Hash Functions

Review of desirable properties
Applications (contd.)
Construction (MD5)

Desirable Properties

1. OW "one-way" (pre-image resistance)
2. CR Collision resistance (strong)
3. TCR Target collision resistance (weak)
4. PRF Pseudo-randomness
5. NM Non-malleability

Given $h(x)$, should not be able to find $h(x+t)$. NM \Rightarrow OW
Applications (contd.)

4. Commitments

Alice has value x (e.g., auction bid)
Alice then computes \(CC(x) \) and submits it as her bid

\(CC(x) \) is her "sealed bid"

When bidding is over, Alice "opens" \(CC(x) \) to reveal x

Binding: Alice should not be able to open \(CC(x) \) in multiple ways.
Secrecy: Auctioneer seeing \(CC(x) \) should not learn anything about x
NM: Given \(CC(x) \) shouldn't be possible to produce \(CC(x-1) \)

Need: NM, CR, OW (really need more for secrecy!) \(h(x) = h(x) \parallel \text{msb}(x) \)

How: \(CC(x) = h(r \parallel x) \) \(r \in \mathbb{R} \{0,1\}^{256} \)
to open reveal r & x

randomized
Merkle tree

Authenticate n objects (e.g., time-stamping)

```
X_1 X_2 X_3 X_4  # data blocks
```

```
x = h(y || z)
```

root is authenticator for all n values (put in New York Times)

Show leaf & ancestors & their siblings to prove leaf is in tree.

Need: CR
Construction ("Merkle-Damgard" style)

- Choose output size \(d \) (e.g., \(d = 160 \))
- Choose chaining variable \(c \) (e.g., \(c = 160 \))
 better if \(c \geq 2d \)
- Choose block size \(b \) for message
- Design "compression fn" \(f \)
 \[f : \{0, 1\}^c \times \{0, 1\}^b \rightarrow \{0, 1\}^c \]
- Choose \(c \)-bit (initialization vector)
- Pad message so \(m \)'s new length is multiple of \(b \) bits

Padding:
- hash input 0000 pad with 0000
- hash input 00 00 pad with 00

Collision on two (or more) inputs.
Solution: Include length of original \(m \) in pad
Observations

IV is arbitrary, but fixed

Thm: If f is CR, so is h.

Pf: Work backwards through chain from h-collision to find f-collision.

Thm: Same for OW.

\[M_i \xrightarrow{f} C_i \quad \Rightarrow \quad M_i \xrightarrow{En_{C_i}} C_i \]

AES etc, hard to change keysize
TYPICAL COMPRESSION FUNCTION (MD5)

- chaining variable & output are 128 = 4 x 32 bits
- IV = fixed value
- 64 rounds; each modifies state (in reversible way) based on selected message word
- message block \(b = 512 \) bits considered as 16 32-bit words
- uses end-around XOR

\[
g(x, y, z) = \begin{cases}
 xy \\ xz \\ y \oplus x \oplus z \\
\end{cases}
\]

depending on round