Problem 1. (a) Instead, let’s consider a sequence of k coin flips. We look at the probability of getting at least n heads in that sequence. That is, let

$$Y_i = \begin{cases} 1 & \text{if the } i\text{-th coin flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

be an indicator random variable. Then we let $Y = \sum_{i=1}^{k} Y_i$. There is a direct mapping between the problem if you assume the same random flips. That is, consider getting a value of $X_1 = x_1$. We have the same chance of getting $Y_1 = \ldots = Y_{x_1-1} = 0$ and $Y_{x_1} = 1$. Similarly, consider $X_i = x_i$. Then we have $Y_{\sum_{j=1}^{i-1} x_{i+1}} = \ldots = Y_{\sum_{j=1}^{i-1} x_{i-1}} = 0$ and $Y_{\sum_{j=1}^{i-1} x_{i}} = 1$ with probability $Pr[X_i = x_i]$. Basically, if some $X_i = x_i$, then we have a mapping to $x_i - 1$ values of j such that $Y_j = 0$ and 1 value of j such that $Y_j = 1$.

We claim that

$$Pr[X = k] = Pr[Y = n \text{ in } k \text{ flips}] .$$

This fact should be somewhat obvious given the mapping. Each $X_i = x_i$ corresponds to x_i total flips in the sequence of coin flips. Moreover, each X_i corresponds to exactly one head in the sequence. Thus, if $X = k$, then we have a correspondence to a sequence of k flips with n heads, so $Y = n$ with equal probability.

We can generalize to

$$Pr[X \geq k] = Pr[Y \leq n \text{ in } k \text{ flips}] .$$

If we increase the value of X on the LHS, then there are fewer heads in the first k flips. Thus, $Pr[Y \leq n]$ decreases commensurately.

Once we have this reduction, we can use a Chernoff bound, because we have Y_i are indicator random variables. We note that $E[Y_i] = 1/2$ (it’s just a coin flip), giving us $\mu_Y = E[Y] = \sum_{i=1}^{k} E[Y_i] = k/2$.

$$Pr[Y \leq (1 - \delta)\mu_Y \text{ in } k \text{ flips}] \leq e^{-\delta^2 \mu_Y / 2} = e^{-\delta^2 k / 4} . \quad (1)$$

If we set $k = (1 + \epsilon)2n$, and $(1 - \delta)\mu_Y = n$, we get

$$Pr[X \geq (1 + \epsilon)\mu_X] = Pr[Y \leq (1 - \delta)\mu_Y \text{ in } (1 + \epsilon)\mu_X \text{ flips}]$$

$$= Pr[Y \leq n \text{ in } (1 + \epsilon)\mu_X \text{ flips}]$$

$$\leq e^{-\delta^2 (1 + \epsilon) n / 2} . \quad (2)$$
Then we just need to substitute in for δ. We have $(1 - \delta)\mu_Y = n$, so $(1 - \delta)(1 + \epsilon)n = n$, or $\delta = \epsilon/(1 + \epsilon)$, which gives us

$$Pr[X \geq (1 + \epsilon)2n] \leq e^{-\epsilon^2 n/(2 + 2\epsilon)}.$$

(b) As expected, this derivation is very similar to what we did in class. We start by exponentiating things and applying Markov’s inequality to get

$$Pr[X > (1 + \epsilon)\mu] = Pr\left[e^{tX} > e^{t((1 + \epsilon)\mu)}\right] \leq \frac{E[e^{tX}]}{e^{t((1 + \epsilon)\mu)}}. \quad (3)$$

We take advantage of the independence of our variables to get

$$E[e^{tX}] = E\left[e^{t\sum_i X_i}\right] = E\left[\prod_i e^{tX_i}\right] = \prod_i E[e^{tX_i}]. \quad (4)$$

Now, we look at the geometric distribution to solve for $E[e^{tX_i}]$:

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{4}e^{2t} + \frac{1}{8}e^{4t} + \ldots = \sum_{k=1}^{\infty} \left(\frac{e^t}{2}\right)^k = \frac{e^t/2}{1-e^t/2}, \text{ if } e^t < 2 = \frac{e^t}{2-e^t}. \quad (5)$$

