
On the Importane of Eliminating Errors in CryptographiComputations�Dan Boneh Rihard A. DeMillo Rihard J. Liptondabo�s.stanford.edu rad�bellore.om rjl�s.prineton.eduAbstratWe present a model for attaking various ryptographi shemes by taking advantage of randomhardware faults. The model onsists of a blak-box ontaining some ryptographi seret. The boxinterats with the outside world by following a ryptographi protool. The model supposes thatfrom time to time the box is a�eted by a random hardware fault ausing it to output inorretvalues. For example, the hardware fault ips an internal register bit at some point during theomputation. We show that for many digital signature and identi�ation shemes these inorretoutputs ompletely expose the serets stored in the box. We present the following results: (1) Theseret signing key used in an implementation of RSA based on the Chinese Remainder Theorem(CRT) is ompletely exposed from a single erroneous RSA signature, (2) for non-CRT implemen-tations of RSA the seret key is exposed given a large number (e.g. 1000) of erroneous signatures,(3) the seret key used in Fiat-Shamir identi�ation is exposed after a small number (e.g. 10) offaulty exeutions of the protool, and (4) the seret key used in Shnorr's identi�ation protoolis exposed after a muh larger number (e.g. 10000) of faulty exeutions. Our estimates for thenumber of neessary faults are based on standard seurity parameters suh as a 1024 bit modulus,and a 2�40 identi�ation error probability. Our results demonstrate the importane of preventingerrors in ryptographi omputations. We onlude the paper with various methods for preventingthese attaks.Keywords: Hardware faults, Cryptanalysis, RSA, CRT, Fiat-Shamir identi�ation, Shnorr identi�-ation, Publi key systems, Identi�ation protools.1 IntrodutionDiret attaks on the famous RSA ryptosystem seem to require that one fator the modulus. There-fore, it is interesting to ask whether there are attaks that avoid this. The answer is yes: the �rst wasan attak due to Koher [13℄ based on timing. Koher observed that the seret key an be obtainedby preisely measuring the time that operations took. This allows one to attak the system withoutdiretly fatoring the modulus. More powerful attaks, due to Koher et al. [14℄, show how to obtainthe seret key by measuring a devie's power onsumption during deryption.We present another type of attak that also avoids diretly fatoring the modulus. We essentiallyuse the fat that from time to time the hardware or software performing the omputations may intro-due errors. We show that erroneous ryptographi values (e.g. erroneous RSA signatures) jeopardizeseurity by enabling an attaker to expose seret information. We desribe some environments where�This is an expanded version of an earlier paper that appeared in Eurorypt '97 [7℄.1



the attak may apply. Within these environments it is appropriate to implement defenses against theattak as disussed in Setion 4.Certi�ate Authority. A erti�ate authority (CA) issues erti�ates to various entities. Duringerti�ate generation, the CA uses its private key to sign the data ontained in the erti�ate [17℄.The CA's private key is highly guarded sine anyone possessing the private key an issue fakeerti�ates. Suppose that during erti�ate generation a rare omputer error on the CA's ma-hine (hardware or software) results in a erti�ate ontaining an erroneous CA signature. Weshow that suh invalid erti�ates an ompletely expose the CA's private key. At the extreme,a single erroneous erti�ate is suÆient to reover the CA's private key. Note that typially theuser is alerted whenever an invalid erti�ate is reeived, at whih point the user ould try toexploit this erti�ate.Web server. A web server uses a seret key to authentiate itself to a web browser and to establisha seure session with the browser. Suppose that during key exhange, a rare omputer error onthe web server auses it to misalulate. The resulting value sent to the browser an ompletelyexpose the server's private key.Smartard. Smartards are typially used to authentiate their owners and sign ertain ontrats onbehalf of their owners. As before, a glith in the smartard's proessor may ause it to send anerroneous value to the outside world. These values expose the seret keys stored on the ard.Obfusated keys. Several software produts ontain an embedded seret key. The seret key is\hidden" in the software so that it is supposedly hard to extrat from the exeutable. Forexample, several software audio players running on desktop omputers ontain a seret key usedto defend against musi piray. The embedded key is used to derypt enrypted musi sent tothe user. To extrat the embedded key, an attaker may add a single maliious instrution to thederyption ode, thus ausing the deryption proess to malfuntion. The invalid deryptionsprodued expose the seret key embedded in the player.One may wonder whether hardware or software errors are a onern. After all, most of the hardwareand software used in every day life appears to be reliable. Nevertheless, several senarios may enablean adversary to ollet and possibly ause faults. We group these into three ategories.Latent faults. Latent errors are hardware or software bugs that are diÆult to ath. As an example,onsider Intel's oating point division bug [11℄. A rypto library using a faulty oating pointunit to speed up multi-preision arithmeti may, on rare oasions, generate inorret values.Similarly, latent software bugs in the multi-preision pakage are also likely to produe inorretvalues.Transient faults. Transient faults are random hardware glithes that ause the proessor to mis-alulate. These may be aused by power glithes, high temperature, stati eletriity, et. Atransient error that takes plae during signature generation will result in an invalid signature.Indued faults. When an adversary has physial aess to a devie she may try to purposely induehardware faults. For instane, one may attempt to attak a tamper-resistant devie by deliber-ately ausing it to malfuntion. See the disussion by Anderson and Kuhn [1℄ for examples oftampering with tamper resistant devies. Fortunately, most smartards have built in sensors todetet various forms of tampering. It is likely that the ost of induing useful faults is higherthan the potential gains. 2



