
Massachusetts Institute of Technology
6.856J/18.416J: Randomized Algorithms Wednesday, March 8, 2017
David Karger

Problem Set 4 Solutions

Problem 1. (a) The key difference is that if βin bins have height h then the proba-
bility a ball chooses all height h bins drops to βdi . Thus, the “expected number”
of height h + 1 bins is like βi+1n where βi+1 = βdi . This gives βi = (1

4
)d
i

which
becomes O(1/n) at i = O(logd log n).

The rest of the proof is unchanged; in order to deal with the conditioning we
work with parameters βi+1 = (2βi)

d.

(b) Following the hint, define β4 = γ4 = 1/4. Then let βi+1 = βiγi and γi+1 = βi+1γi.
By induction, the number of left-side bins of height i is at most 2βin and the
number of right-side bins of height i is at most 2γin. The base case is clear, and
the the induction step follows the same ideas we used in class for the original two
choice bound.

Now, we claim β4+i = (1/4)F2i and γi = (1/4)F2i+1 , where Fi are the Fibonacci
numbers with F0 = F1 = 1. The base case for i = 1 follows directly from applying
one step of the recursion. For the inductive step, we have:

βi+1 = βiγi = (1/4)F2i(1/4)F2i+1 = (1/4)F2i+2 = (1/4)F2(i+1)

γi+1 = βi+1γi = (1/4)F2i+2(1/4)F2i+1 = (1/4)F2(i+1)+1

as desired. It is well known that F2i ≈ φ2i/
√

5, and so we have that

β(logφ logn)/2 = (1/4)Flogφ logn ≈ 2−2φ
logφ logn/

√
5

= n−2/
√
5

Thus, at most n1−2/
√
5 balls on the left side have height at least (logφ log n)/2

and we can use the union bound to show that with high probability, no ball will
have height greater than (logφ log n)/2 = log log n/(2 log φ).

2 Problem Set 4 Solutions

Problem 2. (a) For any fixed i, j, k where i < j < k, the probability that balls
i, j, k are placed uniformly at random all in the same bin is 1/n2. The number
of such triples is

(
n
3

)
, so E[

∑
Ci,j,k] =

(
n
3

)
/n2.

(b) Let S be the set of balls in the bin containing m items. There are
(
m
3

)
ways to

choose i < j < k from S. These triples of balls are in the same bin (in other
words, Ci,j,k = 1 for these triples i, j, k), so

∑
Ci,j,k ≥

(
m
3

)
.

(c) If a bin has cn1/3 balls, then by part (b),∑
Ci,j,k ≥

(
cn1/3

3

)
≥ ((c/2)n1/3)3/6 =

c3

48
n.

By Markov’s Inequality,

Pr
(
some bin has size at least cn1/3

)
≤ Pr

(∑
Ci,j,k ≥

c3

48
n

)
≤ E[

∑
Ci,j,k]/

(
c3

48
n

)
=

(
n
3

)
n2
/

(
c3

48
n

)
≤ 48

c3
.

(1)

Therefore, if we pick a large enough constant c, the probability that some bin
has at least cn1/3 balls will be small (say smaller than 1/3).

(d) Let bi be the bin that ball i falls into. We note from part a that the only
assumption on the randomness needed is that

Pr (i, j, k all in the same bin) = nP [bi = bj = bk = b] = (2)

= n× P [bi = b]P [bj = b]P [bk = b] = n−2 (3)

which holds so long as the hash function is 3-way independent.

(d) Let z1 = h(x1), z2 = h(x2), z3 = h(x3) be the hash values of x1 6= x2 6= x3. It
follows by definition that they satisfy the linear systemz1z2

z3

 =

1 x1 x21
1 x2 x22
1 x3 x23

cb
a

 ≡ V

cb
a

 (4)

if V , a 3 × 3 Vandermond matrix, is non-singular, then it can be inverted to
obtain cb

a

 = V −1

z1z2
z3

 (5)

Problem Set 4 Solutions 3

in this manner, there is a one-to-one mapping between each of the p3 assignments
of z1, z2, z3 and the p3 assignments of a, b, c. Since a, b, c are uniformly random in
Zp, then the triples of hash values z1, z2, z3 are uniformly random, and thereby
mutually independent. To conclude this proof it suffices to show that the Van-
dermond matrix with parameters x1 6= x2 6= x3 is invertible, i.e. its determinant
is non-zero. Note

detV =
∏

1≤i<j≤3

(xj − xi) and (xj − xi) 6= 0⇒ detV 6= 0 (6)

Alternative solution We can follow the approach for 2-universal hash functions
shown in class to and derive an analogous statement for this 3-universal hash
function. Let us begin by noting that since

h(x) = ax2 + bx+ c (7)

and a, b, c is uniformly random, then h(x) is uniformly random. Now, let us
re-write the joint probability of 3 hashes, conditioning on the result of h2 and h3

Pa,b,c
[
h(x1) = z1, h(x2) = z2, h(x3) = z3

]
= (8)

