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tWe present a model for atta
king various 
ryptographi
 s
hemes by taking advantage of randomhardware faults. The model 
onsists of a bla
k-box 
ontaining some 
ryptographi
 se
ret. The boxintera
ts with the outside world by following a 
ryptographi
 proto
ol. The model supposes thatfrom time to time the box is a�e
ted by a random hardware fault 
ausing it to output in
orre
tvalues. For example, the hardware fault 
ips an internal register bit at some point during the
omputation. We show that for many digital signature and identi�
ation s
hemes these in
orre
toutputs 
ompletely expose the se
rets stored in the box. We present the following results: (1) These
ret signing key used in an implementation of RSA based on the Chinese Remainder Theorem(CRT) is 
ompletely exposed from a single erroneous RSA signature, (2) for non-CRT implemen-tations of RSA the se
ret key is exposed given a large number (e.g. 1000) of erroneous signatures,(3) the se
ret key used in Fiat-Shamir identi�
ation is exposed after a small number (e.g. 10) offaulty exe
utions of the proto
ol, and (4) the se
ret key used in S
hnorr's identi�
ation proto
olis exposed after a mu
h larger number (e.g. 10000) of faulty exe
utions. Our estimates for thenumber of ne
essary faults are based on standard se
urity parameters su
h as a 1024 bit modulus,and a 2�40 identi�
ation error probability. Our results demonstrate the importan
e of preventingerrors in 
ryptographi
 
omputations. We 
on
lude the paper with various methods for preventingthese atta
ks.Keywords: Hardware faults, Cryptanalysis, RSA, CRT, Fiat-Shamir identi�
ation, S
hnorr identi�-
ation, Publi
 key systems, Identi�
ation proto
ols.1 Introdu
tionDire
t atta
ks on the famous RSA 
ryptosystem seem to require that one fa
tor the modulus. There-fore, it is interesting to ask whether there are atta
ks that avoid this. The answer is yes: the �rst wasan atta
k due to Ko
her [13℄ based on timing. Ko
her observed that the se
ret key 
an be obtainedby pre
isely measuring the time that operations took. This allows one to atta
k the system withoutdire
tly fa
toring the modulus. More powerful atta
ks, due to Ko
her et al. [14℄, show how to obtainthe se
ret key by measuring a devi
e's power 
onsumption during de
ryption.We present another type of atta
k that also avoids dire
tly fa
toring the modulus. We essentiallyuse the fa
t that from time to time the hardware or software performing the 
omputations may intro-du
e errors. We show that erroneous 
ryptographi
 values (e.g. erroneous RSA signatures) jeopardizese
urity by enabling an atta
ker to expose se
ret information. We des
ribe some environments where�This is an expanded version of an earlier paper that appeared in Euro
rypt '97 [7℄.1



the atta
k may apply. Within these environments it is appropriate to implement defenses against theatta
k as dis
ussed in Se
tion 4.Certi�
ate Authority. A 
erti�
ate authority (CA) issues 
erti�
ates to various entities. During
erti�
ate generation, the CA uses its private key to sign the data 
ontained in the 
erti�
ate [17℄.The CA's private key is highly guarded sin
e anyone possessing the private key 
an issue fake
erti�
ates. Suppose that during 
erti�
ate generation a rare 
omputer error on the CA's ma-
hine (hardware or software) results in a 
erti�
ate 
ontaining an erroneous CA signature. Weshow that su
h invalid 
erti�
ates 
an 
ompletely expose the CA's private key. At the extreme,a single erroneous 
erti�
ate is suÆ
ient to re
over the CA's private key. Note that typi
ally theuser is alerted whenever an invalid 
erti�
ate is re
eived, at whi
h point the user 
ould try toexploit this 
erti�
ate.Web server. A web server uses a se
ret key to authenti
ate itself to a web browser and to establisha se
ure session with the browser. Suppose that during key ex
hange, a rare 
omputer error onthe web server 
auses it to mis
al
ulate. The resulting value sent to the browser 
an 
ompletelyexpose the server's private key.Smart
ard. Smart
ards are typi
ally used to authenti
ate their owners and sign 
ertain 
ontra
ts onbehalf of their owners. As before, a glit
h in the smart
ard's pro
essor may 
ause it to send anerroneous value to the outside world. These values expose the se
ret keys stored on the 
ard.Obfus
ated keys. Several software produ
ts 
ontain an embedded se
ret key. The se
ret key is\hidden" in the software so that it is supposedly hard to extra
t from the exe
utable. Forexample, several software audio players running on desktop 
omputers 
ontain a se
ret key usedto defend against musi
 pira
y. The embedded key is used to de
rypt en
rypted musi
 sent tothe user. To extra
t the embedded key, an atta
ker may add a single mali
ious instru
tion to thede
ryption 
ode, thus 
ausing the de
ryption pro
ess to malfun
tion. The invalid de
ryptionsprodu
ed expose the se
ret key embedded in the player.One may wonder whether hardware or software errors are a 
on
ern. After all, most of the hardwareand software used in every day life appears to be reliable. Nevertheless, several s
enarios may enablean adversary to 
olle
t and possibly 
ause faults. We group these into three 
ategories.Latent faults. Latent errors are hardware or software bugs that are diÆ
ult to 
at
h. As an example,
onsider Intel's 
oating point division bug [11℄. A 
rypto library using a faulty 
oating pointunit to speed up multi-pre
ision arithmeti
 may, on rare o

asions, generate in
orre
t values.Similarly, latent software bugs in the multi-pre
ision pa
kage are also likely to produ
e in
orre
tvalues.Transient faults. Transient faults are random hardware glit
hes that 
ause the pro
essor to mis-
al
ulate. These may be 
aused by power glit
hes, high temperature, stati
 ele
tri
ity, et
. Atransient error that takes pla
e during signature generation will result in an invalid signature.Indu
ed faults. When an adversary has physi
al a

ess to a devi
e she may try to purposely indu
ehardware faults. For instan
e, one may attempt to atta
k a tamper-resistant devi
e by deliber-ately 
ausing it to malfun
tion. See the dis
ussion by Anderson and Kuhn [1℄ for examples oftampering with tamper resistant devi
es. Fortunately, most smart
ards have built in sensors todete
t various forms of tampering. It is likely that the 
ost of indu
ing useful faults is higherthan the potential gains. 2