1.1 The attak modelThroughout the paper our model onsists of a blak box interating with the outside world aordingto a prede�ned protool. The blak box ontains seret keys that are inaessible to the outside world.For example, a CA may be viewed as a blak box that issues erti�ates on demand. The CA's privatekey is stored inside the box. The adversary's goal is to interat with the blak box and extrat theseret keys stored in it using only the values output by the box. The assumption is that, on rareoasions, errors within the box mahinery (either hardware or software) ause it to output inorretvalues. The attaks desribed in the paper show how these values enable an adversary to dedue theseret keys stored inside the box.The attak desribed in Setion 2.2 is the most powerful and is apable of dealing with arbitraryerrors. Other attaks in the paper assume more \hardware-like" errors. We refer to these morespeialized errors as register faults. The idea is as follows: suppose that at some point during aomputation (suh as signature generation) a temporary value stored in a register is orrupted. Morepreisely, one bit in the register ips between the time the value is loaded onto the register and thetime it is read out of the register. Typially, the bit ip results from a premature power drain on oneof the register ells. Hene, a ip from a `1' to a `0' is more likely than the reverse, but we do notmake use of this fat. We will show that the seret keys used in several ryptographi shemes areompletely exposed in the presene of register faults.1.2 Summary of resultsOur attak is e�etive against several ryptographi shemes suh as the RSA system and Rabinsignatures [19℄ as well as several identi�ation protools. As expeted, the e�etiveness of the attakdepends on the exat implementation of eah of these shemes. We briey review the results:� For publi key systems we present the following results:RSA+CRT. For an implementation of RSA based on the Chinese Remainder Theorem (CRT)we show that given one erroneous RSA signature one an eÆiently fator the RSA mod-ulus with high probability. The same approah an also be used to attak Rabin's signa-ture sheme. Our attak shows that one invalid signature along with a valid signature onthe same message are suÆient for fatoring the modulus. A later improvement due toLenstra [15℄ shows that an invalid signature along with the original message to be signedare suÆient.RSA. Register faults an be used to attak other implementations of the RSA system thoughmany more erroneous signatures are required. When an n bit RSA modulus is used thenumber of required faults is O(n).� For identi�ation shemes we show the following:Fiat-Shamir. A few erroneous exeutions of the Fiat-Shamir identi�ation protool [8℄ enablean adversary to reover the private key of the party trying to authentiate itself. Whena single exeution of the protool has seurity 2�t we require O(t) erroneous exeutions.Furthermore, in ase the prover is a smartard the adversary mounts the attak by induinga register fault while the ard is waiting for a hallenge. Thus, preise timing of the induedregister fault is not neessary. 3



Shnorr. Similar results hold for Shnorr's identi�ation protool [20℄ though a larger number oferroneous exeutions is neessary. When an n bit modulus is used the number of exeutionsis O(n logn). Both attaks use faults that orrupt the prover while it is waiting for ahallenge from the veri�er.Sine the initial publiation of our results several authors devised faults based attaks on otherryptographi systems. Biham and Shamir [5℄ presented elegant and novel attaks on DES. Someof their tehniques an be used to reover the seret key of a totally unknown ipher. Anderson andKuhn [2℄ used a di�erent fault model to obtain attaks against symmetri iphers. Bao et al. [3℄ devisedfault attaks against DSS and several other signature shemes. Joye and Quisquater [12℄ noted thatthe CRT attaks (desribed in the next setion) an also be mounted against several ellipti urvesystems. Finally, Zheng and Matsumoto [22℄ showed how faults in the random number generator anbe used to attak systems.It is important to emphasize that the attaks desribed in this paper are urrently theoretial.We are not aware of any published results physially experimenting with this type of attak. Thepurpose of these results is to demonstrate the danger that hardware or software bugs pose to variousryptographi systems. In onjuntion with Koher's work our results show that a pure mathematialanalysis of a ryptographi algorithm is insuÆient. One must also analyze the atual implementationto ensure it does not leak timing or power information and never outputs faulty values.There are many ways to prevent attaks based on hardware faults. The simplest solution is toensure the blak-box veri�es the values it omputes before sending them out to the outside world. Inprotools where the blak-box has to keep some state (suh as in identi�ation protools) our resultsshow the importane of proteting the registers storing the state information using error detetion bits(e.g. CRC). Preventing errors is ruial in many areas unrelated to ryptography. For instane, spe-ial preautions are taken to ensure error-free omputations in ore memories of large omputers [16℄,in omputers onboard satellites rossing the Van Allen belt, and many other embedded ontrol sys-tems. Sientists working in these areas may not be aware that their tehniques are also ritial forseuring ryptographi implementations. We disuss methods for preventing errors in ryptographiomputations in Setion 4.We note that FIPS [9℄ publiation 140-1 suggests that hardware faults may ompromise the seurityof a module. Our results expliitly demonstrate the extent of damage aused by suh faults. We givealgorithms that show how ertain faults an expose sensitive seurity information. FIPS 140-1 alsospei�es a list of self tests a module should apply to itself. Our results suggest that these tests maybe insuÆient and full veri�ation of omputed values is neessary.2 RSA's vulnerability to hardware faultsWe are now ready to desribe the various attaks. We begin by desribing RSA's vulnerability tohardware faults.2.1 The RSA systemLet N = pq be a produt of two large primes eah n=2 bits long. To sign a message x 2 ZN using RSAone omputes S = xd mod N where d is a seret signing exponent1. The omputationally expensive1Note that for simpliity we assume the message x is an integer in the range 1 to N . Usually one �rst hashes themessage and then pads the result to an integer in that range [18℄.4



