
Massachusetts Institute of Technology
6.856J/18.416J: Randomized Algorithms April 17, 2021
David Karger

Problem Set 7 Solutions

Problem 1. (a) Suppose we make k estimations p1 . . . pk of the true value p. For
ease of exposition, suppose k is odd: k = 2l−1. Note that the lth element among
the sorted p1, . . . pk is the median.

Let’s compute the probability that the median is < (1− ε)p. This happens only
if at least l estimations are less than (1 − ε)p, which happens with probability

at most
∑k

i=l

(
k
i

)
1
4i

(3
4
)k−i =

∑k
i=l

(
k
i

)
3k−i

4k
≤
∑k

i=l

(
k
i

)
3k−l

4k
≤ 2k · 3k−l

4k
≤ 33k/2

4k/2
=

3(3/4)k/2.

The probability that the median is > (1−ε)p is similarly ≤ 3(3/4)k/2. Therefore,

the probability that the median is not in (1− ε)p . . . (1 + ε)p is at most 6(
√

3
4
)k.

To get a probability of failure of at most δ, we require that 6(
√

3
4
)k < δ, which

implies that k ≥ log(δ/6)/ log(3/4) = Θ(log(1/δ)).

(b) Consider a distribution as follows: with probability 3/4, it is uniform on the
interval [−ε, ε], and with probability 1/4, it is 400. The mean of this distribution
is 100. Thus the average of the samples will be heavily influenced by these outliers
and hence is not reflective of the true value.

(c) Suppose the variable has mean µ and standard deviation σ ≤ µ (so variance σ2).
It follows that a sum S of n samples has mean nµ and variance nσ2. Now we
apply the Chebyshev bound which tells us

Pr ([|S − nµ| > εnµ]) ≤ (nσ2)/(εnµ)2

= (σ2/µ2)/ε2n

≤ 1/ε2n

It follows that setting n = 4/ε2 we can take the probability of this deviation below
1/4. This means S fits the conditions of the previous part, so we can conclude
that O(ln 1/δ) samples of S (each involving O(1/ε2) samples of the underlying
variable) suffice for an (ε, δ)-approximation.

(d) We start from the Chebyshev bound in (c), however, we need to consider that
the assumption σ ≤ µ, i.e., r ≤ 1, does not hold anymore. In particular,

Pr ([|S − nµ| > εnµ]) ≤ (nσ2)/(εnµ)2

= (σ2/µ2)/ε2n

≤ r/ε2n.

2 Problem Set 7 Solutions

Setting n = 4r/ε2 we can take the probability below 1/4, and use the median
approach from (a) to conclude that O(rε−2 ln 1/δ) samples suffice to obtain an
(ε, δ)-approximation.

Problem 2. As in the transitive closure estimation in the class, we will be sampling. In
other words, for each v we want to sample “destinations” until we get M = O((log n/ε2) ·
log(1/δ)) samples that are at distance at most d from v. As in the class, from this, we can
estimate the total number of nodes at distance d from v with high probability.

We parallelize this for all vertices v in total. That is, take around O(nM) samples of
“destinations”, and do backwards BFS to find all the vertices v such that the distance from
v to the sample is at most d. This, so far, is pretty much as in the transitive closure algorithm.

Again, we would want to delete an edge when we’ve delivered (through backwards BFS) M
samples through it. We need to be more attentive here, however. Instead of having a unique
counter per edge saying how many samples back-BFS’ed through it, we keep d counters per
edge. For edge e, the counter c

(e)
i , 1 ≤ i ≤ d, is increased when the e is at level i in the

backwards BFS tree (which has at most d levels of edges going down). Once we’ve reached

M for a counter c
(e)
i , we do not back-propagate on that edge anymore whenever e is at the

ith level. (Technically, imagine we have d copies of each edge, for each value of i. Then we

delete ith copy of e whenever c
(e)
i becomes M .)

Now, note that for each “source” v, if the current sample is at distance at most d, then this
sample will be counted towards v’s counter (unless, v already has M samples). Consider
current sample, which is at some distance k ≤ d from v. Take the path from v to s; look at
the respective counters of the edges: all of them have to be less than M if the counter of v
is less than M .

Thus, we do expected nM BFS backpropagations. However, we do only O(dM) back-
propagations per edge. Therefore, in total, we can make only O(mdM) backprogations on
edges. Running time is O((m+ n)M) = Õ(((m+ n)/ε2) · log 1/δ).

Problem 3. (a) For any x = (x1, . . . , xm) ∈ {+1,−1}m, we have that,

〈h,x〉2 =

(
m∑
i=1

hixi

)2

=
m∑
i=1

h2
i + 2

∑
i<j

hihjxixj .