1.1 The atta
k modelThroughout the paper our model 
onsists of a bla
k box intera
ting with the outside world a

ordingto a prede�ned proto
ol. The bla
k box 
ontains se
ret keys that are ina

essible to the outside world.For example, a CA may be viewed as a bla
k box that issues 
erti�
ates on demand. The CA's privatekey is stored inside the box. The adversary's goal is to intera
t with the bla
k box and extra
t these
ret keys stored in it using only the values output by the box. The assumption is that, on rareo

asions, errors within the box ma
hinery (either hardware or software) 
ause it to output in
orre
tvalues. The atta
ks des
ribed in the paper show how these values enable an adversary to dedu
e these
ret keys stored inside the box.The atta
k des
ribed in Se
tion 2.2 is the most powerful and is 
apable of dealing with arbitraryerrors. Other atta
ks in the paper assume more \hardware-like" errors. We refer to these morespe
ialized errors as register faults. The idea is as follows: suppose that at some point during a
omputation (su
h as signature generation) a temporary value stored in a register is 
orrupted. Morepre
isely, one bit in the register 
ips between the time the value is loaded onto the register and thetime it is read out of the register. Typi
ally, the bit 
ip results from a premature power drain on oneof the register 
ells. Hen
e, a 
ip from a `1' to a `0' is more likely than the reverse, but we do notmake use of this fa
t. We will show that the se
ret keys used in several 
ryptographi
 s
hemes are
ompletely exposed in the presen
e of register faults.1.2 Summary of resultsOur atta
k is e�e
tive against several 
ryptographi
 s
hemes su
h as the RSA system and Rabinsignatures [19℄ as well as several identi�
ation proto
ols. As expe
ted, the e�e
tiveness of the atta
kdepends on the exa
t implementation of ea
h of these s
hemes. We brie
y review the results:� For publi
 key systems we present the following results:RSA+CRT. For an implementation of RSA based on the Chinese Remainder Theorem (CRT)we show that given one erroneous RSA signature one 
an eÆ
iently fa
tor the RSA mod-ulus with high probability. The same approa
h 
an also be used to atta
k Rabin's signa-ture s
heme. Our atta
k shows that one invalid signature along with a valid signature onthe same message are suÆ
ient for fa
toring the modulus. A later improvement due toLenstra [15℄ shows that an invalid signature along with the original message to be signedare suÆ
ient.RSA. Register faults 
an be used to atta
k other implementations of the RSA system thoughmany more erroneous signatures are required. When an n bit RSA modulus is used thenumber of required faults is O(n).� For identi�
ation s
hemes we show the following:Fiat-Shamir. A few erroneous exe
utions of the Fiat-Shamir identi�
ation proto
ol [8℄ enablean adversary to re
over the private key of the party trying to authenti
ate itself. Whena single exe
ution of the proto
ol has se
urity 2�t we require O(t) erroneous exe
utions.Furthermore, in 
ase the prover is a smart
ard the adversary mounts the atta
k by indu
inga register fault while the 
ard is waiting for a 
hallenge. Thus, pre
ise timing of the indu
edregister fault is not ne
essary. 3



S
hnorr. Similar results hold for S
hnorr's identi�
ation proto
ol [20℄ though a larger number oferroneous exe
utions is ne
essary. When an n bit modulus is used the number of exe
utionsis O(n logn). Both atta
ks use faults that 
orrupt the prover while it is waiting for a
hallenge from the veri�er.Sin
e the initial publi
ation of our results several authors devised faults based atta
ks on other
ryptographi
 systems. Biham and Shamir [5℄ presented elegant and novel atta
ks on DES. Someof their te
hniques 
an be used to re
over the se
ret key of a totally unknown 
ipher. Anderson andKuhn [2℄ used a di�erent fault model to obtain atta
ks against symmetri
 
iphers. Bao et al. [3℄ devisedfault atta
ks against DSS and several other signature s
hemes. Joye and Quisquater [12℄ noted thatthe CRT atta
ks (des
ribed in the next se
tion) 
an also be mounted against several ellipti
 
urvesystems. Finally, Zheng and Matsumoto [22℄ showed how faults in the random number generator 
anbe used to atta
k systems.It is important to emphasize that the atta
ks des
ribed in this paper are 
urrently theoreti
al.We are not aware of any published results physi
ally experimenting with this type of atta
k. Thepurpose of these results is to demonstrate the danger that hardware or software bugs pose to various
ryptographi
 systems. In 
onjun
tion with Ko
her's work our results show that a pure mathemati
alanalysis of a 
ryptographi
 algorithm is insuÆ
ient. One must also analyze the a
tual implementationto ensure it does not leak timing or power information and never outputs faulty values.There are many ways to prevent atta
ks based on hardware faults. The simplest solution is toensure the bla
k-box veri�es the values it 
omputes before sending them out to the outside world. Inproto
ols where the bla
k-box has to keep some state (su
h as in identi�
ation proto
ols) our resultsshow the importan
e of prote
ting the registers storing the state information using error dete
tion bits(e.g. CRC). Preventing errors is 
ru
ial in many areas unrelated to 
ryptography. For instan
e, spe-
ial pre
autions are taken to ensure error-free 
omputations in 
ore memories of large 
omputers [16℄,in 
omputers onboard satellites 
rossing the Van Allen belt, and many other embedded 
ontrol sys-tems. S
ientists working in these areas may not be aware that their te
hniques are also 
riti
al forse
uring 
ryptographi
 implementations. We dis
uss methods for preventing errors in 
ryptographi

omputations in Se
tion 4.We note that FIPS [9℄ publi
ation 140-1 suggests that hardware faults may 
ompromise the se
urityof a module. Our results expli
itly demonstrate the extent of damage 
aused by su
h faults. We givealgorithms that show how 
ertain faults 
an expose sensitive se
urity information. FIPS 140-1 alsospe
i�es a list of self tests a module should apply to itself. Our results suggest that these tests maybe insuÆ
ient and full veri�
ation of 
omputed values is ne
essary.2 RSA's vulnerability to hardware faultsWe are now ready to des
ribe the various atta
ks. We begin by des
ribing RSA's vulnerability tohardware faults.2.1 The RSA systemLet N = pq be a produ
t of two large primes ea
h n=2 bits long. To sign a message x 2 ZN using RSAone 
omputes S = xd mod N where d is a se
ret signing exponent1. The 
omputationally expensive1Note that for simpli
ity we assume the message x is an integer in the range 1 to N . Usually one �rst hashes themessage and then pads the result to an integer in that range [18℄.4