Substituting back in our formula for $E[e^{tX}]$, we get

$$E[e^{tX}] = \prod_i E[e^{tX_i}] = \left(\frac{e^t}{2-e^t}\right)^n = \left(\frac{e^t}{2-e^t}\right)^{\mu/2}. \quad (6)$$
So, for our overall bound, we have

\[
Pr[X > (1 + \epsilon)\mu] = Pr[e^{tX} > e^{t(1+\epsilon)\mu}]
\]
\[
\leq \left(\frac{e^t}{2 - e^t} \right)^{\mu/2} \left(\frac{1}{e^{t(1+\epsilon)\mu}} \right)^{\mu/2}
\]
\[
= \left(\frac{e^t}{2 - e^t} \right)^{\mu/2} \left(\frac{1}{e^{2t(1+\epsilon)}} \right)^{\mu/2}
\]
\[
= \left(\frac{1}{2 - e^t} \right)^{\mu/2} \left(\frac{1}{e^{t+2\epsilon}} \right)^{\mu/2}
\]
\[
= \left(\frac{1}{(2 - e^t)(e^{t(1+2\epsilon)})} \right)^{\mu/2} .
\]

(7)

This inequality holds for all \(t \), so we want to pick \(t \) as to minimize \(Pr[X > (1 + \epsilon)\mu] \). This probability is minimized when \(e^t = (1 + 2\epsilon)/(1 + \epsilon) \).

Plugging back in, we get

\[
Pr[X > (1 + \epsilon)\mu] \leq \left(\frac{1}{(2 - e^t)(e^{t(1+2\epsilon)})} \right)^{\mu/2}
\]
\[
= \left(\frac{1}{(2 - e^t)(e^t)^{1+2\epsilon}} \right)^{\mu/2}
\]
\[
= \left(\frac{1}{(2 - \frac{1+2\epsilon}{1+\epsilon})(\frac{1+2\epsilon}{1+\epsilon})^{1+2\epsilon}} \right)^{\mu/2}
\]
\[
= \left(\frac{1 + \epsilon}{(\frac{1+2\epsilon}{1+\epsilon})^{1+2\epsilon}} \right)^{\mu/2}
\]
\[
= \left((1 + \epsilon) \left(\frac{1 + \epsilon}{1 + 2\epsilon} \right)^{1+2\epsilon} \right)^{\mu/2}
\]
\[
= \left((1 + \epsilon) \left(1 - \frac{\epsilon}{1 + 2\epsilon} \right)^{1+2\epsilon} \right)^{\mu/2}
\]
\[
\leq \left((1 + \epsilon)e^{-\epsilon} \right)^{\mu/2}
\]
\[
= \left(\frac{1 + \epsilon}{e^\epsilon} \right)^n .
\]

(8)

Problem 2. Let’s consider an item \(x \) in a recursive call on \(n \) elements. We call a pivoting round **good** for \(x \) if \(x \) ends up in a subproblem of size at most \(3n/4 \). Naturally, each time \(x \) ends up in such a subproblem the problem size reduces by a factor of \(4/3 \), so \(x \) can be in at most \(\log_{4/3} n \) such problems.
Problem 3 Solutions

We can think of x as belonging to at most $\log_{4/3} n$ segments, where a segment is some number of bad rounds followed by a good round. We let X_i be the value of the i-th segment for x. That is, if $X_i = k$, then after the $(i-1)$-st good round for x, we have $k-1$ bad rounds followed by the i-th good round. Wow, would you look at that? The X_i follow a geometric distribution as in the previous problem. Naturally we let $X = \sum_{i=1}^{\log n} X_i$.

So now we just apply the bound from the previous problem. We can use the part (a) bound from the previous problem, to get

$$\Pr[X \geq (1 + \epsilon)2\log_{4/3} n] \leq e^{-\epsilon^2 \log_{4/3} n/(2+2\epsilon)}.$$

For our purposes, we can set $\epsilon = 5$ to get

$$\Pr[X \geq 12 \log_{4/3} n] \leq e^{-25 \log_{4/3} n/12} \leq e^{-2 \log_{4/3} n} \leq e^{-2 \log n} = 1/n^2.$$

Notice that increasing ϵ increases the power of n, so this is really a high probability bound. Alright, so we have a high probability bound that it takes $O(\log n)$ rounds before x is in a subproblem of size 1. But there are n different elements x that we can be talking about, so we take the union bound, giving us probability at most $1/n$ (or $1/n^c-1$ if we adjust the constant) that any element has not been reduced to a subproblem of size 1. Thus, with high probability, all elements are completed by $O(\log n)$ steps (i.e., this many levels of recursion). At each level of recursion, we do at most n comparisons (counting all the subproblems), so with high probability, the total number of comparisons (or work) is $O(n \log n)$.

