:)O,O

A Different Way to Add Numbers

 Decg«(s,c)= LSB(c) xoR LSB([Z; siw;]) mod 2

Let b_, be d; o di -1 A1 -log n
the binary ds o s 4 a3 _log n
EEp O.f ds o dsz 4 A3 _log n

Hamming
weight d4,0 dg,-1 d4,-log n
aS,O a5,—1 a5,—Iog n
an,O an,—1 an,—Iog n

I:)O,Iog n I30,1 I:)O,O

I:)-l,log n I:)-1,1 b-l,O

A Different Way to Add Numbers

 Decg«(s,c)= LSB(c) xOR LSB([Z; siy;]) mod 2

d dq _ Adq
Let b-log : be 1,0 1,-1 1,-log n
the binary ds o ds 1 a3 _log n
rep of ds o ds _q A3 -log n
Hamming
weight d4,0 dg,-1 d4,-log
aS,O a5,—1 a5,—Iog n
an,O an,—1 an,—Iog p
I:)O,Iog n I30,1 I:)O,O
I:)-l,log n I:)-1,1 b-l,O

I:)—Iog nilogn - I:)—Iog n,1 I:)—Iog n,0

A Different Way to Add Numbers

 Decg«(s,c)= LSB(c) xOR LSB([Z; siy;]) mod 2

Only log n di o di -1 A1 -log n
numbers with ds o s 4 A3 _log n

Iog £ bits of ds3 o ds3 1 A3 _log n

precision. Easy

to handle. da,0 dg,-1 A4 -log n

aS,O a5,—1 a5,—Iog n

an,O an,—1 an,—Iog n

I:)O,Iog n I:)0,1 I:)O,O
I:)-l,log n I:)-1,1 b-l,O

I:)—Iog nilogn - I:)—Iog n,1 I:)—Iog n,0

Computing Sparse Hamming Wqgt.

1 Decg«(s,c)= LSB(c) x0OR LSB([Z; siy;]) mod 2

di o d; -1 A1 -log n
ds o s 4 a3 _log n
ds o ds _q A3 -log n
ds,0 dg,-1 d4,-log n
aS,O a5,—1 a5,—Iog n

an,O an,—1 an,—Iog n

Computing Sparse Hamming Wqgt.

1 Decg«(s,c)= LSB(c) x0OR LSB([Z; siy;]) mod 2

d1,0 di,-1 d1,-log n
0 0 0
0 0 0
d4,0 dg,-1 d4,-log n
0 0 0

an,O an,-1 an,-Iog n

Computing Sparse Hamming Wqgt.

1 Decg«(s,c)= LSB(c) xOR LSB([Z; siy;]) mod 2

d Binary rep of Hamming wgt of ay
X = (Xy, ..., X,) in {0,1}" given by: /0

€5A[10g n1{X) MOd2, ..., €;(X) mod2, e;(x) mod2 i
where e, is the elem symm poly of deg k | 940

d Since we know a priori that :
Hamming wgt is |S|, we only need -
€110 [s11(X) MOd2, ..., €,(x) mod2, e;(x) mod2 \|

up to deg < |S|

d Set |S| < A, then E* is bootstrappable.

Yay! We have a FHE scheme!

Performance

d Well, a little slow...
B In E, a ciphertext is ¢ is about A° bits.
B Dec.. works in time quasi-linear in A-.

B Applying Eval.« to Decg. takes quasi-A1°,
> To bootstrap E* to E*FHE, and to compute

Evaleue(Pk, f, ¢4, ..., C;), we apply Evalg« to

Decc« once for each Add and Mult gate of f.

» Total time: quasi- A0 « S, where S is the
circuit complexity of f.

Performance

d STOCOO9 lattice-based scheme performs
better:

m Applying Eval to Dec takes O(A8)
computation if you want 2* security
against known attacks.

B Comparison: RSA also takes O(A8); also,
in ElGamal (using finite fields).

 More optimizations on the way!

Thank You! Questions?

Hardness of Approximate-GCD

 Several lattice-based approaches for
solving approximate-GCD

B Related to Simultaneous Diophantine
Approximation (SDA)

B Studied in [Hawgrave-GrahamO1]
> We considered some extensions of his attacks

3 All run out of steam when |qg,|>|p]|?2
B In our case |p| ~ n?, |q;| ~ n5» |p|?

Relation to SDA

- Xi = qiP + & (ri SRS qi)l | = 011121---
By, = X/X, = (q;+s))/p, S; ~ 1/p « 1
m Yy, Y, ..Iisan instance of SDA
> (, is a denominator that approximates all y;’s

 Use Lagarias’s algorithm:
B Consider the rows of this matrix:

B Find a short vector in the @xl K= xt\
lattice that they span -Xgq

B <q,,q4,..,9.> L is short B “Xo

B Hopefully we will find it

Relation to SDA (cont.)

d When will Lagarias’ algorithm succeed?

B <J,,94---,9.>-L should be shortest in lattice
> In particular shorter than ~det(L)1/t+1

_ D(Minkowski
This only holds for t > log Q/log m

The dimension of the lattice is t+1

B Quality of lattice-reduction deteriorates
exponentially with t

B When log Q > (log P)2 (so t>log P),

LLL-type reduction isn’t good enough
anymore

Relation to SDA (cont.)

d When will Lagarias’ algorithm succeed?

B <J,,94---,9.>-L should be shortest in lattice
> In particular shorter than ~det(L)1/t+1

_ D Minkowski
B This only holds for t > log Q/log m

B The dimension of the lattice is t+1

B Rule of thumb: takes 2%k time to get 2k
approximation of SVP/CVP in lattice of dim t.
> 2(log Q)/(log P)*2 = 2A tjme to get 2(°9P) = P approx.