part of signing using RSA is the modular exponentiation of x. For eÆ
ien
y most implementationsexponentiate as follows: using repeated squaring they �rst 
ompute S1 = xd mod p and S2 = xd mod q.They then use the Chinese remainder theorem (CRT) to 
onstru
t the signature S = xd mod N . Thislast CRT step takes negligible time 
ompared to the two exponentiations. It is done by 
omputingS = aS1 + bS2 mod N for some prede�ned 
onstants a; b 2 ZN.Exponentiation using CRT is mu
h faster than repeated squaring modulo N . To see this observethat S1 = xd mod p = xd mod p�1 mod p. Usually d is of order N while d mod p � 1 is of orderp. Consequently, 
omputing S1 requires half as many multipli
ations as 
omputing S dire
tly. Inaddition, intermediate values during the 
omputation of S1 are only half as big | they are in therange [1; p℄ rather than [1; N ℄. When quadrati
 time multipli
ation is used, multiplying two numbersin Zp takes 1=4 the time as multiplying elements in ZN. Hen
e, 
omputing S1 takes 1=8 the time of
omputing S dire
tly. Computing both S1 and S2 takes 1=4 the time of 
omputing S dire
tly. Thus,CRT exponentiation is four times faster than dire
t exponentiation. This is why RSA with CRT isthe preferred method for generating RSA signatures [17, p. 613℄.2.2 An atta
k on \RSA{CRT"We show that RSA with CRT is espe
ially sus
eptible to software or hardware errors. The atta
kenables us to fa
tor the modulus N . The atta
k is based on obtaining two signatures of the samemessage. One signature is the 
orre
t one; the other is a faulty signature.Let x 2 ZN be a message and let S = xd mod N be a valid RSA signature of x. Let Ŝ be afaulty signature. Re
all that S is 
omputed by �rst 
omputing S1 and S2. Similarly, Ŝ is 
omputedby �rst 
omputing Ŝ1 and Ŝ2. Suppose that during the 
omputation of Ŝ an error o

urs during the
omputation of only one of Ŝ1; Ŝ2. Without loss of generality, suppose a hardware fault o

urs duringthe 
omputation of Ŝ1 (i.e. S1 6= Ŝ1 mod p) but no fault o

urs during the 
omputation of Ŝ2 (i.e.Ŝ2 = S2). Then S = Ŝ mod q, but S 6= Ŝ mod p. Therefore,g
d(S � Ŝ; N) = qand so N 
an be easily fa
tored. That's it.We see that using one faulty signature and one 
orre
t signature the modulus N 
an be eÆ
ientlyfa
tored. The above atta
k works under a very general fault model. It makes no di�eren
e what typeof error or how many errors o

ur in the 
omputation of S1. All we rely on is the fa
t that faults o

urin the 
omputation modulo only one of the primes. To obtain both a 
orre
t signature and a faultysignature of the same message an atta
ker 
an query the bla
k-box on the same message multipletimes. Sin
e standard signature formats (e.g. pk
s1) do not involve any randomness, the same x willbe fed through the signing engine every time.Based on our results Arjen Lenstra [15℄ observed that one faulty signature of a known message x issuÆ
ient. There is no need to obtain a valid signature as well. For 
ompleteness we des
ribe Lenstra'simprovement here. Let S = xd mod N . Let Ŝ be a faulty signature obtained under the same modelas above, that is S = Ŝ mod q but S 6= Ŝ mod p. Then x = Ŝe mod q but x 6= Ŝe mod p, where e isthe publi
 exponent used to verify the signature, i.e., Se = x mod N . It now follows thatg
d(x� Ŝe; N) = qLenstra's improvement shows that as long as the entire signed message x is known, a single intera
tionwith the bla
k-box resulting in an invalid signature Ŝ is suÆ
ient for fa
toring the modulus.5



2.2.1 Atta
ks on other systems using the CRTThe atta
k on Chinese remainder theorem implementations applies to other 
ryptosystems as well.For instan
e, the same atta
k applies to Rabin's signature s
heme [19℄. A Rabin signature of a numberx mod N is the modular square root of x. When the extra
tion of square roots modulo a 
ompositemakes use of the CRT the same atta
k as above applies. Other atta
ks on systems using the CRT aredes
ribed in [12℄.2.3 An atta
k on RSA without CRTIn the previous se
tion we observed that RSA{CRT is sus
eptible to hardware or software errors.In this se
tion we show that using register faults it is possible to atta
k other implementations ofRSA as well. The atta
k is not as pra
ti
al as atta
ks on RSA{CRT. Nevertheless, it illustrates thevulnerability of non CRT implementations.Let N be an n-bit RSA 
omposite and d a se
ret exponent. The exponentiation fun
tion x �!xd mod N 
an be 
omputed using the following algorithm (we let d = dn�1dn�2 : : : d1d0 be the binaryrepresentation of d):Algorithm 1:init y  x ; z  1.main For k = 0; : : : ; n� 1.If dk = 1 then z  z � y (mod N).y  y2 (mod N).Output z.When the above algorithm is used, several faulty signatures are suÆ
ient to re
over the se
ret key d.Here faulty signatures refer to signatures obtained in the presen
e of register faults (see Se
tion 1.1).The atta
k uses erroneous signatures of random messages in ZN (as opposed to 
hosen messages).Furthermore, the atta
ker need not obtain the 
orre
t signature of any of the messages nor does heneed to obtain multiple signatures of the same message.The atta
k pro
eeds as follows: the atta
ker asks the bla
k-box to sign messages M1;M2; : : : ;Ml.The atta
ker 
olle
ts the responses until she has suÆ
iently many erroneous signatures Ŝi. The pairshMi; Ŝii are then used to dedu
e the se
ret signing key d. We assume that for ea
h pair hMi; Ŝii asingle register fault o

urs during the 
omputation of Ŝi. The fault o

urs at a random iteration duringthe exponentiation algorithm and 
ips one bit of the value stored in the variable z. The followingresult was the starting point of our resear
h on fault based 
ryptanalysis.Theorem 2.1 Let N be an n-bit RSA modulus. For any 1 � m � n, given (n=m)log2n pairshMi; Ŝii, the se
ret exponent d 
an be extra
ted from a bla
k-box implementing the above exponentiationalgorithm with probability at least 12 . The probability is over the lo
ation of the register faults and therandom messages Mi 2 ZN. The algorithm's running time is dominated by the time it takes to performO((2mn3 log2 n)=m2) full modular exponentiations mod N .Remark: Taking m = log 2n shows that the se
ret d 
an be re
overed using n faults and ~O(n4)modular exponentiations. With m = 1 the se
ret d 
an be found using n log n faults and ~O(n3)exponentiations. 6