part of signing using RSA is the modular exponentiation of x. For eÆieny most implementationsexponentiate as follows: using repeated squaring they �rst ompute S1 = xd mod p and S2 = xd mod q.They then use the Chinese remainder theorem (CRT) to onstrut the signature S = xd mod N . Thislast CRT step takes negligible time ompared to the two exponentiations. It is done by omputingS = aS1 + bS2 mod N for some prede�ned onstants a; b 2 ZN.Exponentiation using CRT is muh faster than repeated squaring modulo N . To see this observethat S1 = xd mod p = xd mod p�1 mod p. Usually d is of order N while d mod p � 1 is of orderp. Consequently, omputing S1 requires half as many multipliations as omputing S diretly. Inaddition, intermediate values during the omputation of S1 are only half as big | they are in therange [1; p℄ rather than [1; N ℄. When quadrati time multipliation is used, multiplying two numbersin Zp takes 1=4 the time as multiplying elements in ZN. Hene, omputing S1 takes 1=8 the time ofomputing S diretly. Computing both S1 and S2 takes 1=4 the time of omputing S diretly. Thus,CRT exponentiation is four times faster than diret exponentiation. This is why RSA with CRT isthe preferred method for generating RSA signatures [17, p. 613℄.2.2 An attak on \RSA{CRT"We show that RSA with CRT is espeially suseptible to software or hardware errors. The attakenables us to fator the modulus N . The attak is based on obtaining two signatures of the samemessage. One signature is the orret one; the other is a faulty signature.Let x 2 ZN be a message and let S = xd mod N be a valid RSA signature of x. Let Ŝ be afaulty signature. Reall that S is omputed by �rst omputing S1 and S2. Similarly, Ŝ is omputedby �rst omputing Ŝ1 and Ŝ2. Suppose that during the omputation of Ŝ an error ours during theomputation of only one of Ŝ1; Ŝ2. Without loss of generality, suppose a hardware fault ours duringthe omputation of Ŝ1 (i.e. S1 6= Ŝ1 mod p) but no fault ours during the omputation of Ŝ2 (i.e.Ŝ2 = S2). Then S = Ŝ mod q, but S 6= Ŝ mod p. Therefore,gd(S � Ŝ; N) = qand so N an be easily fatored. That's it.We see that using one faulty signature and one orret signature the modulus N an be eÆientlyfatored. The above attak works under a very general fault model. It makes no di�erene what typeof error or how many errors our in the omputation of S1. All we rely on is the fat that faults ourin the omputation modulo only one of the primes. To obtain both a orret signature and a faultysignature of the same message an attaker an query the blak-box on the same message multipletimes. Sine standard signature formats (e.g. pks1) do not involve any randomness, the same x willbe fed through the signing engine every time.Based on our results Arjen Lenstra [15℄ observed that one faulty signature of a known message x issuÆient. There is no need to obtain a valid signature as well. For ompleteness we desribe Lenstra'simprovement here. Let S = xd mod N . Let Ŝ be a faulty signature obtained under the same modelas above, that is S = Ŝ mod q but S 6= Ŝ mod p. Then x = Ŝe mod q but x 6= Ŝe mod p, where e isthe publi exponent used to verify the signature, i.e., Se = x mod N . It now follows thatgd(x� Ŝe; N) = qLenstra's improvement shows that as long as the entire signed message x is known, a single interationwith the blak-box resulting in an invalid signature Ŝ is suÆient for fatoring the modulus.5



2.2.1 Attaks on other systems using the CRTThe attak on Chinese remainder theorem implementations applies to other ryptosystems as well.For instane, the same attak applies to Rabin's signature sheme [19℄. A Rabin signature of a numberx mod N is the modular square root of x. When the extration of square roots modulo a ompositemakes use of the CRT the same attak as above applies. Other attaks on systems using the CRT aredesribed in [12℄.2.3 An attak on RSA without CRTIn the previous setion we observed that RSA{CRT is suseptible to hardware or software errors.In this setion we show that using register faults it is possible to attak other implementations ofRSA as well. The attak is not as pratial as attaks on RSA{CRT. Nevertheless, it illustrates thevulnerability of non CRT implementations.Let N be an n-bit RSA omposite and d a seret exponent. The exponentiation funtion x �!xd mod N an be omputed using the following algorithm (we let d = dn�1dn�2 : : : d1d0 be the binaryrepresentation of d):Algorithm 1:init y  x ; z  1.main For k = 0; : : : ; n� 1.If dk = 1 then z  z � y (mod N).y  y2 (mod N).Output z.When the above algorithm is used, several faulty signatures are suÆient to reover the seret key d.Here faulty signatures refer to signatures obtained in the presene of register faults (see Setion 1.1).The attak uses erroneous signatures of random messages in ZN (as opposed to hosen messages).Furthermore, the attaker need not obtain the orret signature of any of the messages nor does heneed to obtain multiple signatures of the same message.The attak proeeds as follows: the attaker asks the blak-box to sign messages M1;M2; : : : ;Ml.The attaker ollets the responses until she has suÆiently many erroneous signatures Ŝi. The pairshMi; Ŝii are then used to dedue the seret signing key d. We assume that for eah pair hMi; Ŝii asingle register fault ours during the omputation of Ŝi. The fault ours at a random iteration duringthe exponentiation algorithm and ips one bit of the value stored in the variable z. The followingresult was the starting point of our researh on fault based ryptanalysis.Theorem 2.1 Let N be an n-bit RSA modulus. For any 1 � m � n, given (n=m)log2n pairshMi; Ŝii, the seret exponent d an be extrated from a blak-box implementing the above exponentiationalgorithm with probability at least 12 . The probability is over the loation of the register faults and therandom messages Mi 2 ZN. The algorithm's running time is dominated by the time it takes to performO((2mn3 log2 n)=m2) full modular exponentiations mod N .Remark: Taking m = log 2n shows that the seret d an be reovered using n faults and ~O(n4)modular exponentiations. With m = 1 the seret d an be found using n log n faults and ~O(n3)exponentiations. 6



