Admin:

Outline: RSA security; digital signatures

- RSA security; factoring
- RSA-OAEP for ACCA security
- Digital Signatures - definitions & security
- Signing with RSA
- El Gamal signatures
- Digital signature standard
RSA is homomorphic (like El Gamal):

\[E(m_1) \cdot E(m_2) = E(m_1 m_2) = (m_1 m_2)^e \pmod{n} \]

RSA is not even semantically secure (since it is deterministic).

Adversary can easily tell \(E(m_0) \) from \(E(m_1) \) since these values are fixed.

Need to repair this...

Notes on factoring:

- knowing \(e \) doesn't help in factoring \(n \) (\(e \) is random)
- computing \(d \) is as hard as factoring \(n \)
 knowing \(e, d \Rightarrow \) know multiple of \(\phi(n) \Rightarrow \) know \(p, q \)

Best factoring algorithms (Number field sieve):

- \(\exp \left\{ \text{const} \cdot (\ln(n))^{1/3} \cdot (\ln \ln n)^{2/3} \right\} \)
 \(\approx \exp \left\{ k^{1/3} \right\} \) for \(k \)-bit \(n \)

Now: 512-bit \(n \)'s can be factored, 1024-bit seem a bit out of reach...

Using \(n \) in range 1024...4096 seems fine... (for now...)
How to make RSA IND-CCA2 secure?

"OAEP" = Optimal asymmetric encryption padding \[[8R97] \]

Given \(m \), \(|m| = t \) bits

Pick \(r \) at random, \(|r| = k_0 \)

\[
\begin{align*}
G &: 50,13 \rightarrow 50,13 \uparrow t+k_1 \\
N &: 50,13 \rightarrow 50,13 \uparrow k_0 \\
G, H &: \text{"random oracles" like UFE (!) of Desai}
\end{align*}
\]

On decryption: invert RSA
invent OAEP
reject if \(O^k \) not present

Thm: RSA with OAEP secure against ACCA, assuming

RO model & that RSA hard to invert on random inputs.

OAEP: used in practice

theory: (we don't have random oracles...)
Digital Signatures

- Invented by Diffie/Hellman in 1976 (New Directions)
- First implementation: RSA (1977) [key motivator for me for PK... !]
- Initial idea: switch PK/sk - enc with secret key = sig
 - if PK decrypts it - then sig ok

- Current way of describing digital signatures
 - (Note: law is confused (include hashes, MACs, etc...) - ignore it

 - KeyGen(1^λ) → (PK, SK)
 - verification key
 - signing key
 - λ = "security parameter"
 - all lengths are polynomial
 - security may be negligible for λ.

 - Ignore for now - "PKI" issue:
 - Knowing that you have "right" PK

 - Sign(SK, M) → σ_{SK}(M)
 - M ∈ {0, 1}^* (may be randomized)

 - Verify(PK, M, σ) = True/False

Correctness: \((∀M)\) Verify(PK, M, Sign(SK, M)) = True
Security: (Weak) existential unforgeability under adaptive chosen message attack:

Game:

Challenger

\((PK, sk) \leftarrow \text{Keygen}(1^\lambda)\)

\[\begin{array}{c}
PK \\
\downarrow \\
\sigma(M_1) \\
\downarrow \\
m_2 \\
\downarrow \\
\sigma(m_2) \\
\downarrow \\
\vdots \\
\downarrow \\
m_k \\
\downarrow \\
\sigma(m_k) \\
\downarrow \\
M, \sigma_\star \\
\end{array} \]

\begin{align*}
\text{Adv wins if } & \text{Verify}(PK, M, \sigma_\star) = \text{True} \\
& \text{and } M \notin \{M_1, \ldots, M_k\}
\end{align*}

Scheme is secure (i.e., weakly existentially unforgeable against adaptive chosen message attack)

\[\text{Prob[Adv wins]} \text{ is negligible (i.e., } \leq \frac{1}{\lambda^c} \text{ for all sufficiently large } \lambda) \]

Scheme is strongly secure if adversary can't even produce new sig for previous message previously signed

\[\text{i.e., Adv wins if } \text{Verify}(PK, M, \sigma_\star) = \text{True} \]

\[\& (M, \sigma_\star) \notin \{ (M_1, \sigma_1), (M_2, \sigma_2), \ldots, (M_k, \sigma_k) \} \]
Sign with RSA