Proof Let M 2 ZN be a message to be signed. Suppose that at a single random point duringthe exponentiation algorithm on input M one of the bits of the register z is 
ipped. We denote theresulting erroneous signature by Ŝ. We show that an ensemble of su
h erroneous signatures enablesone to re
over the se
ret exponent d.Let l = (n=m)log2n and let M1; : : : ;Ml 2 ZN be a set of random messages. Let Si = Mdi mod Nbe the 
orre
t signature on Mi. Let Ŝi be an erroneous signature of Mi. We are given Ŝi but donot know Si. By assumption, a register fault o

urs at exa
tly one point during the 
omputation ofŜi. For ea
h faulty signature, Ŝi, let ki denote the value of k at the time at whi
h the fault o

urred(re
all k is the 
ounter used in the exponentiation algorithm). We may sort the messages so that0 � k1 � k2 � : : : � kl < n. The time at whi
h the faults o

ur is 
hosen uniformly (among the niterations) and independently at random. It follows that given l su
h faults, with probability at leasthalf, ki+1 � ki < m for all i = 1; : : : ; l � 1. To see this observe that the probability that no faulto

urs in a spe
i�
 interval of width m is �1� mn �l < 12n . Sin
e there are at most n su
h intervals theprobability that all of them 
ontain a fault is at least 1� n � 12n = 12 . Note that sin
e we do not knowwhere the faults o

ur, the values ki are unknown to us.Let d = dn�1 : : : d1d0 be the bits of the se
ret exponent d. We re
over a blo
k of these bits ata time starting with the MSBs. Suppose we already know bits dn�1dn�2 : : : dki for some i. Initiallyi = l + 1 indi
ating that no bits are known. We show how to expose the bits of d in positionski � 1; ki � 2; : : : ; ki�1. To simplify the notation let a = ki and 
 = ki�1. To expose the blo
k of bitsda�1da�2 : : : d
+1d
 2 f0; 1ga�
 we intend to try all possible bit ve
tors until the 
orre
t one is found.Sin
e even the length of the blo
k, namely a� 
, is unknown we try all possible lengths. The atta
kalgorithm works as follows:1. For all lengths r = 1; 2; 3 : : : ;m do:2. For all 
andidate r-bit ve
tors u = ua�1ua�2 : : : ua�r do:3. Set w =Pn�1j=a dj2j +Pa�1j=a�r uj2j . In other words, w mat
hes the bits of d and the bits of u atall bit positions that are already exposed and is zero everywhere else.4. Test if the 
urrent 
andidate bit ve
tor u is 
orre
t by 
he
king if one of the erroneous signaturesŜj for j = 1; : : : ; l satis�es9b 2 f0; : : : ; ng s.t. �Ŝj � 2bMwj �e =Mj (mod N)Re
all that e is the publi
 signature veri�
ation exponent. The � means that the 
ondition issatis�ed if it holds with either a plus or minus.5. If a signature satisfying the above 
ondition is found, output ua�1ua�2 : : : ua�r and stop. At thispoint we know that ki�1 = 
 = a� r and da�1da�2 : : : da�r = ua�1ua�2 : : : ua�r. Hen
e, r morebits of d are exposed.We show that the 
ondition at step (4) is satis�ed by the 
orre
t 
andidate ua�1ua�2 : : : u
. Tosee this re
all that Ŝi�1 is obtained from a fault at the 
 = ki�1'st iteration. That is, at the ki�1'stiteration the value of z was 
hanged to ẑ  z� 2b for some b (
orresponding to a register fault on thebit in position b). A simple property of Algorithm 1 is that just before the fault took e�e
t we hadz = Md
d
�1:::d0i�1 mod N . By de�nition of w it follows that Si�1 = z �Mwi�1 mod N . Sin
e no faultso

urred in the remaining iterations, repla
ing z by ẑ produ
es an erroneous signature Ŝi�1 satisfying:Ŝi�1 = ẑ �Mwi�1 = (z � 2b)Mwi�1 = Si�1 � 2bMwi�1 (mod N)7



When in step (4) the erroneous signature Ŝi�1 is 
orre
ted (by adding 2bMwi�1) it properly veri�eswhen raised to the publi
 exponent e. Consequently, when the 
orre
t 
andidate u is tested, the faultysignature Ŝi�1 guarantees that it is a

epted.To bound the running time of the algorithm we bound the number of times the 
ondition of step(4) is exe
uted. Ea
h invo
ation of Step (4) requires n � l modular exponentiations. Working throughthe loops in steps (1) and (2) we see that the total number of modular exponentiations is at mostn � l � 24n�klXr=1 2r + kl�kl�1Xr=1 2r + : : :+ k2�k1Xr=1 2r + k1Xr=1 2r35 � nl "l � mXr=1 2r# � 2nl22mThe �rst inequality follows from the fa
t that ki � ki�1 < m for all i. Plugging in the value for l wesee that the total run time is dominated by the time it takes to perform O((2mn3 log2 n)=m2) modularexponentiations.We still need to show that a wrong 
andidate u0 will not pass the test of step (4). This is donein the following lemma. The lemma shows that, when the en
ryption/de
ryption exponents he; di are
hosen at random, and the messages M1; : : : ;Ml 2 ZN are random, a wrong 
andidate u0 will pass thetest with negligible probability.Lemma 2.2 Let 
 > 0 be a �xed 
onstant. For all n-bit RSA moduli N = pq at least one of thefollowing 
laims hold:1. The probability that a wrong 
andidate u0 passes the test of Step (4) is less than 1=n
. Theprobability is over the random 
hoi
e of messages Mi 2 ZN given to the atta
k algorithm and therandom 
hoi
e of the de
ryption exponent d.2. There is a uniform polynomial time (in n and 2m) algorithm for fa
toring N .Proof We show an algorithm that fa
tors all RSA moduli N for whi
h part (1) is false. Thealgorithm works as follows: it pi
ks a random exponent d and random messages M1; : : : ;Ml 2 ZN. Itthen 
omputes erroneous signatures Ŝi of the Mi by using the exponentiation algorithm (Algorithm1) to 
ompute Mdi mod N and deliberately simulating a random register fault at a random iteration.Let hMi; Ŝiili=1 be the resulting set of faulty signatures. We show there is a polynomial time (in n and2m) algorithm that given this data su

eeds in fa
toring N with probability at least 1=n
.Suppose the atta
k algorithm were given hMi; Ŝiili=1 as input. By assumption, with probability atleast 1=n
, at some point during the algorithm a signature Ŝv will in
orre
tly 
ause the wrong 
andidateu0 to be a