Proof Let M 2 ZN be a message to be signed. Suppose that at a single random point duringthe exponentiation algorithm on input M one of the bits of the register z is ipped. We denote theresulting erroneous signature by Ŝ. We show that an ensemble of suh erroneous signatures enablesone to reover the seret exponent d.Let l = (n=m)log2n and let M1; : : : ;Ml 2 ZN be a set of random messages. Let Si = Mdi mod Nbe the orret signature on Mi. Let Ŝi be an erroneous signature of Mi. We are given Ŝi but donot know Si. By assumption, a register fault ours at exatly one point during the omputation ofŜi. For eah faulty signature, Ŝi, let ki denote the value of k at the time at whih the fault ourred(reall k is the ounter used in the exponentiation algorithm). We may sort the messages so that0 � k1 � k2 � : : : � kl < n. The time at whih the faults our is hosen uniformly (among the niterations) and independently at random. It follows that given l suh faults, with probability at leasthalf, ki+1 � ki < m for all i = 1; : : : ; l � 1. To see this observe that the probability that no faultours in a spei� interval of width m is �1� mn �l < 12n . Sine there are at most n suh intervals theprobability that all of them ontain a fault is at least 1� n � 12n = 12 . Note that sine we do not knowwhere the faults our, the values ki are unknown to us.Let d = dn�1 : : : d1d0 be the bits of the seret exponent d. We reover a blok of these bits ata time starting with the MSBs. Suppose we already know bits dn�1dn�2 : : : dki for some i. Initiallyi = l + 1 indiating that no bits are known. We show how to expose the bits of d in positionski � 1; ki � 2; : : : ; ki�1. To simplify the notation let a = ki and  = ki�1. To expose the blok of bitsda�1da�2 : : : d+1d 2 f0; 1ga� we intend to try all possible bit vetors until the orret one is found.Sine even the length of the blok, namely a� , is unknown we try all possible lengths. The attakalgorithm works as follows:1. For all lengths r = 1; 2; 3 : : : ;m do:2. For all andidate r-bit vetors u = ua�1ua�2 : : : ua�r do:3. Set w =Pn�1j=a dj2j +Pa�1j=a�r uj2j . In other words, w mathes the bits of d and the bits of u atall bit positions that are already exposed and is zero everywhere else.4. Test if the urrent andidate bit vetor u is orret by heking if one of the erroneous signaturesŜj for j = 1; : : : ; l satis�es9b 2 f0; : : : ; ng s.t. �Ŝj � 2bMwj �e =Mj (mod N)Reall that e is the publi signature veri�ation exponent. The � means that the ondition issatis�ed if it holds with either a plus or minus.5. If a signature satisfying the above ondition is found, output ua�1ua�2 : : : ua�r and stop. At thispoint we know that ki�1 =  = a� r and da�1da�2 : : : da�r = ua�1ua�2 : : : ua�r. Hene, r morebits of d are exposed.We show that the ondition at step (4) is satis�ed by the orret andidate ua�1ua�2 : : : u. Tosee this reall that Ŝi�1 is obtained from a fault at the  = ki�1'st iteration. That is, at the ki�1'stiteration the value of z was hanged to ẑ  z� 2b for some b (orresponding to a register fault on thebit in position b). A simple property of Algorithm 1 is that just before the fault took e�et we hadz = Mdd�1:::d0i�1 mod N . By de�nition of w it follows that Si�1 = z �Mwi�1 mod N . Sine no faultsourred in the remaining iterations, replaing z by ẑ produes an erroneous signature Ŝi�1 satisfying:Ŝi�1 = ẑ �Mwi�1 = (z � 2b)Mwi�1 = Si�1 � 2bMwi�1 (mod N)7



When in step (4) the erroneous signature Ŝi�1 is orreted (by adding 2bMwi�1) it properly veri�eswhen raised to the publi exponent e. Consequently, when the orret andidate u is tested, the faultysignature Ŝi�1 guarantees that it is aepted.To bound the running time of the algorithm we bound the number of times the ondition of step(4) is exeuted. Eah invoation of Step (4) requires n � l modular exponentiations. Working throughthe loops in steps (1) and (2) we see that the total number of modular exponentiations is at mostn � l � 24n�klXr=1 2r + kl�kl�1Xr=1 2r + : : :+ k2�k1Xr=1 2r + k1Xr=1 2r35 � nl "l � mXr=1 2r# � 2nl22mThe �rst inequality follows from the fat that ki � ki�1 < m for all i. Plugging in the value for l wesee that the total run time is dominated by the time it takes to perform O((2mn3 log2 n)=m2) modularexponentiations.We still need to show that a wrong andidate u0 will not pass the test of step (4). This is donein the following lemma. The lemma shows that, when the enryption/deryption exponents he; di arehosen at random, and the messages M1; : : : ;Ml 2 ZN are random, a wrong andidate u0 will pass thetest with negligible probability.Lemma 2.2 Let  > 0 be a �xed onstant. For all n-bit RSA moduli N = pq at least one of thefollowing laims hold:1. The probability that a wrong andidate u0 passes the test of Step (4) is less than 1=n. Theprobability is over the random hoie of messages Mi 2 ZN given to the attak algorithm and therandom hoie of the deryption exponent d.2. There is a uniform polynomial time (in n and 2m) algorithm for fatoring N .Proof We show an algorithm that fators all RSA moduli N for whih part (1) is false. Thealgorithm works as follows: it piks a random exponent d and random messages M1; : : : ;Ml 2 ZN. Itthen omputes erroneous signatures Ŝi of the Mi by using the exponentiation