= Pa,b,c
[
h(x1) = z1, h(x2) = z2|h(x3) = z3

]
× Pa,b,c

[
h(x3) = z3

]
= (9)

= Pa,b,c
[
h(x1) = z1|h(x2) = z2, h(x3) = z3

]
Pa,b,c

[
h(x2) = z2|h(x3) = z3

]
Pa,b,c

[
h(x3) = z3

]
(10)

Note that conditioning on h(x3) = ax23 +bx3 +c = z3, implies h(x2) = z3 +a(x22−
x23) + b(x2 − x3). Since x2 6= x3, and a, b are uniformly random, then h(x2) is
uniformly random. It follows that the function is 2-universal and

Pa,b,c
[
h(x2) = z2|h(x3) = z3

]
= Pa,b,c

[
h(x2) = z2

]
(11)

Finally, let us consider h(x1), conditioned on the result of h(x2) = z2 and h(x3) =
z3. Note that we can re-write their definitions in terms of c to obtain

c = z3 − ax23 − bx3 = z2 − ax22 − bx2 (12)

⇒ b =
z3 − z2
x3 − x2

− a(x3 + x2), and c =
z2x3 − z3x2
x3 − x2

+ ax3x2 (13)

and thus we can re-write h(x1) conditioned on z2, z3 as

h(x1) = a(x3 − x1)(x2 − x1) +
x1(z3 − z2) + z2x3 − z3x2

x3 − x2
(14)

4 Problem Set 4 Solutions

assuming x3 6= x2 6= x1, and given a uniform at random, then so is h(x1). It
follows

Pa,b,c
[
h(x1) = z1|h(x2) = z2, h(x3) = z3

]
= Pa,b,c

[
h(x1) = z1

]
(15)

and thereby the function is 3-way independent.

Problem Set 4 Solutions 5

Problem 3. As hinted, we will use a main table and an overflow table. After k probes of
the main table, if we have not found an empty cell, we place the item in the overflow table.

If you have (1 + ε)m space, you can build a main table of size n and a cuckoo-hash table
of size εm. By the argument in class, the cuckoo hash table can hold εm/2 items with
constant worst-case lookup time. We’re going to guarantee that the “main” table holds only
(1 − ε/2)m items by the simple rule that if the main table gets that full, we immediately
place other incoming items in the cuckoo hash table.

Assuming the main table has the claimed limit, k probes to it will fail to find an empty
bucket with probability (1 − ε/2)k. If we arrange for (say) (1 − ε/2)k ≤ ε/4, then the
probability that an item fails to find an empty space is ε/4, so the expected number of
items that fail to find a space, and get kicked into overflow, is εm/4. Thus a chernoff
bound tells us that it is at most εm/2 with (exponentially) high probability1, so the cuckoo
table will never get too full to operate in constant time (w.h.p.). Solving, we find that
k = log(ε/4)/ log(1− ε/2) = O(1

ε
log(1

ε
)).

1note that the events that each item overflows are dependent, but we can apply the same trick from class
to stochastically dominate with i.i.d. random variables

6 Problem Set 4 Solutions

Problem 4. Let there be m machines and n clients interested in a specific data item. Using
the consistent hashing scheme, each machine and data item is mapped to the cyclical interval
[0, 1]. For convenience, label the machines 1, . . . ,m in order of appearance after the position
of the data item. Thus, machine 1 owns the data item. However, if a particular client
believes that machines 1, . . . , k are down, it will query machine k + 1 for the data.

Let zji = 1 if client j believes machine i is up and 0 otherwise. Thus, for k < m
2

, the
probability that a client j queries machine k + 1 is bounded by:

Pr ([) client j queries machine ≥ k + 1] = Pr ([) zj1 = zj2 = · · · = zjk = 0]

=
ways to choose machines such that zj1 = · · · = zjk = 0

ways to choose m
2

down machines

=

(
m−k
m
2
−k

)(
m
m
2

) =

(m−k)!
(m
2
−k)!(m

2
)!

m!
(m
2
)!(m

2
)!

=

(
m
2

) (
m
2
− 1
)
· · ·
(
m
2
− k + 1

)
(m)(m− 1) · · · (m− k + 1)

=

(
1

2

)k
(m)(m− 2) · · · (m− 2k + 2)

(m)(m− 1) · · · (m− k + 1)

< 2−k

Choosing k = c log n and applying the union bound, the probability that any of the n clients
query machine ≥ k+ 1 is bounded by n2−k = n−(c−1). Thus, with high probability, no client
will query machine ≥ O(log n). Alternatively, at most O(log n) machines will be queried
with high probability.

