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Problem Set 3 Solutions

Problem 1. (a) Instead, let’s consider a sequence of k coin flips. We look at the
probability of getting at least n heads in that sequence. That is, let

Yi =

{
1 : if the i-th coin flip is heads
0 : otherwise

be an indicator random variable. Then we let Y =
∑k

i=1 Yi.

There is a direct mapping between the problem if you assume the same random
flips. That is, consider getting a value of X1 = x1. We have the same chance of
getting Y1 = . . . = Yx1−1 = 0 and Yx1 = 1. Similarly, consider Xi = xi. Then
we have Y∑i−1

j=1 xi+1 = . . . = Y∑i
j=1 xi−1 = 0 and Y∑i

j=1 xi
= 1 with probability

Pr[Xi = xi]. Basically, if some Xi = xi, then we have a mapping to xi− 1 values
of j such that Yj = 0 and 1 value of j such that Yj = 1.

We claim that
Pr[X = k] = Pr[Y = n in k flips] .

This fact should be somewhat obvious given the mapping. Each Xi = xi cor-
responds to xi total flips in the sequence of coin flips. Moreover, each Xi cor-
responds to exactly one head in the sequence. Thus, if X = k, then we have
a correspondence to a sequence of k flips with n heads, so Y = n with equal
probability.

We can generalize to

Pr[X ≥ k] = Pr[Y ≤ n in k flips] .

If we increase the value of X on the LHS, then there are fewer heads in the first
k flips. Thus, Pr[Y ≤ n] decreases commensurately.

Once we have this reduction, we can use a Chernoff bound, because we have Yi
are indicator random variables. We note that E[Yi] = 1/2 (it’s just a coin flip),
giving us µY = E[Y ] =

∑k
i=1 E[Yi] = k/2.

Pr[Y ≤ (1− δ)µY in k flips] ≤ e−δ
2µY /2

= e−δ
2k/4 . (1)

If we set k = (1 + ε)2n, and (1− δ)µY = n, we get

Pr[X ≥ (1 + ε)µX ] = Pr[Y ≤ (1− δ)µY in (1 + ε)µX flips]

= Pr[Y ≤ n in (1 + ε)µX flips]

≤ e−δ
2(1+ε)n/2 . (2)
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Then we just need to substitute in for δ. We have (1− δ)µY = n, so (1− δ)(1 +
ε)n = n, or δ = ε/(1 + ε), which gives us

Pr[X ≥ (1 + ε)2n] ≤ e−ε
2n/(2+2ε) .

(b) As expected, this derivation is very similar to what we did in class.

We start by exponentiating things and applying Markov’s inequality to get

Pr[X > (1 + ε)µ] = Pr
[
etX > et(1+ε)µ

]
≤

E
[
etX
]

et(1+ε)µ
. (3)

We take advantage of the independence of our variables to get

E
[
etX
]

= E
[
e
∑
tXi
]

= E
[∏

etXi

]
=

∏
E
[
etXi

]
. (4)

Now, we look at the geometric distribution to solve for E[etXi ]:

E
[
etXi

]
=

1

2
et +

1

4
e2t +

1

8
e4t + . . .

=
∞∑
k=1

(
et

2

)k
=

et/2

1− et/2
, if et < 2

=
et

2− et
. (5)

Substituting back in our formula for E[etX ], we get

E
[
etX
]

=
∏

E
[
etXi

]
=

(
et

2− et

)n
=

(
et

2− et

)µ/2
. (6)
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So, for our overall bound, we have

Pr[X > (1 + ε)µ] = Pr
[
etX > et(1+ε)µ

]
≤

(
et

2− et

)µ/2(
1

et(1+ε)µ

)
=

(
et

2− et

)µ/2(
1

e2t(1+ε)

)µ/2
=

(
1

2− et

)µ/2(
1

et+2tε)

)µ/2
=

(
1

(2− et)(et(1+2ε))

)µ/2
. (7)

This inequality holds for all t, so we want to pick t as to minimize Pr[X >
(1 + ε)µ]. This probability is minimized when et = (1 + 2ε)/(1 + ε).