Problem 3. (a) Let’s consider just the node with an address of all 0s, denoted by 0^n. We argue that there are $\Omega(\sqrt{N})$ packets routed through this node, so the total routing must take $\Omega(\sqrt{N})$ steps.

Consider all packets coming from $a \circ 0^{n/2}$, where $0^{n/2}$ is $n/2$ 0s. There are $2^{n/2}$ such packets, because a_i is $n/2$ bits long. The bit fixing strategy corrects each bit in order. Thus, a_i is corrected to $0^{n/2}$ before the second half of the string is touched. Therefore, each of these packets goes through $O(n)$. Again, there are $2^{n/2} = 2^{\log N/2} = N^{1/2}$ such packets, so we’re done.

(b) Again, we argue that a lot of packets will go through 0^n with high probability. Specifically, we argue that there are at least $2^{\Omega(n)}$ such packets with high probability.

We again consider a subset of packets starting from $a \circ 0^{n/2}$. We let $S = \{a \circ 0^{n/2} | a_i$ contains k 1s$\}$. For every $s_i \in S$, we have an indicator random

\footnote{The mean is at most 2. Having a smaller mean only helps (stochastic domination), so let’s just argue that the mean is at most 2. i.e., with probability at least 1/2, a round is good. Let x_i be the element of rank i. Well, with probability 1/2, we pick a pivot between $x_{n/4}$ and $x_{3n/4}$. For any pivot within this range, both subproblems are smaller than $3n/4$. Thus, x is in a subproblem of size at most $3n/4$, and x has a good round. We can also have a good round for x for some other partition choices, but it doesn’t matter, we just need to show that the probability is at least 1/2.}
variable X_i, with

$$X_i = \begin{cases}
1 & : \text{if } s_i \text{ goes through } 0^{(n)} \\
0 & : \text{otherwise}
\end{cases}$$

Similarly, $X = \sum X_i$.

Note that $|S| = \binom{n/2}{k}$, because we are just choosing k of $n/2$ locations to be 1s. So now let’s look at $E[X_i] = Pr[s_i \text{ goes through } 0^{(n)}]$. The packet from s_i goes through $0^{(n)}$ if we choose to fix the k bits in the first half of the string to 0s before fixing the corresponding k bits in the second half to 1s. Since there are $2k$ bits to choose from, and we need to choose k of them first, we have

$$E[X_i] = \frac{1}{\binom{2k}{k}} \geq \left(\frac{k}{2ek} \right)^k = \left(\frac{1}{2e} \right)^k.$$

Thus, we have

$$E[X] = E \left[\sum_{i=1}^{\binom{n/2}{k}} X_i \right] = \sum_{i=1}^{\binom{n/2}{k}} E[X_i] = \binom{n/2}{k} E[X_i] \geq \binom{n/2}{k} \left(\frac{1}{2e} \right)^k \geq \left(\frac{n}{2k} \right)^k \left(\frac{1}{2e} \right)^k = \left(\frac{n}{4ek} \right)^k.$$

So now we just choose $k = n/(8e)$. Then we have $E[X] \geq 2^{n/(8e)}$. Next, we apply the Chernoff bound to get

$$Pr[X < (1 - \epsilon)E[X]] \leq e^{-\epsilon^2E[X]/2} \leq e^{-\epsilon^22^{n/(8e)}/2} = e^{-\epsilon^22^{n/(8e)-1}}.$$

Suppose we choose something simple, like $\epsilon = 1/2$. Then we have $Pr[X < 1/2E[X]] \leq e^{-2^{n/(8e)-3}} = e^{-N^{1/(8e)/8}}$, which is exponentially small in N. Note that $E[X] \geq 2^{\Omega(n)}$ from above, so we have

$$Pr[X < 1/2E[X]] \leq Pr[X < 2^{\Omega(n)}] \leq e^{-N^{1/(8e)/8}}.$$
So with high probability, we have $2^{\Omega(n)}$ packets passing through $0^{(n)}$, and the total routing time must be at least $2^{\Omega(n)}$.