epted in Step (4). That is, Ŝv � 2bMwv = Sv mod N even though Ŝv was generated by adi�erent fault (here w is de�ned as in step (3) using the bits of u0). We know that Ŝv = Sv � 2b1Mw1vfor some b1; w1 with w1 6= w. The pair b1; w1 
orrespond to the a
tual lo
ation of the fault during the
omputation of Ŝv. Then, Sv � 2b1Mw1v = Sv � 2bMwv (mod N)Rearranging terms we get Mw�w1v = �2b1�b (mod N). In other words, Mv must be a root of apolynomial of the form xw�w1 = a (mod N) (1)for some 
onstant a. Re
all that the message Mv is 
hosen independently of the fault lo
ation, i.e.independently of w;w1 and a. It follows that a random x 2 ZN must satisfy xw�w1 = a mod N withnon-negligible probability. We show that 
onsequently g
d(w�w1; '(N)) is very large enabling us to8



fa
tor N . First, we bound the number of roots of xw�w1 = a mod N . De�ne Ap = g
d(w �w1; p� 1)and Aq = g
d(w � w1; q � 1). The number of roots of the polynomial xw�w1 = a mod N is exa
tly� = Ap � Aq. Hen
e, the probability that Ŝv 
auses the wrong u0 to be a

epted is �=N . Note thatg
d(w � w1; '(N)) = �.To bound the probability that a wrong 
andidate u0 is a

epted throughout the algorithm we 
ountthe number of pairs w;w1. The value of w1 is essentially the pre�x of d from the MSBit to the faultlo
ation. Sin
e we have l faulty signatures there are l possible values for w1. The values of w are theones tested in Step (4). There are at most l � 2m possible values. Hen
e, there are l22m possible valuesfor w � w1. Let �� be the maximum value of � over all pairs w;w1. The probability that a wrong
andidate is ever a

epted is at most l22m � ��N .By assumption, part (1) is false. Hen
e, with probability at least 1=n
 (over the 
hoi
e of d) wehave that l22m � ��N > 1=n
. Let A be the event that l22m � ��N > 1=n
. When A o

urs there existsa pair w;w1 su
h that g
d(w � w1; '(N)) = � > N=(l22mn
). The fa
toring algorithm fa
tors N bytrying all pairs w;w1 until the 
orre
t one is found. For ea
h pair it 
omputes g
d(N; gt(w�w1)=2 � 1)for a random g 2 ZN and all t 2 [1; : : : ; l22mn
℄. On
e t(w � w1) is a multiple of '(N) the algorithmwill fa
tor N with probability 12 . Hen
e, when the event A o

urs the algorithm fa
tors N in polyno-mial time with probability 12 . Sin
e Pr[A℄ > 1=n
 repeating this pro
ess n
 times will fa
tor N with
onstant probability. �Remark 1: If one allows the atta
ker to obtain both the erroneous and 
orre
t signature of ea
hmessage Mi then the running time of the atta
k algorithm 
an be improved. The test at step (4) 
anbe simpli�ed to 9b 2 f0; : : : ; ng s.t. Ŝj � 2bMwj = Sj (mod N)thus saving the need for an RSA en
ryption on every invo
ation of the test.Remark 2: The messages Mi used by the atta
k algorithm were assumed to be random elements ofZN. This was ne
essary for the proof of Lemma 2.2. However, it should be 
lear that heuristi
allyalmost any set of messages fMigwill make the atta
k algorithm su

eed in exposing the private keyd. In parti
ular, one 
an use elements of ZN that are formated a

ording to the pk
s1 standard [18℄.Similarly, the de
ryption exponent d was assumed to be random. Again, the atta
k is 
ertain to workfor any valid d. In parti
ular, it will work for a d that 
orrespond to a low publi
 exponent e, e.g.e = 65537.3 Atta
ks on identi�
ation proto
olsWe now turn our attention to atta
ks on identi�
ation proto
ols. Throughout we des
ribe a s
enarioin whi
h a prover Ali
e is authenti
ating herself to a veri�er Bob. At setup time Ali
e publishessome publi
 information (publi
 a

reditation information) and keeps 
ertain values se
ret (se
reta

reditation information). Whenever she wishes to authenti
ate herself to Bob she proves knowledgeof the se
ret information. She does so by engaging Bob in a zero-knowledge proof of knowledge [8℄. Weshow that for several 
lassi
 identi�
ation proto
ols, the presen
e of register faults on Ali
e's ma
hineenables Bob to 
ompletely extra
t Ali
e's se
ret a

reditation information.
9



3.1 The Fiat-Shamir identi�
ation s
hemeWe begin by dis
ussion the Fiat-Shamir [8℄ identi�
ation s
heme. Ali
e and Bob �rst agree on ann-bit modulus N whi
h is a produ
t of two large primes, and a se
urity parameter t. A typi
alvalue for t is t = 10. At setup time Ali
e 
hooses her se
ret a

reditation information as a set ofrandom invertible elements s1; : : : ; st mod N . Her publi
 a

reditation information is the square ofthese numbers v1 = s21; : : : ; vt = s2t mod N . To authenti
ate herself to Bob they engage in the followingproto
ol:1. Commitment: Ali
e pi
ks a random r 2 Z�N and sends z = r2 mod N to Bob.2. Challenge: Bob pi
ks a random subset S � f1; : : : ; tg and sends the subset to Ali
e.3. Response: Ali
e 
omputes y = r �Qi2S si mod N and sends y to Bob.4. Verify: Bob veri�es Ali
e's response by 
he
king that y2 = z �Qi2S vi (mod N). The proto
ol
ompletes su

essfully if the response veri�es, and fails otherwise.The probability that an imposter who does not know the se
ret information su

eeds in foolingBob is 2�t. Typi
ally, the proto
ol is repeated a small number of times (e.g. four times) to redu
e theprobability of error. Using t = 10 and iterating the proto
ol four times results in an error probabilityof 2�40.For the purpose of authenti
ation one may implement Ali
e's role in a tamper resistant devi
e.The devi
e 
ontains the se
ret information and is used by Ali
e to authenti
ate herself to variousparties. We show that using register faults one 
an extra
t the se
ret hs1; : : : ; sti from the devi
e. Weuse register faults that o

ur while the devi
e is waiting for a 
hallenge from the outside world.Theorem 3.1 Let N be an n-bit modulus and t the predetermined se
urity parameter of the Fiat-Shamir proto
ol. Given t erroneous exe
utions of the proto
ol one 
an re
over the se
ret hs1; : : : ; sti.The algorithm's running time is dominated by the time it takes to perform O(nt + t2 log t) modularmultipli
ations. The faults are 
olle
ted over t separate runs of the proto
ol, ea
h fault being a 1-bitregister fault in the variable r.Proof Suppose that due to a register fault, one of the bits of the register holding the value r is
ipped while the devi
e is waiting for Bob to send it the 
hallenge set S. In this 
ase, Bob re
eivesthe 
orre
t value r2 mod N , however y is 
omputed in
orre
tly by the devi
e. Due to the fault, thedevi
e outputs: ŷ = (r +E) �Yi2S si (mod N)where E is the value added to the register as a result of the fault. Sin
e the fault is a single bit 
ipwe know that E = �2b for some b = 0; : : : ; n� 1. Observe that Bob knows the value Qi2S vi and he
an therefore 
ompute (r +E)2 using:(r +E)2 = ŷ2Qi2S vi (mod N)Sin
e there are only n possible values for E, Bob 
an try all of them until the 
orre
t one is found.Using the 
orre
t value of E Bob 
an re
over r sin
e he has both (r+E)2 mod N and z = r2 mod N .Indeed, r = (r +E)2 � r2 �E22E = ŷ2Qi2S vi � z �E22E (mod N)10



