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Mar. 24, 2021 — Problem Set 6, Due 3/31

Problem 1. Consider the following alternative parallel algorithm for maximal independent
set. In a phase, a (non maximal) independent set S is output, and all of its neighbors are
deleted. To find S, randomly permute the vertices, then mark each vertex that precedes all
of its neighbors in the permutation. It may help to use the following equivalent formulation:
assign to each vertex a uniformly distributed random weight from the range {1, ..., n4}.
Mark all vertices, then in parallel unmark the larger-weight endpoint of each edge. The set
of vertices that remain marked is S. Continue until the graph is empty.

(a) Argue that the set of vertices output over all phases is a maximal independent
set.

(b) Assuming that v has degree d during a phase, what is the probability that vertex
v stays marked?

(c) Show that this approach yields an RNC algorithm for maximal independent set.

Problem 2—This problem should be done without collaboration. The NP-hard Max-
Cut problem is to divide the vertices into two groups so as to maximize the number of edges
with one endpoint in each group. A common RNC heuristic for this problem is to randomly
partition the vertices into two groups, which will cut half the edges in expectation. Explain
how pairwise independence can be used to derandomize this algorithm, producing a cut of
at least half the edges with certainty in NC.

Problem 3. Consider the problem of finding a minimum weight (total weight of included
edges) perfect matching in a bipartite graph whose edges are given integer weights of mag-
nitude bounded by a polynomial in the number of vertices n. Note that it is not possible
to apply the Isolating Lemma directly to this case since the random weights chosen there
would conflict with the input weights.

(a) Explain how you would devise an RNC algorithm for this problem. Hint: start
by scaling up the input edge weights by a large polynomial factor. Apply random
perturbations to the scaled weights and prove a variant of the Isolating Lemma
for this situation.
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(b) The parallel complexity of the version where the edge weights can have a polyno-
mial number of bits has not yet been resolved. Note that arithmetic operations on
such weights are still tractable. Explain why the RNC algorithm you developed
above does not work in this case.

(c) Devise an RNC algorithm for finding a maximum matching (i.e., most possible
edges) in a bipartite graph (without weights) that may not have a perfect match-
ing. Hint: use the min-weight perfect matching algorithm above as a “black
box” by making nonexistent edges very expensive.

Problem 4. Suppose you are given a graph whose edge lengths are all integers in the range
from 0 to B (inclusive). Suppose also that you are given the all-pairs distance matrix for
this graph (it can be constructed by a variant of Seidel’s deterministic distance algorithm).
Prove that you can identify the (successor matrix representation of the) shortest paths in
O(B2MM(n) log2 n) expected time, where MM(n) is the time to multiply n× n matrices.

Problem 5—Optional. In the exact matching problem, a bipartite graph is given with
a subset of the edges colored red, along with an integer k. The goal is to find a perfect
matching with exactly k red edges. Devise an RNC algorithm for this problem using a
(non-trivial) application of the Isolating Lemma. Note that this problem is not known to be
solvable in P.

Problem 6—Optional. One use of maximal independent sets is in wireless networks. A
wireless network can be modeled as an n-vertex graph, where an edge between two nodes
indicates that the two nodes will collide (interfere) with each other if they transmit at the
same time. When this happens, messages being transmitted get garbled.

In this setting, an independent set represents a set of nodes that can all transmit simulta-
neously without any collisions, which provides useful parallel exploitation of the available
communication capacity. We have seen a parallel algorithm for constructing an independent
set; unfortunately it requires all nodes to communicate simultaneously with their neighbors,
which leads to collisions and garbled communication.

In this problem you will show how to construct an independent set even as messages become
garbled through collisions. We take the following approach. Suppose that in each round
every node can choose to talk or to listen. Afterwards, each node will know whether any of
its neighbors talked. But if multiple neighbors talk, garbled messages mean the node will
know some neigbor talked but will not know which neighbor talked or what was said. It
turns out that we can still find an independent set quickly.

In a round of the algorithm, each node talks with probability p for some p to be chosen later.
If, during a round, any node talked but none of its neighbors talked, that node immediately
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joins the independent set and announces this fact. Upon hearing this announcement, its
neighbors immediately go dead and never talk again.

(a) For this subproblem, suppose the maximum degree of the graph is at most D.
Prove that by performing a round of the algorithm with p = 1

2D
, any vertex with

degree at least D/2 is deleted with constant probability. Conclude that after
O(log n) rounds, the maximum degree of the graph becomes at most D/2 with
high probability.

(b) Use part (a), devise a randomized algorithm (which works with high probability)
that finds a maximal independent set in O(log2 n) rounds.

(c) A problem with the above scheme is that in practice, a node that is talking
(transmitting) overloads its own receiver so cannot hear if any neighbor talks.
Show how to overcome this problem. In particular, show how a network where
talkers can’t simultaneously listen can simulate (with high probability) a net-
work where talkers can listen, with an O(log n) factor slowdown in the number
of rounds needed. Hint: To simulate one talking-while-listening round, run
O(log n) rounds in which each node that wants to talk does so with probability
1/2.
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