Problem 4. (a) We start with the fact

$$Pr[k \text{ balls in bin 1}] = \binom{n}{k} \left(\frac{1}{n} \right)^k \left(1 - \frac{1}{n} \right)^{n-k} .$$

I don’t feel the need to argue this probability is correct, because we did this in class. Anyway, we just continue from here:

$$Pr[k \text{ balls in bin 1}] = \binom{n}{k} \left(\frac{1}{n} \right)^k \left(1 - \frac{1}{n} \right)^{n-k} \geq \left(\frac{n}{k} \right)^k \left(\frac{1}{n} \right)^k \left(1 - \frac{1}{n} \right)^{n-k} = \left(\frac{1}{k} \right)^k \left(1 - \frac{1}{n} \right)^{n-k} \geq \left(\frac{1}{k} \right)^k \left(\frac{1}{2e} \right)^{n-k} \geq \left(\frac{1}{c} \right)^k \left(\frac{1}{c} \right)^{n-k} \cdot \left(\frac{1}{c} \right)^k \left(\frac{1}{2e} \right)^{n-k}, \quad \text{for } n \geq 2$$

$$= \frac{1}{2e} \left(\frac{1}{k} \right)^k \cdot \left(1 - \frac{1}{n} \right)^{n-k} . \quad \text{(11)}$$

Now, we just set $k = c \log n / \log \log n$, giving us

$$Pr[c \log n / \log \log n \text{ balls in bin 1}] \geq \frac{1}{2e} \left(\frac{1}{c \log n / \log \log n} \right)^{c \log n / \log \log n} = \frac{1}{2e} \left(\frac{\log \log n}{c \log n} \right)^{c \log n / \log \log n} \geq \left(\frac{1}{c \log n} \right)^{c \log n / \log \log n}, \quad \text{for } n \geq 4$$

$$= \left(\frac{1}{c^2 \log n} \right)^{c \log n / \log \log n} = \frac{1}{c^2 \log n \cdot (c \log n / \log \log n)} = \frac{1}{c^2 \log n - c \log n / \log \log n} = \frac{1}{c^2 \log n} = \frac{1}{c \log n}$$

$$= \Omega(n^{-c}) \cdot \left(\frac{1}{c \log n} \right)^{c \log n / \log \log n} = \Omega(n^{-c}). \quad \text{(12)}$$

Setting $c = 1/2$, we get $Pr[\log n / 2 \log \log n \text{ balls in bin 1}] \geq \Omega(1/\sqrt{n})$.
(b) Let us first argue that conditioning on a bin not having \(k \) balls only increases the probability that the next bin does have \(k \) balls. We use induction on number of bins we are conditioning on. Let \(B_i \) be the event that bin \(i \) has at least \(k \) balls.

The base case is as follows, for \(i > 1 \):

\[
\Pr[B_i] = \Pr[B_i|B_1] \cdot \Pr[B_1] + \Pr[B_i|\neg B_1] \cdot \Pr[\neg B_1] \\
\leq \Pr[B_i|\neg B_1] \cdot \Pr[B_1] + \Pr[B_i|\neg B_1] \cdot \Pr[\neg B_1] \tag{13}
\]

\[
= \Pr[B_i|\neg B_1](\Pr[B_1] + \Pr[\neg B_1]) \\
= \Pr[B_i|\neg B_1]. \tag{14}
\]

We notice that \(B_i \) is more likely if \(B_1 \) does not have \(k \) balls, because then there are more balls that can be in \(B_i \).

So now we assume that it works condition on up to \(k \) events, and we condition on the next one. Note that we are solving for every event \(B_i \), with \(i > k + 1 \).