Plugging back in, we get

Pr[X > (1 + ε)µ] ≤
(

1

(2− et)(et(1+2ε))

)µ/2
=

(
1

(2− et)(et)1+2ε

)µ/2
=

(
1(

2− 1+2ε
1+ε

) (
1+2ε
1+ε

)1+2ε

)µ/2

=

(
1 + ε(

1+2ε
1+ε

)1+2ε

)µ/2

=

(
(1 + ε)

(
1 + ε

1 + 2ε

)1+2ε
)µ/2

=

(
(1 + ε)

(
1− ε

1 + 2ε

)1+2ε
)µ/2

≤
(
(1 + ε)e−ε

)µ/2
=

(
1 + ε

eε

)n
. (8)

Problem 2. Let’s consider an item x in a recursive call on n elements. We call a pivoting
round good for x if x ends up in a subproblem of size at most 3n/4. Naturally, each time
x ends up in such a subproblem the problem size reduces by a factor of 4/3, so x can be in
at most log4/3 n such problems.
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We can think of x as belonging to at most log4/3 n segments, where a segment is some
number of bad rounds followed by a good round. We let Xi be the value of the i-th segment
for x. That is, if Xi = k, then after the (i−1)-st good round for x, we have k−1 bad rounds
followed by the i-th good round. Wow, would you look at that? The Xi follow a geometric
distribution as in the previous problem.1 Naturally we let X =

∑
i=≤lgnXi.

So now we just apply the bound from the previous problem. We can use the part (a) bound
from the previous problem, to get

Pr[X ≥ (1 + ε)2 log4/3 n] ≤ e−ε
2 log4/3 n/(2+2ε) .

For our purposes, we can set ε = 5 to get

Pr[X ≥ 12 log4/3 n] ≤ e−25 log4/3 n/12 ≤ e−2 log4/3 n ≤ e−2 lgn = 1/n2 .

Notice that increasing ε increases the power of n, so this is really a high probability bound.

Alright, so we have a high probability bound that it takes O(lg n) rounds before x is in a
subproblem of size 1. But there are n different elements x that we can be talking about,
so we take the union bound, giving us probability at most 1/n (or 1/nc−1 if we adjust the
constant) that any element has not been reduced to a subproblem of size 1. Thus, with high
probability, all elements are completed by O(lg n) steps (i.e., this many levels of recursion).
At each level of recursion, we do at most n comparisons (counting all the subproblems), so
with high probability, the total number of comparisons (or work) is O(n lg n).

Problem 3. (a) Let’s consider just the node with an address of all 0s, denoted by
0(n). We argue that there are Ω(

√
N) packets routed through this node, so the

total routing must take Ω(
√
N) steps.

Consider all packets coming from ai ◦0(n/2), where 0(n/2) is n/2 0s. There are 2n/2

such packets, because ai is n/2 bits long. The bit fixing strategy corrects each
bit in order. Thus, ai is corrected to 0(n/2) before the second half of the string
is touched. Therefore, each of these packets goes through O(n). Again, there are
2n/2 = 2lgN/2 = N1/2 such packets, so we’re done.

(b) Again, we argue that a lot of packets will go through 0(n) with high probabil-
ity. Specifically, we argue that there are at least 2Ω(n) such packets with high
probability..

We again consider a subset of packets starting from ai ◦ 0(n/2). We let S ={
ai ◦ 0(n/2) | ai contains k 1s

}
. For every si ∈ S, we have an indicator random

1The mean is at most 2. Having a smaller mean only helps (stochastic domination), so let’s just argue
that the mean is at most 2. i.e., with probability at least 1/2, a round is good. Let xi be the element of
rank i. Well, with probability 1/2, we pick a pivot between xn/4 and x3n/4. For any pivot within this range,
both subproblems are smaller than 3n/4. Thus, x is in a subproblem of size at most 3n/4, and x has a good
round. We can also have a good round for x for some other partition choices, but it doesn’t matter, we just
need to show that the probability is at least 1/2.
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variable Xi, with

Xi =

{
1 : if si goes through 0(n)

0 : otherwise

Similarly, X =
∑
Xi.