algorithm (Algorithm1) to ompute Mdi mod N and deliberately simulating a random register fault at a random iteration.Let hMi; Ŝiili=1 be the resulting set of faulty signatures. We show there is a polynomial time (in n and2m) algorithm that given this data sueeds in fatoring N with probability at least 1=n.Suppose the attak algorithm were given hMi; Ŝiili=1 as input. By assumption, with probability atleast 1=n, at some point during the algorithm a signature Ŝv will inorretly ause the wrong andidateu0 to be aepted in Step (4). That is, Ŝv � 2bMwv = Sv mod N even though Ŝv was generated by adi�erent fault (here w is de�ned as in step (3) using the bits of u0). We know that Ŝv = Sv � 2b1Mw1vfor some b1; w1 with w1 6= w. The pair b1; w1 orrespond to the atual loation of the fault during theomputation of Ŝv. Then, Sv � 2b1Mw1v = Sv � 2bMwv (mod N)Rearranging terms we get Mw�w1v = �2b1�b (mod N). In other words, Mv must be a root of apolynomial of the form xw�w1 = a (mod N) (1)for some onstant a. Reall that the message Mv is hosen independently of the fault loation, i.e.independently of w;w1 and a. It follows that a random x 2 ZN must satisfy xw�w1 = a mod N withnon-negligible probability. We show that onsequently gd(w�w1; '(N)) is very large enabling us to8



fator N . First, we bound the number of roots of xw�w1 = a mod N . De�ne Ap = gd(w �w1; p� 1)and Aq = gd(w � w1; q � 1). The number of roots of the polynomial xw�w1 = a mod N is exatly� = Ap � Aq. Hene, the probability that Ŝv auses the wrong u0 to be aepted is �=N . Note thatgd(w � w1; '(N)) = �.To bound the probability that a wrong andidate u0 is aepted throughout the algorithm we ountthe number of pairs w;w1. The value of w1 is essentially the pre�x of d from the MSBit to the faultloation. Sine we have l faulty signatures there are l possible values for w1. The values of w are theones tested in Step (4). There are at most l � 2m possible values. Hene, there are l22m possible valuesfor w � w1. Let �� be the maximum value of � over all pairs w;w1. The probability that a wrongandidate is ever aepted is at most l22m � ��N .By assumption, part (1) is false. Hene, with probability at least 1=n (over the hoie of d) wehave that l22m � ��N > 1=n. Let A be the event that l22m � ��N > 1=n. When A ours there existsa pair w;w1 suh that gd(w � w1; '(N)) = � > N=(l22mn). The fatoring algorithm fators N bytrying all pairs w;w1 until the orret one is found. For eah pair it omputes gd(N; gt(w�w1)=2 � 1)for a random g 2 ZN and all t 2 [1; : : : ; l22mn℄. One t(w � w1) is a multiple of '(N) the algorithmwill fator N with probability 12 . Hene, when the event A ours the algorithm fators N in polyno-mial time with probability 12 . Sine Pr[A℄ > 1=n repeating this proess n times will fator N withonstant probability. �Remark 1: If one allows the attaker to obtain both the erroneous and orret signature of eahmessage Mi then the running time of the attak algorithm an be improved. The test at step (4) anbe simpli�ed to 9b 2 f0; : : : ; ng s.t. Ŝj � 2bMwj = Sj (mod N)thus saving the need for an RSA enryption on every invoation of the test.Remark 2: The messages Mi used by the attak algorithm were assumed to be random elements ofZN. This was neessary for the proof of Lemma 2.2. However, it should be lear that heuristiallyalmost any set of messages fMigwill make the attak algorithm sueed in exposing the private keyd. In partiular, one an use elements of ZN that are formated aording to the pks1 standard [18℄.Similarly, the deryption exponent d was assumed to be random. Again, the attak is ertain to workfor any valid d. In partiular, it will work for a d that orrespond to a low publi exponent e, e.g.e = 65537.3 Attaks on identi�ation protoolsWe now turn our attention to attaks on identi�ation protools. Throughout we desribe a senarioin whih a prover Alie is authentiating herself to a veri�er Bob. At setup time Alie publishessome publi information (publi areditation information) and keeps ertain values seret (seretareditation information). Whenever she wishes to authentiate herself to Bob she proves knowledgeof the seret information. She does so by engaging Bob in a zero-knowledge proof of knowledge [8℄. Weshow that for several lassi identi�ation protools, the presene of register faults on Alie's mahineenables Bob to ompletely extrat Alie's seret areditation information.
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3.1 The Fiat-Shamir identi�ation shemeWe begin by disussion the Fiat-Shamir [8℄ identi�ation sheme. Alie and Bob �rst agree on ann-bit modulus N whih is a produt of two large primes, and a seurity parameter t. A typialvalue for t is t = 10. At setup time Alie hooses her seret areditation information as a set ofrandom invertible elements s1; : : : ; st mod N . Her publi areditation information is the square ofthese numbers v1 = s21; : : : ; vt = s2t mod N . To authentiate herself to Bob they engage in the followingprotool:1. Commitment: Alie piks a random r 2 Z�N and sends z = r2 mod N to Bob.2. Challenge: Bob piks a random subset S � f1; : : : ; tg and sends the subset to Alie.3. Response: Alie omputes y = r �Qi2S si mod N and sends y to Bob.4. Verify: Bob veri�es Alie's response by heking that y2 = z �Qi2S vi (mod N). The protoolompletes suessfully if the response veri�es, and fails otherwise.The probability that an imposter who does not know the seret information sueeds in foolingBob is 2�t. Typially, the protool is repeated a small number of times (e.g. four times) to redue theprobability of error. Using t = 10 and iterating the protool four times results in an error probabilityof 2�40.For the purpose of authentiation one may implement Alie's role in a tamper resistant devie.The devie ontains the seret information and is used by Alie to authentiate herself to variousparties. We show that using register faults one an extrat the seret hs1; : : : ; sti from the devie. Weuse register faults that our while the devie is waiting for a hallenge from the outside world.Theorem 3.1 Let N be an n-bit modulus and t the