Administrivia

- PSI out today, homework groups
- Term project ideas
 - slashdot ("security")
 - www.iacr.org/eprint

Outline

Hash functions
 - Intro
 - Random Oracle Model
 - Desirable Properties
 - Applications

Introduction

What is a hash fn?
Maps arbitrary strings of data to fixed-length output in deterministic, public, "random" manner.

\[h : \{0,1\}^* \rightarrow \{0,1\}^d \]

Strings of arbitrary length \(\geq 0 \)
Strings of length \(d \)
Hash Functions

No secret key. All operations public.
Anyone can compute \(h \), poly time computation.

Examples:
- \text{MD4}, \text{MD5}, \text{SHA-1}, \text{SHA-256}, \text{SHA-512}
- \text{d}: 128, 160, 256, 512
- broken (CR): \(2^6 \), \(2^{37} \), \(2^{69} \)

Ideal: Random Oracle

(not achievable in practice)

Oracle:
- on input \(x \in \{0, 1\}^* \)
- if \(x \) not in book
 - flip coin \(d \) times to determine \(h(x) \)
 - record \((x, h(x))\) in book
- else: return \(y \) where \((x, y)\) \in book

Gives random answer every time, except as required for consistency with previous answers. (\(h \) must be deterministic)

In practice, \(\# RO \) so need something "pseudo random"
Desirable Properties

OW 1 "one-way" (pre-image resistance)
Infeasible, given \(y \in \{0, 1\}^d \), to find any \(x \) s.t. \(h(x) = y \)

CR 2 Collision-resistance (strong collision resistance)
Infeasible to find \(x, x' \), s.t. \(x \neq x' \) and \(h(x) = h(x') \) (a "collision")

TCR 3 Weak collision resistance (target CR, and pre-image resistance)
Infeasible, given \(x \), to find \(x' = x \)
s.t. \(h(x) = h(x') \)

PRF 4 Pseudo-randomness
Behavior indistinguishable from RO

NM 5 Non-malleability
Infeasible, given \(h(x) \), to produce \(h(x') \) where \(x \) and \(x' \) are "related"
(e.g., \(x' = x + 1 \))

Informal definitions. Formal requires family of hash functions
Facts

- \(h \uparrow \downarrow CR \Rightarrow h \text{ is TCR} \) (but not reverse)
- \(h \uparrow \downarrow OW \iff h \text{ is CR, TCR} \) (neither impl. holds)
- Collisions can be found in \(O(2^{d/2}) \) - birthday attack
- Inversion can be found in \(O(2^d) \)

Examples

\[h(x) \text{ is OW, CR} \]

\[h'(a, b, x_2, \ldots x_n) \text{ is still OW, but not TCR} \]

\[OW \Rightarrow TCR \]

\[h'(x) = \begin{cases} 0 & \text{if } |x| \leq n \\ 1 & \text{if } h(x) \text{ otherwise} \end{cases} \]

\[h \text{ is OW, CR, but } h' \text{ is TCR, not OW} \]

\[TCR \not\Rightarrow OW \]
Applications

1. **Password storage**
 - Store $h(pw)$, not pw, on computer.
 - Use $h(pw)$ to compare against $h(pw')$ where pw' is the typed password.
 - Disclosure of $h(pw)$ should not reveal pw.
 - Need OW.

2. **File modification detector**
 - For each file F, store $h(F)$ securely (on DVD).
 - Check if F modified by recomputing $h(F)$.
 - Need TCR (adversary wants to change F but not $h(F)$).

3. **Digital signatures**
 - PK_A: Alice's Public key
 - SK_A: Alice's Private key

 Signing: $\sigma = \text{sign}(SK_A, M)$
 Verify: $\text{verify}(M, \sigma, PK_A) = \text{true}/false$

 Adversary wants to forge a signature that verifies.

 For large M, easier to $\text{sign} h(M)$, $\sigma = \text{sign}(SK_A, h(M))$.

 Need CR, don't need OW. Alice gets Bob to sign x, then claims he signed x', if $h(x) = h(x')$.