Note that |S| =
(
n/2
k

)
, because we are just choosing k of n/2 locations to be 1s.

So now let’s look at E[Xi] = Pr[si goes through 0(n)]. The packet from si goes
through 0(n) if we choose to fix the k bits in the first half of the string to 0s before
fixing the corresponding k bits in the second half to 1s. Since there are 2k bits
to choose from, and we need to choose k of them first, we have

E[Xi] =
1(
2k
k

) ≥ ( k

2ek

)k
=

(
1

2e

)k
.

Thus, we have

E[X] = E

(n/2
k )∑
i=1

Xi


=

(n/2
k )∑
i=1

E[Xi]

=

(
n/2

k

)
E[Xi]

≥
(
n/2

k

)(
1

2e

)k
≥

( n
2k

)k ( 1

2e

)k
=

( n

4ek

)k
. (9)

So now we just choose k = n/(8e). Then we have E[X] ≥ 2n/(8e). Next, we apply
the Chernoff bound to get

Pr[X < (1− ε)E[X]] ≤ e−ε
2E[X]/2

≤ e−ε
22n/(8e)/2

= e−ε
22n/(8e)−1

. (10)

Suppose we choose something simple, like ε = 1/2. Then we have Pr[X <

1/2E[X]] ≤ e−2n/(8e)−3
= e−N

1/(8e)/8, which is exponentially small in N . Note
that E[X] ≥ 2Ω(n) from above, so we have

Pr[X < 1/2E[X]] ≤ Pr[X < 2Ω(n)] ≤ e−N
1/(8e)/8 .
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So with high probability, we have 2Ω(n) packets passing through 0(n), and the
total routing time must be at least 2Ω(n).

Problem 4. (a) We start with the fact

Pr[k balls in bin 1] =

(
n

k

)(
1

n

)k (
1− 1

n

)n−k
.

I don’t feel the need to argue this probability is correct, because we did this in
class. Anyway, we just continue from here:

Pr[k balls in bin 1] =

(
n

k

)(
1

n

)k (
1− 1

n

)n−k
≥

(n
k

)k ( 1

n

)k (
1− 1

n

)n−k
=

(
1

k

)k (
1− 1

n

)n−k
≥

(
1

k

)k (
1

2e

)
, for n ≥ 2

=
1

2e

(
1

k

)k
. (11)

Now, we just set k = c lg n/ lg lg n, giving us

Pr[c lg n/ lg lg n balls in bin 1] ≥ 1

2e

(
1

c lg n/ lg lg n

)c lgn/ lg lgn

=
1

2e

(
lg lg n

c lg n

)c lgn/ lg lgn

≥
(

1

c lg n

)c lgn/ lg lgn

, for n ≥ 4

=

(
1

c2lg lgn

)c lgn/ lg lgn

=
1

c2lg lgn·(c lgn/ lg lgn)

=
1

c2c lgn

=
1

cnc

= Ω(n−c) . (12)

Setting c = 1/2, we get Pr[lg n/2 lg lg n balls in bin 1] ≥ Ω(1/
√
n).
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(b) Let us first argue that conditioning on a bin not having k balls only increases the
probability that the next bin does have k balls. We use induction on number of
bins we are conditioning on. Let Bi be the event that bin i has at least k balls.
The base case is as follows, for i > 1:

Pr[Bi] = Pr[Bi|B1] · Pr[B1] + Pr[Bi|¬B1] · Pr[¬B1]

≤ Pr[Bi|¬B1] · Pr[B1] + Pr[Bi|¬B1] · Pr[¬B1] (13)

= Pr[Bi|¬B1](Pr[B1] + Pr[¬B1])

= Pr[Bi|¬B1] . (14)

We notice that Bi is more likely if B1 does not have k balls, because then there
are more balls that can be in Bi.

