Public Key Encryption and Signatures

- RSA Security
- RSA-OAEP for ACCA Security
- Digital signatures
- Signing with RSA
- EL Gamal signatures

RSA Security

RSA is homomorphic (like El Gamal)

\[E(m_1) \cdot E(m_2) = E(m_1 m_2) = (m_1 m_2)^e \pmod{n} \]

RSA is not even semantically secure
- Adversary can tell \(E(m_0) \) from \(E(m_1) \) since their values are fixed in deterministic RSA.
How to make RSA IND-CCA2 secure?

"OAEP" = Optimal Asymmetric Encryption Padding

Bellare, Rogaway 1994

Given m, $|m| = t$ bits
Pick r at random, $|r| = k_0$

On decryption: Invert RSA
Invert OAEP
reject if 0^{k_1} not present
Inverting OAEP

\[X_1 = m^{0^1} + a_1 \]
\[X_0 = r + a_o \]

get this in step 2

Thm: RSA with OAEP secure against ACCA, assuming RO model & that RSA hard to invert on random inputs

Digital Signatures

- Invented by Diffie-Hellman in 1976
- First implementation: RSA (1977)
- Initial idea: Switch PK/SK
 Encrypt with secret key
 If PK decrypts it, then sig OK
 (compare decrypted result to original)
Digital Signatures

\[\text{keygen} \rightarrow (PK, SK) \]

\[\text{verification key} \]

\[\text{signing key} \]

Ignore "PKI" issue for now: Knowing that you have the "right" PK

\[\text{Sign} (SK, M) \rightarrow \sigma_{SK} (M) \]

\[M \in \{0, 1\}^* \] (may be randomized)

\[\text{Verify} (PK, M, \sigma) = \text{True/False} \]

Correctness: \((\forall M) \text{ Verify}(PK, M, \text{Sign}(SK, M)) = \text{True} \)

Signing with RSA.

Hash and sign with PKCS

Let \(H(M) = \text{SHA256}(M) \)

Let \(H'(M) = 0x00001 \text{ FF... FF 00 11 ASN.1 II } H(M) \)

Let \(\sigma(M) = (H'(M))^d \mod n, \ M' = (\sigma(M))^e \mod n \)

Some issues with \(e = 3 \) but appears secure

No proofs even assuming collision-resistant \(H \) and RSA hard to invert
(Weak) existential unforgeability under adaptive chosen message attack

\[(PK, SK) \leftarrow \text{Keygen} \]

\[M_1, \sigma(M_1) \]

\[\vdots \]

\[M_k, \sigma(M_k) \]

\[M, \sigma_x \]

Adv wins if \(\text{Verify} (PK, M, \sigma_x) = \text{True} \)

\& \(M \notin \{ M_1, \ldots, M_k \} \)

Scheme is weakly existentially unforgeable under adaptive chosen message attack if
\[\text{Prob}[\text{Adv wins}] \text{ is negligible} \]

RSA-PSS weakly secure

Scheme is strongly secure if
Adversary can't produce new signature for previously signed message.
Adv wins if \(\text{Verify} (PK, M, \sigma_x) = \text{True} \)

\& \((M, \sigma_x) \notin \{ (M_1, \sigma_1), \ldots, (M_k, \sigma_k) \} \)
EL Gamal Signatures

Public system parameters

\[p \text{ prime} \]
\[g \text{ generator} \]

Keygen:

\[X \in \mathbb{Z}_p \setminus \{0, 1, \ldots, p-2\} \]
\[\text{SK} = x \]
\[y = g^x \]
\[\text{PK} = y \]

Sign \(M \):

\[m = h(M) \in \mathbb{Z}_p \]
\[k \in \mathbb{Z}_{p-1}^* \quad \left[\text{gcd}(k, p-1) = 1 \right] \]
\[r = g^k \mod p \]
\[s = k^{-1} (m-rx) \mod (p-1) \]
\[\sigma(M) = (r, s) \]

Verify:

Check \(0 < r < p \)
\[y^r r^s = g^m \mod p \]
Return True if both checks pass, else False

Correctness:

\[g^{xr} g^{ks} = g^{xr+ks} \]

Since \[s = k^{-1} (m-rx) \mod (p-1) \quad \text{and} \quad \text{gcd}(k, p-1) = 1 \]
we have \[xr + ks = m \mod (p-1) = m + u(p-1) \]
\[\Rightarrow \]
\[g^{xr+ks} = g^m \mod p \]
Original El Gamal is existentially forgeable

Without hash function or collision-resistant identity h(.)

Let \(e \in \mathbb{Z}_{p-1} \)

\[r \leftarrow g^e y \pmod{p} \]
\[s \leftarrow r \pmod{p-1} \]

\((r, s)\) is signature for message \(m = es \pmod{p-1} \)

\[y^rrs = g^{xr} (gey)^r = g^{-er} = ges \]
\[= g^m \text{ for } m = es \pmod{p-1} \]

Easy to fix!

Modified El Gamal

\[\text{Sign}(M): \quad k \in \mathbb{Z}_{p}^* \]

\[r = g^k \pmod{p} \]

\[m = h(M \| r) \]

\[s = k^{-1} \left(m - rx \right) \pmod{p-1} \]

\(\sigma(M) = (r, s) \)

Verify:

check \(0 < r < p \)

check \(y^rrs = g^m \) where \(m = h(M \| r) \)

Thm: Modified El Gamal is existentially unforgeable against adaptive chosen message attack, in ROM, assuming DLP is hard.