
6.856 — Randomized Algorithms

Spring Term, 2021

March 10, 2021 — Problem Set 4, Due 3/17

Problem 1. Improving the two-choice bound.

(a) In class we proved that the two-choices approach improves the maximum load
to O(log log n). A generalization is that choosing the least loaded of d choices
reduces the maximum load to O(logd log n). Explain what changes to the proof
are needed to derive this result. Give only the diffs; do not bother writing a
complete proof.

(b) Optional: Suppose that instead of making two choices at random, you divide
the bins into a left and right half and break all ties by putting items in the
left bin. Show that the maximum load improves by a constant factor, from
O(log log n/ log 2) to O(log log n/2 log φ) where φ = (1 +

√
5)/2 is the golden

ratio. Again, only the diffs are required. Hint: for the number of height i bins
on each side, use different recurrences βi for the left side and γi for the right side.
Show that βi+1 ≤ c1βiγi/n while γi+1 ≤ c2βi+1γi/n.

(c) Optional: Generalize (b) to d bins, showing a load of O((log log n)/d).

Problem 2. A set of variables is k-way independent if every subset of at most k of them is
mutually independent.

(a) Suppose n balls are placed uniformly at random in n bins. Let Cijk = 1 if balls
i, j, k are all placed in the same bin. Compute E[

∑
Cijk].

(b) Suppose a bin contains m items. Give a lower bound on
∑
Cijk.

(c) Conclude that the maximum bin size is probably O(n1/3).

(d) Argue this result holds so long as ball locations are 3-way independent.

(e) Consider the following hash function from Zp → Zp. Choose three random
values a, b, c ∈ Zp and define habc(x) = ax2 + bx + c. Prove that for any three
x1 6= x2 6= x3 ∈ Zp, the hash values habc(xi) are mutually independent. In other
words, habc generates three-way-independent values. Hint: you may use without
proof the determinant of a Vandemonde Matrix.

1



This result generalizes in the obvious way to k-way independent hash functions. In particular,
setting k = O(log n) is sufficient to yield a maximum load of O((log n)/ log log n).

Problem 3. Cuckoo hashing is nice, but does cost a factor of two in space (our analysis
required 2m < n to work). Develop a related approach that uses less space while still
guaranteeing worst-case constant-time lookups. Use the following ideas:

• Probing more than twice in a table increases the chances of finding an empty cell.

• If after some probes you fail to find an empty cell, move the failed item into an “overflow”
table that uses cukoo hashing

Use this to achieve constant-time lookups using only (1 + ε)m space for any constant ε.
Determine the best tradeoffs you can between number of probes required and amount of
space used. You may use the uniform hashing assumption.

Problem 4. Another problem with the distributed caching system we discussed is that it
is hard to keep track of which machines are up or down. Different clients may learn about
different caches’ states at different times. And if different clients have different opinions
about which caches are up, they will have different opinions about which cache to contact
to retrieve a given item. Suppose that each of the n clients knows about at least half of the
caches that are up at a any given time. Prove that with high probability, O(log n) caches
will be asked to deal with any given data item, regardless of the number m of caches. You
may use the uniform hashing assumption.

Problem 5—This problem should be done without collaboration. In class we ar-
gued that a consistent hash function (without replication) could be evaluated in O(logm)
time by putting the bucket IDs in a binary search tree. Argue that this can be improved to
O(1) time in expectation, and O(log logm) with high probability, using only O(m) space for
the data structure. Hint: Use the fact that the bucket positions are random, and consider
breaking the ring into m equal sized intervals that could be represented as a size-m array.

Problem 6—Optional. In class we showed how to construct perfect hash functions that
can be evaluated in constant time while producing no collisions at all. Perfect hashing is nice,
but does have the drawback of taking quadratic space. Consider the following alternative
approach to producing a perfect hash table that uses less space. Consider the following
alternative approach to producing a perfect hash function with a small description. Define
bi-bucket hashing, or bashing, as follows. Given n items, allocate two arrays of size n1.5.
When inserting an item, map it to one bucket in each array, and place it in the emptier of
the two buckets.

2



(a) Suppose a random function (i.e., all function values are uniformly random and
mutually independent) is used to map each item to buckets. Give a good upper
bound on the expected number of collisions (i.e., the number of pairs of items
that are placed in the same bucket).

Hint: What is the probability that the kth inserted item collides with some
previously inserted item?

(b) Argue that bashing can be implemented efficiently, with the same expected out-
come as in (a), using the ideas from 2-universal hashing.

(c) Conclude an algorithm with linear expected time (ignoring array initialization)
for identifying a perfect bash function for a set of n items. How large is the
description (the space required to encode the function) of the resulting bash
function?

(d) (OPTIONAL) Generalize the above approach to use less space by exploiting
tri-bucket hashing (trashing), quad-bucket hashing (quashing), and so on.

3