So now we assume that it works condition on up to k events, and we condition
on the next one. Note that we are solving for every event Bi, with i > k+ 1. We
have

Pr[Bi] ≤ Pr[Bi|¬B1 ∧ ¬B2 ∧ . . . ∧ ¬Bk]

= Pr[Bi|¬B1 ∧ . . . ∧ ¬Bk ∧Bk+1] · Pr[Bk+1]

+Pr[Bi|¬B1 ∧ . . . ∧ ¬Bk ∧ ¬Bk+1] · Pr[¬Bk+1]

≤ Pr[Bi|¬B1 ∧ . . . ∧ ¬Bk ∧ ¬Bk+1]

(15)

The argument is the same as in the base case.

Thus, we have concluded that conditioning on bins not having k balls increases
the chances that the next bin does. Specifically, the induction ends at proving

Pr[Bi] ≤ Pr[Bi|¬B1 ∧ . . . ∧ ¬Bi−1] .

Conversely, we have

Pr[¬Bi] ≥ Pr[¬Bi|¬B1 ∧ . . . ∧ ¬Bi−1] ,

because this is exactly 1− Pr[Bi].

So now let’s solve the real problem, with k = lg n/2 lg lg n. From part (a), we
have

Pr[Bi] = Pr[Bin i has at least lg n/2 lg lg n balls] ≥ 1

2
√
n
.

Thus, we have

Pr[¬Bi] = Pr[Bin i has at most lg n/2 lg lg n balls] ≤ 1− 1

2
√
n
.
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So now we just solve for all bins having at most this many balls:

Pr[all bins have ≤ lg n/2 lg lg n balls]

= Pr[¬B1] · Pr[¬B2|¬B1] · · ·Pr[¬Bn|¬B1 ∧ . . . ∧ ¬Bn−1]

≤ Pr[¬B1] · Pr[¬B2] · · ·Pr[¬Bn]

≤
(

1− 1

2
√
n

)n
≤ e

−
(

1
2
√

n

)
n

= e−
√
n/2 .

So the probability is exponentially small that all bins have have fewer than
lg n/2 lg lg n balls. Therefore, we conclude that with high probability, some bin
has Ω(lg n/ lg lg n) balls.

Alternative solution: we can show Pr[¬Bi] ≥ Pr[¬Bi|¬B1 ∧ . . . ∧ ¬Bi−1]
via a more formal proof. First, by Bayes, the above inequality is equivalent to
Pr[¬B1 ∧ . . . ∧ ¬Bi−1] ≥ Pr[¬B1 ∧ . . . ∧ ¬Bi−1|¬Bi]. Similar to the base case of
the above solution, it suffices to show

Pr[¬B1 ∧ . . . ∧ ¬Bi−1|Bi] ≥ Pr[¬B1 ∧ . . . ∧ ¬Bi−1|¬Bi].

We consider the probability Pr[¬B1∧. . .∧¬Bi−1| bin i has x balls] for any integer
x, which we will denote by f(x). When bin i has x balls, the rest bins have n−x
balls in total. Thus, conditioned on bin i having x balls, the distribution of balls
in other bins behave as if we put n − x balls randomly into n − 1 bins. The
probability that ¬B1 ∧ . . . ∧ ¬Bi−1 happens is obviously smaller when n − x is
larger. Hence, f(x) is nondecreasing when x increases. We can write

Pr[¬B1 ∧ . . . ∧ ¬Bi−1|Bi] =
∑
x≥k

Pr[bin i has x balls]

Pr[Bi]
f(x).

and similarly,

Pr[¬B1 ∧ . . . ∧ ¬Bi−1|¬Bi] =
∑
x<k

Pr[bin i has x balls]

Pr[¬Bi]
f(x).

We notice that both Pr[¬B1∧ . . .∧¬Bi−1|Bi] and Pr[¬B1∧ . . .∧¬Bi−1|¬Bi] are
weighted averages of f(x), but the x values in the expression of Pr[¬B1 ∧ . . . ∧
¬Bi−1|Bi] are larger than those in the expression of Pr[¬B1 ∧ . . . ∧ ¬Bi−1|¬Bi].
Since f(x) is nondecreasing, we conclude that Pr[¬B1 ∧ . . . ∧ ¬Bi−1|Bi] ≥
Pr[¬B1 ∧ . . . ∧ ¬Bi−1|¬Bi].