Bob's ability to dis
over the se
ret random value r is the main observation that enables him to atta
kthe system. Using the value of r and E Bob 
an 
ompute:Yi2S si = ŷr +E = 2E � ŷŷ2Qi2S vi � z +E2 (mod N) (2)We now show that Bob 
an verify that a 
andidate value E is 
orre
t. Let T be the hypothesizedvalue of Qi2S si obtained from the above formula. To test if T is 
orre
t Bob 
an verify that therelation T 2 = Qi2S vi mod N holds. Usually only one of the possible values for E will satisfy therelation. In su
h a 
ase Bob 
orre
tly obtains the value of Qi2S si.Even in the unlikely event that two values E;E0 satisfy the relation, Bob 
an still atta
k the system.Suppose two 
andidate values E;E0 generate two values T; T 0; T 6= T 0 satisfying the relation. ClearlyT 2 = (T 0)2 mod N . If T 6= �T 0 mod N then Bob 
an already fa
tor N by 
omputing g
d(N;T � T 0).Suppose T = �T 0 mod N . Then sin
e one of T or T 0 must equal Qi2S si (one of E;E0 is the 
orre
tfault value) it follows that Bob now knows Qi2S si mod N up to sign. For our purposes this is goodenough.The testing method above enables Bob to 
he
k whether a 
ertain value of E is the 
orre
t one. Bytesting all n possible values of E until the 
orre
t one is found Bob 
an determineQi2S si. ComputingQi2S vi in Equation (2) takes O(t) modular multipli
ations. Evaluating Equation (2) for all n possiblevalues of E takes time O(n+t) modular multipli
ations (and inversions). This is the time to determineQi2S si for a single set S. For t sets we need O(nt+ t2) modular multipli
ations.So far we showed that Bob is able to obtain Qi2S si for arbitrary sets S of his 
hoi
e. We brie
yshow that this enables him to qui
kly re
over hs1; : : : ; sti. The simplest approa
h is for Bob to obtainQi2S si for singleton sets, i.e. sets S 
ontaining a single element. If S = fkg then Qi2S si = sk andhen
e the si's are immediately found. However, it is possible that Ali
e may refuse to a

ept singletonsets S. In this 
ase Bob 
an still �nd the si's as follows. We represent a set S � f1; : : : ; tg by its
hara
teristi
 ve
tor U 2 f0; 1gt, i.e. Ui = 1 if i 2 S and Ui = 0 otherwise. Bob pi
ks sets S1; : : : ; Stsu
h that the 
orresponding set of 
hara
teristi
 ve
tors U1; : : : ; Ut form a t� t full rank matrix overZ2. Bob then uses the method des
ribed above to 
onstru
t the values Ti = Qi2Si si for ea
h of thesets S1; : : : ; St. To determine s1 Bob 
onstru
ts elements a1; : : : ; at 2 f0; 1g su
h thata1U1 + : : :+ atUt = (1; 0; 0; : : : ; 0) (mod 2)These elements 
an be eÆ
iently 
onstru
ted sin
e the ve
tors U1; : : : ; Ut are linearly independent overZ2. When all 
omputations are done over the integers we obtain thata1U1 + : : :+ atUt = (2b1 + 1; 2b2; 2b3; : : : ; 2bt)for some known integers b1; : : : ; bt in the range [1; t℄. Bob 
an now 
ompute s1 using the formulas1 = T a11 � � � T attvb11 � � � vbtt (mod N)Re
all that the values vi = s2i (mod N) are publi
ly available. The values s2; : : : ; st 
an be 
on-stru
ted using the same pro
edure. This phase of the algorithm requires O(t2 log t) modular multipli-
ations.To summarize, the entire algorithm above makes use of t faults. The running time is dominatedby the time it takes to 
ompute O(nt+ t2 log t) modular multipli
ations. �11



We emphasize that the faults o

ur while Ali
e's devi
e is waiting for a 
hallenge from the outsideworld. Consequently, there is no need to 
arefully time the indu
ed fault. The adversary knows toindu
e a fault on Ali
e's devi
e while it is waiting for a 
hallenge from the outside world.We des
ribed the algorithm above for the 
ase where a register fault 
auses a single bit 
ip. Moregenerally, the algorithm 
an be made to handle a small number of bit 
ips per register fault. However,�nding the 
orre
t fault value E be
omes harder. When a single register fault 
auses 
 bits in theregister to 
ip then the algorithm's running time be
omes O(n
t + t2 log t) modular multipli
ations.Essentially, one has to plug in all possible values for E into Equation (2). The number of 
andidateE's is O(n
). The rest of the algorithm remains un
hanged.3.2 A modi�
ation of the Fiat-Shamir s
hemeOne may suspe
t that our atta
k on the Fiat-Shamir s
heme is su

essful due to the fa
t that thes
heme is based on squaring. Re
all that Bob was able to 
ompute the random value r 
hosen bythe devi
e sin
e he was given r2 and (r + E)2 where E is the fault value. One may try to modifythe s
heme and use higher powers. We show that our te
hniques 
an be used to atta
k this modi�eds
heme as well.The modi�ed s
heme uses some publi
ly known exponent e instead of squaring. As before, Ali
e'sse
ret key is a set of invertible elements s1; : : : ; st mod N . Her publi
 key is a set of numbers v1 =se1; : : : ; vt = set mod N . To authenti
ate herself to Bob they engage in the following proto
ol:1. Commitment: Ali
e pi
ks a random r and sends z = re mod N to Bob.2. Challenge: Bob pi
ks a random subset S � f1; : : : ; tg and sends the subset to Ali
e.3. Response: Ali
e 
omputes y = r �Qi2S si mod N and sends y to Bob.4. Verify: Bob veri�es Ali
e's response by 
he
king that ye = re �Qi2S vi (mod N) .When e = 2 this proto
ol redu
es to the original Fiat-Shamir proto
ol. Using the methods des
ribedin the previous se
tion Bob 
an obtain the values L1 = re mod N and L2 = (r + E)e mod N . Asbefore we may assume that Bob guessed the value of E 
orre
tly. Given these two values Bob 
anre
over r by observing that r is a 
ommon root of the two polynomialsxe = L1 (mod N) and (x+E)e = L2 (mod N)Furthermore, r is very likely to be the only 
ommon root of the two polynomials. Consequently, whenthe exponent e is polynomial in n Bob 
an re
over r by 
omputing the GCD of the two polynomials.On
e Bob has a method for 
omputing r he 
an re
over the se
rets s1; : : : ; st as dis
ussed in theprevious se
tion.3.3 S
hnorr's identi�
ation s
hemeThe se
urity of S
hnorr's identi�
ation s
heme [20℄ is based on the hardness of 
omputing dis
rete logmodulo a prime. Ali
e and Bob �rst agree on a prime p and an element g 2 Z�p of order q (
learly qdivides p�1). For eÆ
ien
y reason one typi
ally 
hooses q to be mu
h smaller than p. For instan
e, pmay be 1024 bits long and q only 160 bits long. Ali
e then 
hooses her se
ret a