Thus, we get that,

Ex[〈h,x〉2] = ||h||22 + 2
∑
i<j

hihjEx[xixj] = ||h||22

Problem Set 7 Solutions 3

where, the last equality follows because Ex[xixj] = 0. Similarly we have that,

Varx
[
〈h,x〉2

]
= Ex

[(
〈h,x〉2 − Ex[〈h,x〉2]

)2
]

= Ex

(2
∑
i<j

hihjxixj

)2


= 4
∑
i1<j1
i2<j2

hi1hj1hi2hj2Ex [xi1xj1xi2xj2]

= 4
∑
i<j

h2
ih

2
j

≤ 2

(∑
i

h2
i

)2

= 2||h||42

where, we use that Ex [xi1xj1xi2xj2] = 1 if i1 = i2 and j1 = j2, and 0 otherwise.

(b) We use the randomness to obtain several vectors x(1), . . . ,x(q) ∈ {+1,−1}m. We
use the space of our algorithm to store a vector v ∈ Zq (where all entries of v lie
in [−N,N], and hence the space needed to store v is only O(q logN).

On receiving element i, we add the vector (x
(1)
i , x

(2)
i , . . . , x

(q)
i) to v.

At the end of the stream, we simply output 1
q
·
∑q

j=1 v
2
j .

Let h ∈ Zm≥0 be the underlying histogram vector. We note that vj =
〈
h,x(j)

〉
.

And hence,

E
(x

(1)
i ,...,x

(q)
i)

[
1

q

q∑
j=1

v2
j

]
= ||h||22 and Var

(x
(1)
i ,...,x

(q)
i)

(
1

q

q∑
j=1

v2
j

)
=

2||h||42
q

Using Chebyshev’s inequality, we get that,

Pr

[∣∣∣∣∣1q
q∑
j=1

v2
j − ||h||22

∣∣∣∣∣ > ε||h||22

]
≤ 2

ε2q

Thus, if we choose q = 8
ε2

, we get an estimate of ||h||22 up to multiplicative
(1± ε) error with probability at least 3/4. Taking the median of O(log 1/δ) such
estimators reduces the failure probability to δ. The space used is Oε,δ(logN).

(c) We simply observe that the analysis in part(a) works as long as x is 4-wise
independent. We can sample such an x using O(logm) bits of randomness.
Since we are running Oε,δ(1) such experiments in parallel, we need Oε,δ(logm)
additional memory to store the randomness. Thus, overall the algorithms runs
in Oε,δ(logN + logm) space.

4 Problem Set 7 Solutions

Problem 4. Consider the set of all (a, i), where a is an assignment and i is an index from
1 to m (number of clauses). Denote by O the set of all (a, i), where a satisfies clause i.
Denote by X the set of all (a, i) where a is satisfiable and i is the smallest index of a satisfied
clause. Consider a measure space Σ over all (a, i) with the following measure: (a, i) has the
probability of 1

m
pa, where pa is the probability of choosing assignment a (when each variable

has probability p of being set to 1.).

If A is the probability of getting a satisfying assignment (the number we want to estimate),
then note that Prσ∈Σ[σ ∈ X] = A/m. Further on, I will denote Pr[X] = Prσ∈Σ[σ ∈ X].
Also, Pr[O] = Prσ∈Σ[σ ∈ O]. Therefore,

A = m · Pr[X]

= m · (Pr[X | O] · Pr[O] + Pr[X | ¬O]︸ ︷︷ ︸
= 0

·Pr[¬O])

= m · Pr[X | O] · Pr[O]

We need to estimate Pr[X | O] and Pr[O].

Computing Pr[O] is easy: for each clause Ci, compute qi = Pra[a satisfies Ci] (this is the
probability of choosing the variables in Ci right). Then Pr[O] =

∑m
i=1 qi/m.

Computing Pr[X | O] can be done in an approximate way. Specifically, we will generate
many samples from O (according to measure Σ; that is, σ ∈ O have original probabilities
scaled by 1/Pr[O]). This can be done by first picking a clause Ci with probability qi/

∑m
j=1 qi.

We then sample the unfixed variables in C randomly, setting them to 1 with probability p
and 0 with probability 1− p.
Thus, we need to estimate the 0/1 function 1[σ∈X] where σ is generated from O. We can
estimate the mean of this function using again O(m

ε2
log 1/δ) samples (note that Pr[X | O] is

at least 1
m

since to each σ = (a, i) ∈ X there are at most m pairs (a, j) ∈ O, for j ∈ {1 . . .m},
and all pairs (a, j) have the same probability as (a, i)).

This gives 1± ε approximation with probability ≥ 1− δ.