predetermined seurity parameter of the Fiat-Shamir protool. Given t erroneous exeutions of the protool one an reover the seret hs1; : : : ; sti.The algorithm's running time is dominated by the time it takes to perform O(nt + t2 log t) modularmultipliations. The faults are olleted over t separate runs of the protool, eah fault being a 1-bitregister fault in the variable r.Proof Suppose that due to a register fault, one of the bits of the register holding the value r isipped while the devie is waiting for Bob to send it the hallenge set S. In this ase, Bob reeivesthe orret value r2 mod N , however y is omputed inorretly by the devie. Due to the fault, thedevie outputs: ŷ = (r +E) �Yi2S si (mod N)where E is the value added to the register as a result of the fault. Sine the fault is a single bit ipwe know that E = �2b for some b = 0; : : : ; n� 1. Observe that Bob knows the value Qi2S vi and hean therefore ompute (r +E)2 using:(r +E)2 = ŷ2Qi2S vi (mod N)Sine there are only n possible values for E, Bob an try all of them until the orret one is found.Using the orret value of E Bob an reover r sine he has both (r+E)2 mod N and z = r2 mod N .Indeed, r = (r +E)2 � r2 �E22E = ŷ2Qi2S vi � z �E22E (mod N)10



Bob's ability to disover the seret random value r is the main observation that enables him to attakthe system. Using the value of r and E Bob an ompute:Yi2S si = ŷr +E = 2E � ŷŷ2Qi2S vi � z +E2 (mod N) (2)We now show that Bob an verify that a andidate value E is orret. Let T be the hypothesizedvalue of Qi2S si obtained from the above formula. To test if T is orret Bob an verify that therelation T 2 = Qi2S vi mod N holds. Usually only one of the possible values for E will satisfy therelation. In suh a ase Bob orretly obtains the value of Qi2S si.Even in the unlikely event that two values E;E0 satisfy the relation, Bob an still attak the system.Suppose two andidate values E;E0 generate two values T; T 0; T 6= T 0 satisfying the relation. ClearlyT 2 = (T 0)2 mod N . If T 6= �T 0 mod N then Bob an already fator N by omputing gd(N;T � T 0).Suppose T = �T 0 mod N . Then sine one of T or T 0 must equal Qi2S si (one of E;E0 is the orretfault value) it follows that Bob now knows Qi2S si mod N up to sign. For our purposes this is goodenough.The testing method above enables Bob to hek whether a ertain value of E is the orret one. Bytesting all n possible values of E until the orret one is found Bob an determineQi2S si. ComputingQi2S vi in Equation (2) takes O(t) modular multipliations. Evaluating Equation (2) for all n possiblevalues of E takes time O(n+t) modular multipliations (and inversions). This is the time to determineQi2S si for a single set S. For t sets we need O(nt+ t2) modular multipliations.So far we showed that Bob is able to obtain Qi2S si for arbitrary sets S of his hoie. We brieyshow that this enables him to quikly reover hs1; : : : ; sti. The simplest approah is for Bob to obtainQi2S si for singleton sets, i.e. sets S ontaining a single element. If S = fkg then Qi2S si = sk andhene the si's are immediately found. However, it is possible that Alie may refuse to aept singletonsets S. In this ase Bob an still �nd the si's as follows. We represent a set S � f1; : : : ; tg by itsharateristi vetor U 2 f0; 1gt, i.e. Ui = 1 if i 2 S and Ui = 0 otherwise. Bob piks sets S1; : : : ; Stsuh that the orresponding set of harateristi vetors U1; : : : ; Ut form a t� t full rank matrix overZ2. Bob then uses the method desribed above to onstrut the values Ti = Qi2Si si for eah of thesets S1; : : : ; St. To determine s1 Bob onstruts elements a1; : : : ; at 2 f0; 1g suh thata1U1 + : : :+ atUt = (1; 0; 0; : : : ; 0) (mod 2)These elements an be eÆiently onstruted sine the vetors U1; : : : ; Ut are linearly independent overZ2. When all omputations are done over the integers we obtain thata1U1 + : : :+ atUt = (2b1 + 1; 2b2; 2b3; : : : ; 2bt)for some known integers b1; : : : ; bt in the range [1; t℄. Bob an now ompute s1 using the formulas1 = T a11 � � � T attvb11 � � � vbtt (mod N)Reall that the values vi = s2i (mod N) are publily available. The values s2; : : : ; st an be on-struted using the same proedure. This phase of the algorithm requires O(t2 log t) modular multipli-ations.To summarize, the entire algorithm above makes use of t faults. The running time is dominatedby the time it takes to ompute O(nt+ t2 log t) modular multipliations. �11



We emphasize that the faults our while Alie's devie is waiting for a hallenge from the outsideworld. Consequently, there is no need to arefully time the indued fault. The adversary knows toindue a fault on Alie's devie while it is waiting for a hallenge from the outside world.We desribed the algorithm above for the ase where a register fault auses a single bit ip. Moregenerally, the algorithm an be made to handle a small number of bit ips per register fault. However,�nding the orret fault value E beomes harder. When a single register fault auses  bits in theregister to ip then the algorithm's running time beomes O(nt + t2 log t) modular multipliations.Essentially, one has to plug in all possible values for E into Equation (2). The number of andidateE's is O(n). The rest of the algorithm remains unhanged.3.2 A modi�ation of the Fiat-Shamir shemeOne may suspet that our attak on the Fiat-Shamir sheme is suessful due to the fat that thesheme is based on squaring. Reall that Bob was able to ompute the random value r hosen bythe devie sine he was given r2 and (r + E)2 where E is the fault value. One may try to modifythe sheme and use higher powers. We show that our tehniques an be used to attak this modi�edsheme as well.The modi�ed sheme uses some publily known exponent e instead of squaring. As before, Alie'sseret key is a set of invertible elements s1; : : : ; st mod N . Her publi key is a set of numbers v1 =se1; : : : ; vt = set mod N . To authentiate herself to Bob they engage in the following protool:1. Commitment: Alie piks a random r and sends z = re mod N to Bob.2. Challenge: Bob piks a random subset S � f1; : : : ; tg and sends