1. Hash & sign with PKCS
 Let $H(M) = $SHA256$(M) \quad \text{(normal hash)}$
 Let $H'(M) = 0x\ 00\ 01\ FF\ FF\ ...\ FF\ 00\ ||\ H(M)\ ||\ H(M)$
 $\sigma(m) = (H'(m))^d \mod n$

 Some problems with $e=3$ (bad implementations can form 0
 padding ASN.1
 take $H(M)$
 miss other stuff after $H(M)$)

 Otherwise seems OK, but no proofs. (even
 assuming collision resistance & RSA hard to invert...)

 Commonly used, none the less...

2. PSS [Bellare & Rogaway 1996]
\[
\text{Sign}(m): \begin{cases} \\
\text{w} \leftarrow h(M \| r) \quad \text{note!} \quad |w| = k_1 \\
\text{r}^* \leftarrow g_1(w) \oplus r \\
\text{y} \leftarrow 0 \| w \| r^* \| g_2(w) \\
\text{return } y^d \pmod{n} \end{cases}
\]

\[
\text{Verify}(M, x): \begin{cases} \\
y \leftarrow x^e \pmod{n} \\
\text{parse } y \text{ as } b \| w \| r^* \| \gamma \\
r \leftarrow r^* \oplus g_1(w) \\
\text{if } h(M \| r) = w \land g_2(w) = \gamma \land b = 0 \text{ return True} \\
\text{else return False} \end{cases}
\]

Theorem: PSS is (weakly) semantically unforgeable against chosen message attack in ROM if RSA is not invertible on random inputs.

(\text{\texttt{TEAdv}} who can produce } x^d \text{ given } x.)
El Gamal Signatures

Public system parameters: \(p \) prime, \(g \) generator

Keygen: \(\mathbf{x} \in \mathbb{Z}_p \rightarrow \mathbb{Z} \), \(\mathbf{y} = g^\mathbf{x} \)

\(\mathbf{SK} = \mathbf{x} \)

\(\mathbf{PK} = \mathbf{y} \)

\[\text{Sign}(M): \quad m = h(M) \]

\[k \in \mathbb{Z}_{p-1}^* \quad [\text{gcd}(k, p-1) = 1] \]

\[r = g^k \quad [\text{hard work is independent of } M] \]

\[ks + rx = m \]

\[s = (m-rx) \pmod{p-1} \]

\[\sigma(M) = (r, s) \]

\[\text{Verify:} \quad \begin{cases} \text{check } 0 < r < p \\ y^r s = g^m \pmod{p} \quad \text{where } m = h(M) \end{cases} \]

Return True if both checks pass else return False

Correctness: \(g^{rx} g^{sk} = g^{rx+sk} \equiv g^m \pmod{p} \)

\[\equiv \]

\[rx + ks = m \pmod{p-1} \]

\[s = (m-rx) \pmod{p-1} \]

(if \(\text{gcd}(k, p-1) = 1 \))
Theorem: El Gamel is existentially forgeable (without h fn
or h = id(h),)

Proof: Let \(e \in R \mathbb{Z}_{p-1} \)

\[
\begin{align*}
 r &\leftarrow g^e \mod p \\
 s &\leftarrow -r \mod (p-1)
\end{align*}
\]

\((r, s)\) is sig for message \(m = es \mod (p-1) \)

\[y^r r^s = g^m\]

\[g^{xr} (g^e)^{-r} = g^{-r} = g^e = g^m \text{ for } m = es \mod (p-1)\]

But: It is easy to fix.

Modified El Gamel (Pointcheval/Stern 1996)

Sign *(m)*: \(k \in R \mathbb{Z}_p^* \)

\[r = g^k \mod p \]

\[m = h(M || r) \leq 255\]

\[s = (m - rx) \mod (p-1) \]

\([s] \leq 255\]

\[\sigma(M) = (r, s)\]

Verify: check \(0 < r < p \)

check \(y^r r^s = g^m \) where \(m = h(M || r) \)
Thm: (Modified) El Gamal is existentially unforgeable against adaptive chosen message attack, in ROM, assuming DLP is hard.