Problem Set 4 Solutions 7

Problem 5. To achieve evaluation time of O(1) in expectation and O(log logm) with high
probability, we will modify the consistent hashing algorithm as follows. First, break the ring
into m equal sized intervals. Next, associate with each interval the buckets that overlap
the interval. Note that the number of buckets associated with each interval is at most 1
more than the number of bucket boundaries that fall within the interval. To find the bucket
associated with a particular item, use the hash function to map the item to a number between
[0, 1] and find the bucket responsible for the item among the buckets associated with the
interval that the item falls in. Thus, the performance of this lookup is dependent on the
number of buckets associated with the interval. Specifically, if we pre-order the buckets
within each interval, we can find the bucket responsible for a given item using binary search
in O(log b) time where b is the number of buckets in the interval.

Since the bucket boundary positions are randomly selected, the problem of finding the ex-
pected and maximum number of bucket boundary positions within each interval reduces to
the m balls in m bins problem. Thus, we can conclude that the expected number of boundary
positions in each interval is O(1) and the maximum number of boundary positions in any

interval is O
(

logm
log logm

)
with high probability. With at most 1+1 = 2 buckets in each interval

in expectation, it takes 1 comparison, or O(1) time, to determine which of the 2 buckets an
item maps to. We maintain pointers in each empty interval to the next non-empty interval
to allow fast(O(1)) search. These pointers can be maintained when inserting/deleting ma-

chines. With at most O
(

logm
log logm

)
+ 1 buckets in each interval with high probability, it takes

log
[
O
(

logm
log logm

)
+ 1
]

= O(log logm) comparisons to determine the bucket an item maps to

with high probability. Thus, a consistent hash function can be evaluated in O(1) time in
expectation and O(log logm) time with high probability.

8 Problem Set 4 Solutions

Problem 6. (a) Consider the event of a bashing collision between the kth inserted
item and the jth inserted item, for j < k. For this event to happen, one of the
two candidate locations of item k has to be the same as the location of j (this
has probability at most 2/n1.5), and the other candidate location for item k must
contain at least one element (probability k/n1.5). Thus, the probability k collides
with j is at most 2k/n3. By linearity of expectation we get

E[#collisions] =
∑
j<k

Pr ([) collision between j, k] ≤

n∑
k=1

k∑
j=1

2k

n3
≤

n∑
k=1

2k2

n3
=

2n(n+ 1)(2n+ 1)

6n3
≤ 5

6
.

Note that a “good bound” in the expected number of collisions is a constant
smaller than 1, since by Markov’s inequality it allows us to argue that with
constant probability we get 0 collisions and thus a perfect hash.

(b) By inspecting the argument in (a), we see that we have only used the probability
for pairwise collisions, which remains the same if instead of a truly random hash
function we use one sampled from a pairwise independent family.

In more detail, denote by h1, h2 the two hash functions mapping elements into
the two tables, and denote by xi the ith inserted element, for i = 1, . . . , n. In (a)
we argued that for xj to collide with xk, the following two events must occur:

• xj and xk collide in at least one of the two hash functions, and the probability
for this can be bounded by Pr ([)h1(xk) = h1(xj)] + Pr ([)h2(xk) = h2(xj)].

• In the other hash function (say w.l.o.g. h1), xk collides with at least one
previously inserted item, and the probability for this can be bounded by∑k−1

i=1 Pr ([)h1(xk) = h1(xi)].

Then, we used the fact that Pr ([)h1(xk) = h1(xj)] ≤ 1/n1.5 for every i (and
similarly for h2), which holds for pairwise independent functions as well as for
truly random function. Hence the bound on the expected number of collisions
from (a) holds here as well.

To get an efficient construction, we use the pairwise independent hash family
presented in class, whose description size if O(logm) where m is the universe size
(as opposed to O(n logm) for a truly random function).

(c) We sample h1, h2 independently from the pairwise independent hash family pre-
sented in class, and start bashing the elements into the tables one by one. Mean-
ing, for each item we compute both of the candidate location. If at least one of
them is empty, we insert the item there. Otherwise, if both are full (i.e. bashing
collision), we abort and restart the algorithm. Each such attempt takes O(n)
time, since processing an element takes O(1) time.

Problem Set 4 Solutions 9

By part (b) the expected number of collisions in each attempt is 5/6, so by
Markov’s inequality, with probability at least 1/6 we get less than 1 collision,
which means a perfect bash. Hence in expectation we perform at most 6 attempts
until a successful one, so the total expected running time is O(n).

Since a pairwise independent hash function (from the family presented in class)
has description size 2 logm, and we use two such functions, the total description
size of the bash is O(logm).

(d) If we map our n items to k candidate locations in an array of size n1+1/k, our
collision odds work out as above and we get a constant number of collisions.
Similarly, k random 2-universal hash families, each mapping to a set of size
n1+1/k, has a constant probability of being perfect for any particular set of items,
so the set of all such functions provides a perfect family (of polynomial size for
any constant k). This gives a tradeoff of k probes for perfect hashing in space
O(n1+1/k).

Note that while we can achieve perfect hashing to O(n) space, the resulting family
does not have polynomial size (since a different, subsidiary hash function must
be chosen for each sub-hash-table).