the subset to Alie.3. Response: Alie omputes y = r �Qi2S si mod N and sends y to Bob.4. Verify: Bob veri�es Alie's response by heking that ye = re �Qi2S vi (mod N) .When e = 2 this protool redues to the original Fiat-Shamir protool. Using the methods desribedin the previous setion Bob an obtain the values L1 = re mod N and L2 = (r + E)e mod N . Asbefore we may assume that Bob guessed the value of E orretly. Given these two values Bob anreover r by observing that r is a ommon root of the two polynomialsxe = L1 (mod N) and (x+E)e = L2 (mod N)Furthermore, r is very likely to be the only ommon root of the two polynomials. Consequently, whenthe exponent e is polynomial in n Bob an reover r by omputing the GCD of the two polynomials.One Bob has a method for omputing r he an reover the serets s1; : : : ; st as disussed in theprevious setion.3.3 Shnorr's identi�ation shemeThe seurity of Shnorr's identi�ation sheme [20℄ is based on the hardness of omputing disrete logmodulo a prime. Alie and Bob �rst agree on a prime p and an element g 2 Z�p of order q (learly qdivides p�1). For eÆieny reason one typially hooses q to be muh smaller than p. For instane, pmay be 1024 bits long and q only 160 bits long. Alie then hooses her seret areditation informationby hoosing a random element s 2 Zq. Her publi areditation information is y = gs mod p. Toauthentiate herself to Bob, Alie engages in the following protool:12



1. Commitment: Alie piks a random integer r 2 Zq and sends z = gr mod p to Bob.2. Challenge: Bob piks a random integer t 2 [0; T ℄ and sends t to Alie. Here T < q is some upperbound hosen ahead of time.3. Response: Alie sends u = r + t � s mod q to Bob.4. Verify: Bob veri�es that gu = z � yt mod p. The protool ompletes suessfully if the responseveri�es, and fails otherwise.For the purpose of authentiation one may implement Alie's role in a tamper resistant devie. Thedevie ontains the seret information and is used by Alie to authentiate herself to various parties.We show that using register faults one an extrat the seret s from the devie. We use register faultsthat our while the devie is waiting for a hallenge from the outside world. Throughout the setionlog x denotes logarithm of x to the base e where e is the base of the natural logarithm, e � 2:718.Theorem 3.2 Suppose q used in Shnorr's protool is an n-bit number. Then given k = n log 4nerroneous exeutions of the protool one an reover the seret s with probability at least 12 . Thealgorithm's running time is dominated by the time to perform O(n2 log n) modular multipliations.The faults are olleted over k separate runs of the protool, eah fault being a 1-bit register fault inthe variable r.Proof Bob wishing to extrat the seret information stored in Alie's devie �rst piks a randomhallenge t in [0; T ℄. The same hallenge will be used in all invoations of the protool. Sine thedevie annot possibly store all hallenges given to it thus far, it annot possibly know that Bob isalways providing the same hallenge t. The attak enables Bob to determine the value t �s mod q fromwhih the seret value s an be easily found. For simpliity we set x = ts mod q and assume thatgx mod p is known to Bob.Suppose that due to a register fault, one of the bits of the register holding the value r is ippedwhile Alie's devie is waiting for Bob to send it the hallenge t. Then, when the third phase of theprotool is exeuted the devie �nds r̂ = r� 2i in the register holding r. Consequently, the devie willoutput û = r̂+ x mod q. Suppose r̂ = r+2i. Bob an determine the value of i (the fault position) bytrying all possible values i = 0; : : : ; n� 1 until an i satisfyinggû = g2igrgx (mod p) (3)is found. Assuming a single bit ip, there is exatly one suh i. The above identity proves to Bob thatr̂ = r + 2i showing that the i'th bit of r ipped from a 0 to a 1. Consequently, Bob now knows thatindeed that i'th bit of r must be 0. Similar logi an be used to handle the ase where r̂ = r � 2i. Inthis ase Bob an dedue that the i'th bit of r is 1.More abstratly, Bob is given x + r(1); : : : ; x + r(k) mod q for random values r(1); : : : ; r(k) (reallk = n log 4n). Furthermore, Bob knows the value of one bit in eah of r(1); : : : ; r(k). Obtaining thisinformation requires O(n2 logn) modular multipliations sine for eah of the k faults one must testall n possible values of i. Eah test requires a onstant number of modular multipliations.We laim that using this information Bob an reover x in time O(n2). We assume the k faultsour at uniformly and independently hosen loations in the register r. Note that this uniformityassumption may or may not be true depending on the ause for these faults. Our attak relies on therandomness of the faults. Assuming the faults our at random bits of r the probability that at leastone fault ours in every bit position of the register r is at least 1� n �1� 1n�k � 1� n � e� log 4n = 34 .13



In other words, with probability at least 34 , for every 0 � i < n there exists an r(i) among r(1); : : : ; r(k)suh that the i'th bit of r(i) is known to Bob (we regard the �rst bit as the LSB).To reover x Bob �rst guesses the log 8n most signi�ant bits of x. Later we show that Bob anverify whether his guess is orret. Bob tries all possible log 8n bit strings until the orret one isfound. Let X be the integer that mathes x on the most signi�ant log 8n bits and is zero on allother bits. For now we assume that Bob orretly guessed the value of X. Bob reovers the rest of xstarting with the LSB. Indutively suppose Bob already knows bits xi�1 : : : x1x0 of x (Initially i = 0).We show how Bob omputes the i'th bit of x. Let Y =Pi�1j=0 2jxj .Bob determines xi using r(i). He knows the i'th bit of r(i) and the value of x + r(i) mod q. Letb be the i'th bit of r(i). We view x;X; Y and r(i) as integers in the range [0; q). Then assuming0 � x+ r(i) � Y �X < q we have that:[x℄i = b � h(x+ r(i))� Y �X mod qii (4)where for any integer w we use [w℄i to denote the i'th bit in the binary representation of w. Equation(4) follows from two fats. First observe that the