We have

\[
\Pr[B_i] \leq \Pr[B_i|\neg B_1 \land \ldots \land \neg B_k] \\
= \Pr[B_i|\neg B_1 \land \ldots \land \neg B_k \land B_{k+1}] \cdot \Pr[B_{k+1}] \\
+ \Pr[B_i|\neg B_1 \land \ldots \land \neg B_k \land \neg B_{k+1}] \cdot \Pr[\neg B_{k+1}] \\
\leq \Pr[B_i|\neg B_1 \land \ldots \land \neg B_k \land \neg B_{k+1}] \tag{15}
\]

The argument is the same as in the base case.

Thus, we have concluded that conditioning on bins not having \(k \) balls increases the chances that the next bin does. Specifically, the induction ends at proving

\[
\Pr[B_i] \leq \Pr[B_i|\neg B_1 \land \ldots \land \neg B_{i-1}] .
\]

Conversely, we have

\[
\Pr[\neg B_i] \geq \Pr[\neg B_i|\neg B_1 \land \ldots \land \neg B_{i-1}] ,
\]

because this is exactly \(1 - \Pr[B_i] \).

So now let’s solve the real problem, with \(k = \lg n / 2 \lg \lg n \). From part (a), we have

\[
\Pr[B_i] = \Pr[\text{Bin } i \text{ has at least } \lg n / 2 \lg \lg n \text{ balls}] \geq \frac{1}{2\sqrt{n}} .
\]

Thus, we have

\[
\Pr[\neg B_i] = \Pr[\text{Bin } i \text{ has at most } \lg n / 2 \lg \lg n \text{ balls}] \leq 1 - \frac{1}{2\sqrt{n}} .
\]
So now we just solve for all bins having at most this many balls:

\[Pr[\text{all bins have } \leq \lg n/2 \lg \lg n \text{ balls}] \]
\[= Pr[\neg B_1] \cdot Pr[\neg B_2|\neg B_1] \cdots Pr[\neg B_n|\neg B_1 \wedge \ldots \wedge \neg B_{n-1}] \]
\[\leq Pr[\neg B_1] \cdot Pr[\neg B_2] \cdots Pr[\neg B_n] \]
\[\leq \left(1 - \frac{1}{2\sqrt{n}}\right)^n \]
\[\leq e^{-\frac{1}{2\sqrt{n}}} \]
\[= e^{-\sqrt{n}/2}. \]

So the probability is exponentially small that all bins have fewer than \(\lg n/2 \lg \lg n \) balls. Therefore, we conclude that with high probability, some bin has \(\Omega(\lg n/\lg \lg n) \) balls.

Alternative solution: we can show \(Pr[\neg B_i] \geq Pr[\neg B_i|\neg B_1 \wedge \ldots \wedge \neg B_{i-1}] \) via a more formal proof. First, by Bayes, the above inequality is equivalent to \(Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}] \geq Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|\neg B_i] \). Similar to the base case of the above solution, it suffices to show

\[Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|B_i] \geq Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|\neg B_i]. \]

We consider the probability \(Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}| \text{ bin } i \text{ has } x \text{ balls}] \) for any integer \(x \), which we will denote by \(f(x) \). When bin \(i \) has \(x \) balls, the rest bins have \(n - x \) balls in total. Thus, conditioned on bin \(i \) having \(x \) balls, the distribution of balls in other bins behave as if we put \(n - x \) balls randomly into \(n - 1 \) bins. The probability that \(\neg B_1 \wedge \ldots \wedge \neg B_{i-1} \) happens is obviously smaller when \(n - x \) is larger. Hence, \(f(x) \) is nondecreasing when \(x \) increases. We can write

\[Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|B_i] = \sum_{x \geq k} \frac{Pr[\text{bin } i \text{ has } x \text{ balls}]}{Pr[B_i]} f(x). \]

and similarly,

\[Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|\neg B_i] = \sum_{x < k} \frac{Pr[\text{bin } i \text{ has } x \text{ balls}]}{Pr[\neg B_i]} f(x). \]

We notice that both \(Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|B_i] \) and \(Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|\neg B_i] \) are weighted averages of \(f(x) \), but the \(x \) values in the expression of \(Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|B_i] \) are larger than those in the expression of \(Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|\neg B_i] \). Since \(f(x) \) is nondecreasing, we conclude that \(Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|B_i] \geq Pr[\neg B_1 \wedge \ldots \wedge \neg B_{i-1}|\neg B_i] \).