Public key Encryption I

Knapsack cryptography
Diffie-Hellman key Exchange
El Gamal Encryption

Public key Crypto

Message + public key = Ciphertext
Ciphertext + private key = Message

Two keys need to be linked in a mathematical way.
Knowing the public key should tell you nothing about the private key.
Knapsack Cryptography

Given a pile of \(n \) items, each with different weights \(w_i \), is it possible to put items in a knapsack such that we get a specific weight \(S \)? \(b_i \in \{0, 1\} \)

\[
S = b_1 w_1 + b_2 w_2 + \ldots + b_n w_n
\]

NP-complete problem in general case.

Super-increasing knapsacks: linear time solvable

\(w_j \geq \sum_{i=1}^{j-1} w_i \) \(\{2, 3, 6, 13, 27, 52\} \)

Merkle-Hellman Cryptosystem

Private key \(\rightarrow \) super-increasing knapsack problem

\[\text{PRIVATE TRANSFORM} \]

Public key \(\leftarrow \) "hard" general knapsack problem

Transform: two private integers \(N, M \) s.t. \(\gcd(N, M) = 1 \)

Multiply all values in the sequence by \(N \) and then mod \(M \)
Merkle-Hellman Example

\[N = 31, \quad M = 105 \quad \text{private key} = \{2, 3, 6, 13, 27, 52\} \]
\[\text{public key} = \{62, 93, 81, 88, 102, 37\} \]

Message = \[011000 \quad 110101 \quad 101110 \]

Ciphertext:
\[011000 \quad 93 + 81 = 174 \]
\[110101 \quad 62 + 93 + 88 + 37 = 280 \]
\[101110 \quad 62 + 81 + 88 + 102 = 333 \]
\[= 174, 280, 333 \]

Recipient knows \[N = 31, \quad M = 105 \quad \{2, 3, 6, 13, 27, 52\} \]
Multiplies each ciphertext block by \[N^{-1} \pmod{M} \]
\[N^{-1} = 61 \pmod{105} \]
\[174 \cdot 61 = 9 = 3 + 6 = 011000 \]
\[280 \cdot 61 = 70 = 2 + 3 + 13 + 52 = 110101 \]
\[333 \cdot 61 = 48 = 2 + 6 + 13 + 27 = 101110 \]

Solving super-increasing knapsack

Beautiful but broken

Density of knapsack \[d = \frac{n}{\max \{\log_2 w_i : 1 \leq i \leq n\}^2} \]

Lattice basis reduction can solve knapsacks of low density. Unfortunately, M-H scheme always produces knapsacks of low density!
Typical Public Key Setup

Let G be a group, generator $g \in G$

$$y = g^x \quad 0 \leq x < \text{order}(g)$$

Then x is the discrete log of y, base g, in G

Assume DLP is hard

Note: DLP is easy if $\text{order}(g)$ has only small prime factors

$p = 2r+1$ large "safe" prime, r prime

g generator of \mathbb{Z}_p^*

$\text{order}(g) = p-1 = |\mathbb{Z}_p^*|$

p, g public system parameters

Alice picks secret key x, $1 \leq x < p-1$

Alice publishes her public key $y = g^x \pmod{p}$

Alice's secret key is protected from disclosure by DLP
Diffie-Hellman Key Exchange

- **P, g** public parameters
- **Alice**: secret key x, public key g^x
- **Bob**: secret key y, public key g^y

\[K = (g^y)^x = g^{xy} \quad \text{Eve (passive)} \]
\[K = (g^x)^y = g^{xy} \]

Require DLP to be hard but not sufficient.

CDH: Computational Diffie Hellman: Given g^x and g^y, to compute g^{xy} is hard.

Secure against passive Eve if CDH is hard.

What about active Eve?
EL GAMAL ENCRYPTION

Public key encryption scheme. Assume DLP, CDH are hard.

\[\mathbb{Z}_p^* \] for large random prime \(p \)

\[SK = x, \quad 0 \leq x < p - 1 \]

\[PK = (p, g, g^x) \]

Encryption: Bob does the following

(a) Represent message as integer \(m \in \{0, 1, \ldots, p-1\} \)
(b) Select a random \(k, \quad 1 \leq k < p - 1 \)
(c) \(y = g^k \mod p, \quad s = m \cdot (g^x)^k \mod p \)
(d) Send ciphertext \(c = (y, s) \) to Alice

Decryption: To recover plaintext, Alice does

(a) Compute \(y^{-x} \mod p = y^{p-1-x} \mod p \)
(b) Recover \(m = (y^{-x}) \cdot s \mod p \)
 \[m \cdot g^{kx} \]
 \[g^{-kx} \]
Key generation: Entity Alice selects
prime \(p = 2357 \)
generator \(g = 2 \) of \(\mathbb{Z}_{2357}^* \)
Alice chooses private key \(SK = x = 1751 \)
\(g^x \mod p = 2^{1751} \mod 2357 = 1185 \)
Alice’s PK = \((p = 2357, g = 2, g^x = 1185)\)

Encryption
Encrypt \(m = 2035 \)
Bob selects a random integer \(k = 1520 \)
and computes
\(y = 2^{1520} \mod 2357 = 1430 \)
and \(S = 2035 \cdot 1185^{1520} \mod 2357 = 697 \)
Bob sends \(y = 1430, S = 697 \) to Alice

Decryption
To decrypt Alice computes
\(y^{p-1-x} = 1430^{605} \mod 2357 = 872 \)
and recovers \(m \) by computing
\(m = 872 \cdot 697 \mod 2357 = 2035 \)