reditation informationby 
hoosing a random element s 2 Zq. Her publi
 a

reditation information is y = gs mod p. Toauthenti
ate herself to Bob, Ali
e engages in the following proto
ol:12



1. Commitment: Ali
e pi
ks a random integer r 2 Zq and sends z = gr mod p to Bob.2. Challenge: Bob pi
ks a random integer t 2 [0; T ℄ and sends t to Ali
e. Here T < q is some upperbound 
hosen ahead of time.3. Response: Ali
e sends u = r + t � s mod q to Bob.4. Verify: Bob veri�es that gu = z � yt mod p. The proto
ol 
ompletes su

essfully if the responseveri�es, and fails otherwise.For the purpose of authenti
ation one may implement Ali
e's role in a tamper resistant devi
e. Thedevi
e 
ontains the se
ret information and is used by Ali
e to authenti
ate herself to various parties.We show that using register faults one 
an extra
t the se
ret s from the devi
e. We use register faultsthat o

ur while the devi
e is waiting for a 
hallenge from the outside world. Throughout the se
tionlog x denotes logarithm of x to the base e where e is the base of the natural logarithm, e � 2:718.Theorem 3.2 Suppose q used in S
hnorr's proto
ol is an n-bit number. Then given k = n log 4nerroneous exe
utions of the proto
ol one 
an re
over the se
ret s with probability at least 12 . Thealgorithm's running time is dominated by the time to perform O(n2 log n) modular multipli
ations.The faults are 
olle
ted over k separate runs of the proto
ol, ea
h fault being a 1-bit register fault inthe variable r.Proof Bob wishing to extra
t the se
ret information stored in Ali
e's devi
e �rst pi
ks a random
hallenge t in [0; T ℄. The same 
hallenge will be used in all invo
ations of the proto
ol. Sin
e thedevi
e 
annot possibly store all 
hallenges given to it thus far, it 
annot possibly know that Bob isalways providing the same 
hallenge t. The atta
k enables Bob to determine the value t �s mod q fromwhi
h the se
ret value s 
an be easily found. For simpli
ity we set x = ts mod q and assume thatgx mod p is known to Bob.Suppose that due to a register fault, one of the bits of the register holding the value r is 
ippedwhile Ali
e's devi
e is waiting for Bob to send it the 
hallenge t. Then, when the third phase of theproto
ol is exe
uted the devi
e �nds r̂ = r� 2i in the register holding r. Consequently, the devi
e willoutput û = r̂+ x mod q. Suppose r̂ = r+2i. Bob 
an determine the value of i (the fault position) bytrying all possible values i = 0; : : : ; n� 1 until an i satisfyinggû = g2igrgx (mod p) (3)is found. Assuming a single bit 
ip, there is exa
tly one su
h i. The above identity proves to Bob thatr̂ = r + 2i showing that the i'th bit of r 
ipped from a 0 to a 1. Consequently, Bob now knows thatindeed that i'th bit of r must be 0. Similar logi
 
an be used to handle the 
ase where r̂ = r � 2i. Inthis 
ase Bob 
an dedu
e that the i'th bit of r is 1.More abstra
tly, Bob is given x + r(1); : : : ; x + r(k) mod q for random values r(1); : : : ; r(k) (re
allk = n log 4n). Furthermore, Bob knows the value of one bit in ea
h of r(1); : : : ; r(k). Obtaining thisinformation requires O(n2 logn) modular multipli
ations sin
e for ea
h of the k faults one must testall n possible values of i. Ea
h test requires a 
onstant number of modular multipli
ations.We 
laim that using this information Bob 
an re
over x in time O(n2). We assume the k faultso

ur at uniformly and independently 
hosen lo
ations in the register r. Note that this uniformityassumption may or may not be true depending on the 
ause for these faults. Our atta
k relies on therandomness of the faults. Assuming the faults o

ur at random bits of r the probability that at leastone fault o

urs in every bit position of the register r is at least 1� n �1� 1n�k � 1� n � e� log 4n = 34 .13



In other words, with probability at least 34 , for every 0 � i < n there exists an r(i) among r(1); : : : ; r(k)su
h that the i'th bit of r(i) is known to Bob (we regard the �rst bit as the LSB).To re
over x Bob �rst guesses the log 8n most signi�
ant bits of x. Later we show that Bob 
anverify whether his guess is 
orre
t. Bob tries all possible log 8n bit strings until the 
orre
t one isfound. Let X be the integer that mat
hes x on the most signi�
ant log 8n bits and is zero on allother bits. For now we assume that Bob 
orre
tly guessed the value of X. Bob re
overs the rest of xstarting with the LSB. Indu
tively suppose Bob already knows bits xi�1 : : : x1x0 of x (Initially i = 0).We show how Bob 
omputes the i'th bit of x. Let Y =Pi�1j=0 2jxj .Bob determines xi using r(i). He knows the i'th bit of r(i) and the value of x + r(i) mod q. Letb be the i'th bit of r(i). We view x;X; Y and r(i) as integers in the range [0; q). Then assuming0 � x+ r(i) � Y �X < q we have that:[x℄i = b � h(x+ r(i))� Y �X mod qii (4)where for any integer w we use [w℄i to denote the i'th bit in the binary representation of w. Equation(4) follows from two fa
ts. First observe that the 
ondition 0 � x+ r(i) � Y �X < q implies that themodulo q has no e�e
t. Se
ond, observe that [x � Y � X℄i = [x℄i and that [x � Y �X℄j = 0 for allj < i. Therefore, the i'th bit of (x � Y �X) + r(i) is [x℄i � [r(i)℄i whi
h is simply [x℄i � b. Equation(4) immediately follows. Therefore, assuming 0 � x+ r(i) �X � Y < q Bob 
an easily obtain xi, thei'th bit of x.By 
onstru
tion we know that 0 � x�X�Y < q=8n. Hen
e, the 
ondition 0 � x+r(i)�Y �X < qwill fail only if r(i) > (1 � 18n)q. Sin
e r(i) is uniformly 
hosen in the range [0; q) the probability thatthe 
ondition is not satis�ed is 18n . Sin
e the r's are independent of ea
h other, the probability thatthe 
ondition is satis�ed for all i = 1; : : : ; n is (1� 18n)n > 34 .To summarize, we see that for the algorithm to run 
orre
tly two events must simultaneously o