ondition 0 � x+ r(i) � Y �X < q implies that themodulo q has no e�et. Seond, observe that [x � Y � X℄i = [x℄i and that [x � Y �X℄j = 0 for allj < i. Therefore, the i'th bit of (x � Y �X) + r(i) is [x℄i � [r(i)℄i whih is simply [x℄i � b. Equation(4) immediately follows. Therefore, assuming 0 � x+ r(i) �X � Y < q Bob an easily obtain xi, thei'th bit of x.By onstrution we know that 0 � x�X�Y < q=8n. Hene, the ondition 0 � x+r(i)�Y �X < qwill fail only if r(i) > (1 � 18n)q. Sine r(i) is uniformly hosen in the range [0; q) the probability thatthe ondition is not satis�ed is 18n . Sine the r's are independent of eah other, the probability thatthe ondition is satis�ed for all i = 1; : : : ; n is (1� 18n)n > 34 .To summarize, we see that for the algorithm to run orretly two events must simultaneously our.First, all bits of r must be \overed" by faults. Seond, all the r(i) must be less than (1� 18n )q. Sineeah event ours with probability at least 34 , both events happen simultaneously with probability atleast 12 . Consequently, with probability at least 12 , one X is guessed orretly the algorithm requiresO(n) modular additions and outputs the orret value of x. Of ourse, one a andidate x is found itan be easily veri�ed using the publi data, by testing that yt = gx mod p (reall that x was de�nedas x = st). Computing gx mod p takes O(n) modular multipliations. There are O(n) possible valuesfor X and hene the running time of this step is O(n2) modular multipliations. Sine the �rst partof the algorithm takes O(n2 log n) modular multipliations it dominates in the overall running time.� We note that the attak also works when a register fault indues multiple bit ips in the registerr (i.e. r̂ = r+Pj=1 2ij ). When an error results in  bits being ipped the loation of these errors anbe found in time O(n). To do so one tries all possible error vetors until one satisfying Equation (3)is found. One all error vetors are found, the same algorithm as in the proof of Theorem 3.2 an beused to reover x.We also note that the faults we use our while Alie's devie is waiting for a hallenge from theoutside world. Consequently, the adversary knows at exatly what time the faults should be indued.
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4 Defending against attaks based on hardware faultsOne an envision several methods for defending against the type of attak disussed in the paper. Thesimplest method is for the devie to hek the output of the omputation before releasing it. Thoughthis extra veri�ation step may redue system performane, our attak suggests that it is ruial forseurity reasons. In some systems verifying a omputation an be done eÆiently (e.g. verifying anRSA signature when the publi exponent is 3). In other systems veri�ation appears to be ostly (e.g.DSS).Due to the extreme vulnerability of RSA{CRT heking appears to be neessary whenever it isused. This is espeially true for Certi�ation Authorities where a single transient fault ould leakthe private key. Shamir [21℄ presented a lever tehnique for verifying signatures generated by theRSA{CRT method. When the publi exponent e is small (e.g. 3) standard veri�ation (i.e. raisingthe signature to the power of e) is still the best way to go. However, for larger values of e Shamir'strik is a lear win. For ompleteness we desribe Shamir's approah. Reall that in RSA{CRT onesigns a message M by omputing S1 =Md mod p and S2 =Md mod q. The results are then ombinedwith CRT to build S. Shamir suggests piking a small random number r (e.g. 32 bits) and omputingS1 = Md mod pr and S2 = Md mod qr. The overhead in performane is negligible. One then heksthat S1 mod r = S2 mod r. If the test fails, an error ourred in one of the exponentiations. If the testsueeds the signature S is onstruted from S1 mod p and S2 mod q. Overall, the performane ostis negligible. The hek done modulo r defends against a random error during the exponentiation.Other methods should be used to defend against errors in the CRT step.Our attak on authentiation protools suh as the Fiat-Shamir sheme uses a register fault whihours while the devie is waiting for a response from the outside world. One an not protet againstthis type of a fault by simply verifying the omputation. As far as the devie is onerned, it omputedthe orret output given the input stored in its memory. Therefore, to protet multi-round authentia-tion shemes one must ensure that the internal state of the devie an not be a�eted. Consequently,our attak suggests that for seurity reasons devies must protet internal memory by adding someerror detetion bits (e.g. CRC).Another way to prevent our attak on RSA signatures is to introdue randomness into the signatureproess. See for instane the system suggested by Bellare and Rogaway [4℄. In suh shemes RSA isapplied to F (M; r) where F is some formatting funtion and r is a random string. The randomnessensures that the signer never signs the same message twie. Furthermore, given an erroneous signaturethe veri�er does not know the full plain-text F (M; r) that was signed (r is not a part of the messageM). Consequently, the attak of Setion 2.2 annot be applied to suh a system.5 Summary and open problemsWe desribed a general attak whih makes use of hardware faults. The attak applies to severalryptosystems. We showed that enryption shemes using Chinese remainder, e.g. RSA and Rabinsignatures, are espeially vulnerable to this kind of attak. Other implementations of RSA are alsovulnerable though many more faults are neessary. The idea of using hardware faults to attakryptographi protools applies to authentiation shemes as well. For instane, we explained how theFiat-Shamir and Shnorr identi�ation protools may be attaked using hardware faults.Verifying the omputation and proteting internal storage using error detetion bits defeats attaksbased on hardware faults. We hope that this paper demonstrates that these measures are neessary forseurity reasons. Methods of program heking [6℄ may ome in useful when verifying omputations15
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