Problem 5. (a) Let U be the disjoint union (multiset) of satisfying assignments
for each clause (i.e., |U | = N); and let S be the satisfying assignments (i.e.,
|S| =DNF-count). Then, N · E[Xt] = N

∑
a∈U

1
N

1
ca

=
∑

a∈U
1
ca

=
∑

a∈S
ca
ca

= |S|
(since an assignment a that satisfies ca clauses, contributes to the sum 1/ca per
each satisfied clause).

(b) Let q = O(m/ε2 log 1/δ) be the number of samples of Xt. Our estimate is

T = N
∑
Xt
q

. Note E[T] = S. We need to estimate Pr[|N
∑
Xt/q − S| ≥

εS] ≤ Pr[|
∑
Xt − qS/N | ≥ ε qS

N
]. Since E[

∑
Xt] = qS

N
and Xt are indepen-

dent variables in [0, 1], we can apply Chernoff. Thus, Pr[|N
∑
Xt/q − S| ≥

εS] ≤ exp[−ε2 qS
N
/3] ≤ exp[−O(log 1/δ)] < δ (since S/N ≥ 1/m and with the

appropiate choice of constants).

Problem Set 7 Solutions 5

Our estimate is 1± ε of S with probability ≥ 1− δ.
(c) Just sample clauses from assignment a until we get µεδ′ = O(log 1/δ′ε−2) hits (into

clauses that are satisfied by a). With probability 1−δ′, we have m
µεδ′
f
∈ (1±ε)ca,

where f is the total number of samples we did (as stated by the lecture on
sampling).

Expected running time is O(m
ca

log 1/δ′ε−2). With high probability, we will make

O(m
ca

log2 1/δ′ε−2) samples in total.

Moreover, the overall estimator is as follows. Sample a’s. For the sampled a’s,
estimate ca, then let Xt = 1/ĉa (ĉa is the estimation of ca). Sum Xt, compute
mean, multiply by N to get estimate of S. Note that the estimator for ca is
right with high probability every time for an appropriate choice of δ′. We get
our estimation Ŝ within (1 ± ε) · (1 ± ε)−1 ∈ (1 ± O(ε)) of S (first 1 ± ε is from
estimator (b), and second from estimators (c)).

(d) Let’s see how to make it fast. In the following, by “time” I will usually mean #
of sampled/estimated clauses (unless specified otherwise).

Note that in (b), we don’t needO(m/ε2 log 1/δ) samples of a, but onlyO(N
S
/ε2 log 1/δ).

For every time we sample a, we need to estimate ca. Thus we needO(N
S
/ε2 log 1/δ)

calls to our estimator from (c), which fails with probability δ′. By a union bound
argument, we can set δ′ = O(δ S

N
ε2 log−1 1/δ) such that with probability δ none

of the estimators from (c) fail.

Note that expected running time is then O(N
S
/ε2 log 1/δ) · E[O(m

ca
/ε2 log 1/δ′)] =

O
(
mN
S
/ε4 log 1/δ log(1/δN

S
ε−2 log 1/δ)E[1/ca]

)
= Oε,δ(

mN
S

log N
S
E[1/ca]) = Oε,δ(m logm)

(where Oε,δ hides poly(1/ε) and poly log(1/δ) factors).

To compute the actual runtime (whp), we need to consider that our estimator in
(c) needs to see at least µεδ′ hits, and thus the runtime might be much larger than
the expected runtime computed above. However, when we run each one of the
estimators from (c) at most O(log 1/δ′) times their expected time, they all find a
good estimate with overall probability δ by the union bound argument above and
our choice for δ′. Therefore, again whp, all estimators (c) run in time at most
O(log 1/δ′) of their expected time. Thus, whp, the entire algorithm should run
in Oε,δ(m logm log 1/δ′) = Oε,δ(m log2m) time. Therefore, the probability that
we fail the algorithm by not running it sufficiently long is only 2δ. To see this
note that there is a δ failure probability that any of the estimators for ca fail and
a δ failure probability that the estimator

∑
Xt fails. Then apply union bound.

Considering that a clause has z variables, we have a total (real) running time
equal to Oε,δ(mz log2m).

This is compared to Oε,δ(m
2z) for the algorithm in class, since our algorithm

from class runs in Oε,δ(m) times the formula size and the overall formula size is
O(mz).

Note: A very common mistake on this problem was to analyze the running time

6 Problem Set 7 Solutions

of this algorithm by directly multiply the answers from parts (b) and (c)—i.e.
(expected number of clauses)*(expected time per clause). Remember that this is
not a valid argument because the time per clause and the number of clauses are
dependent random variables, and in this case the expectation of their product is
not necessarily equal to the product of their expectations.