ur.First, all bits of r must be \
overed" by faults. Se
ond, all the r(i) must be less than (1� 18n )q. Sin
eea
h event o

urs with probability at least 34 , both events happen simultaneously with probability atleast 12 . Consequently, with probability at least 12 , on
e X is guessed 
orre
tly the algorithm requiresO(n) modular additions and outputs the 
orre
t value of x. Of 
ourse, on
e a 
andidate x is found it
an be easily veri�ed using the publi
 data, by testing that yt = gx mod p (re
all that x was de�nedas x = st). Computing gx mod p takes O(n) modular multipli
ations. There are O(n) possible valuesfor X and hen
e the running time of this step is O(n2) modular multipli
ations. Sin
e the �rst partof the algorithm takes O(n2 log n) modular multipli
ations it dominates in the overall running time.� We note that the atta
k also works when a register fault indu
es multiple bit 
ips in the registerr (i.e. r̂ = r+P
j=1 2ij ). When an error results in 
 bits being 
ipped the lo
ation of these errors 
anbe found in time O(n
). To do so one tries all possible error ve
tors until one satisfying Equation (3)is found. On
e all error ve
tors are found, the same algorithm as in the proof of Theorem 3.2 
an beused to re
over x.We also note that the faults we use o

ur while Ali
e's devi
e is waiting for a 
hallenge from theoutside world. Consequently, the adversary knows at exa
tly what time the faults should be indu
ed.
14



4 Defending against atta
ks based on hardware faultsOne 
an envision several methods for defending against the type of atta
k dis
ussed in the paper. Thesimplest method is for the devi
e to 
he
k the output of the 
omputation before releasing it. Thoughthis extra veri�
ation step may redu
e system performan
e, our atta
k suggests that it is 
ru
ial forse
urity reasons. In some systems verifying a 
omputation 
an be done eÆ
iently (e.g. verifying anRSA signature when the publi
 exponent is 3). In other systems veri�
ation appears to be 
ostly (e.g.DSS).Due to the extreme vulnerability of RSA{CRT 
he
king appears to be ne
essary whenever it isused. This is espe
ially true for Certi�
ation Authorities where a single transient fault 
ould leakthe private key. Shamir [21℄ presented a 
lever te
hnique for verifying signatures generated by theRSA{CRT method. When the publi
 exponent e is small (e.g. 3) standard veri�
ation (i.e. raisingthe signature to the power of e) is still the best way to go. However, for larger values of e Shamir'stri
k is a 
lear win. For 
ompleteness we des
ribe Shamir's approa
h. Re
all that in RSA{CRT onesigns a message M by 
omputing S1 =Md mod p and S2 =Md mod q. The results are then 
ombinedwith CRT to build S. Shamir suggests pi
king a small random number r (e.g. 32 bits) and 
omputingS1 = Md mod pr and S2 = Md mod qr. The overhead in performan
e is negligible. One then 
he
ksthat S1 mod r = S2 mod r. If the test fails, an error o

urred in one of the exponentiations. If the testsu

eeds the signature S is 
onstru
ted from S1 mod p and S2 mod q. Overall, the performan
e 
ostis negligible. The 
he
k done modulo r defends against a random error during the exponentiation.Other methods should be used to defend against errors in the CRT step.Our atta
k on authenti
ation proto
ols su
h as the Fiat-Shamir s
heme uses a register fault whi
ho

urs while the devi
e is waiting for a response from the outside world. One 
an not prote
t againstthis type of a fault by simply verifying the 
omputation. As far as the devi
e is 
on
erned, it 
omputedthe 
orre
t output given the input stored in its memory. Therefore, to prote
t multi-round authenti
a-tion s
hemes one must ensure that the internal state of the devi
e 
an not be a�e
ted. Consequently,our atta
k suggests that for se
urity reasons devi
es must prote
t internal memory by adding someerror dete
tion bits (e.g. CRC).Another way to prevent our atta
k on RSA signatures is to introdu
e randomness into the signaturepro
ess. See for instan
e the system suggested by Bellare and Rogaway [4℄. In su
h s
hemes RSA isapplied to F (M; r) where F is some formatting fun
tion and r is a random string. The randomnessensures that the signer never signs the same message twi
e. Furthermore, given an erroneous signaturethe veri�er does not know the full plain-text F (M; r) that was signed (r is not a part of the messageM). Consequently, the atta
k of Se
tion 2.2 
annot be applied to su
h a system.5 Summary and open problemsWe des
ribed a general atta
k whi
h makes use of hardware faults. The atta
k applies to several
ryptosystems. We showed that en
ryption s
hemes using Chinese remainder, e.g. RSA and Rabinsignatures, are espe
ially vulnerable to this kind of atta
k. Other implementations of RSA are alsovulnerable though many more faults are ne
essary. The idea of using hardware faults to atta
k
ryptographi
 proto
ols applies to authenti
ation s
hemes as well. For instan
e, we explained how theFiat-Shamir and S
hnorr identi�
ation proto
ols may be atta
ked using hardware faults.Verifying the 
omputation and prote
ting internal storage using error dete
tion bits defeats atta
ksbased on hardware faults. We hope that this paper demonstrates that these measures are ne
essary forse
urity reasons. Methods of program 
he
king [6℄ may 
ome in useful when verifying 
omputations15



in 
ryptographi
 proto
ols. A result of Frankel, Gemmel and Yung [10℄ 
ould prove useful in this
ontext.An obvious open problem is whether the atta
ks des
ribed in this paper 
an be improved. That is,
an one mount a su

essful atta
k using fewer faults? For instan
e, 
an a general implementation ofRSA be atta
ked using signi�
antly fewer faults than n, say pn? (here n is the size of the modulus).Su
h a result would signi�
antly improve our Theorem 2.1. Another interesting question is whetheran implementation of the Bellare-Rogaway signature s
heme [4℄ based on RSA{CRT 
an be atta
kedusing a single erroneous signature.A
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