
A Review of Recent Results in Streaming Quantiles
A Reading Project for MIT 6.854

Abstract— Karnin, Lang, and Liberty have recently dis-
covered a randomized algorithm for streaming quantile
sketches that matches the lower bound, resolving the
randomized case of a longstanding open problem. This
paper is a beginner’s introduction. We build intuition
by analyzing several elementary approaches to quantile
sketches. Within this framework we explain how the best
known deterministic algorithm operates by dropping uncer-
tain items, and how the best previously known randomized
algorithm works by maximizing terms that contribute to
the Hoeffding concentration inequality. Finally we explain
how these techniques are combined and refined to create
the new KLL results.

I. INTRODUCTION

Karnin, Lang, and Liberty (KLL) [4] presented a new
algorithm at FOCS 2016 that is an optimal solution
to the long-standing open problem of efficient online
computation of an approximate quantile sketch. Their
randomized algorithm uses O(ε−1 log logδ−1) memory,
and they show this matches the lower bound.

This paper is a technical review and beginner’s guide that
is designed to help readers understand this exciting result.
We introduce the quantile sketch problem by analyzing
several important approaches including the previously
best known deterministic and randomized algorithms. We
culminate in a discussion of the KLL algorithm and the
intuition behind its design.

II. THE BASIC PROBLEM

How can we find the median of a huge stream?

Verifying a median on a stream is trivial in constant space:
just count the number of elements above and below the
candidate. However, finding a median is harder.

A Google search for ‘running median’ will list dozens
of articles with opinions on the best way to compute an
exact streaming median. This is all bad advice. Finding
an exact median of a one-pass stream is impractical,
because it requires O(n) memory.

*This work was done as a class project for MIT 6.854

A. The exact problem is expensive

A simple adversarial stream of odd length n can show
that a median-finder must use least dn/2e memory. Take
any algorithm that stores only m = bn/2c items. The
adversary begins with m+ 1 distinct values in sorted
order, after which some item x j must not be stored by
the algorithm. The adversary completes the stream with
m−1 items that balance the stream around x j, adding
j−1 higher items and m− j lower items. In the end, x j
is the median of the whole stream, and the algorithm
cannot output the median since it did not store x j.

B. The approximate problem is interesting

While exact median-finding is expensive, finding approx-
imate stream quantiles can be done economically even
in the face of an adversary. In this paper we will analyze
several comparison-based methods that can find an item
within εn rank of a stream median for any positive ε ,
while consuming less than n memory:

Sec. Algorithm Memory Based on

III. Batch ∼ n/2
IV. MRL [5] O(ε−1 log2(εn)) Batch
V. GK [2] O(ε−1 log(εn))

VI. Sample (r)1 O(ε−2 log(ε−1δ−1))
VII. ACHPWY [1] (r) O(ε−1 log1.5(ε−1) logδ−1) MRL, Sample

VIII. KLL [4] (r) O(ε−1 log logδ−1) ACHPWY, GK

Exactly how much memory suffices is an important open
problem2. The best known deterministic comparison-
based algorithm is called GK [2], and it consumes
O(ε−1 logεn) space. This does not seem tight because
it still grows with n. In recent years, the community
has turned to improving randomized approaches. The
new KLL result [4] is a randomized algorithm that
solves the problem with probability 1− δ using only
O(ε−1 log logδ−1) memory, which is tight to the random-
ized lower bound. We will discuss how these algorithms
build upon each other.

C. Definition of quantile sketches.

All these algorithms compute a useful generalization
to approximate medians called an ε-all-quantile-sketch

1Randomized algorithms are marked with (r) in the table
2For example, it is problem #2 on http://sublinear.info/2

1

(which we shall call an ε-sketch for brevity). An ε-sketch
is a function Q̂ which can be built in one pass over the
stream S that can produce values for every 0≤ q≤ 1 such
that rank(Q̂(q),S) ≈ qn. Setting q = 1/2, for example,
gives us an estimate of the median Q̂(1/2). We will
consider both deterministic sketches and randomized
sketches. In the deterministic case, an ε-sketch must be
accurate up to ε in the sense of producing values within
εn rank of the desired rank for every q:

∀q, | rank(Q̂(q),S)−qn| ≤ εn (1)

In the randomized case, we will require that, except with
an error probability less than small δ , every quantile
estimate lies within ε accuracy simultaneously:

Pr(∀q, | rank(Q̂(q),S)−qn|> εn)≤ δ (2)

It is important to note the randomized approaches are
analyzed with respect to adversarial streams, so the input
is allowed to be very nonrandom: no input distribution
is assumed. Any shuffling needed for an algorithm to
succeed with high probability must be done by the
algorithm itself, within its limited memory budget.

For simplicity of analysis, we do assume that the stream
has all distinct values. Without ties, the rank of every
stream item si ∈ S is uniquely determined as the number
of stream items no larger than si

rank(si,S)≡ |{s j ∈ S such that s j ≤ si}| (3)

Duplicates in a stream can be made unique by adding
bits. We omit a discussion of this process.

The analysis of some algorithms is easier to understand if
we think of an ε-sketch as a solution to rank estimation. A
ε-rank-estimator R̂ is a function that estimates rank(v,S)
for any v within εn:

∀v, |R̂(v)− rank(v,S)| ≤ εn (4)

For example, some algorithms will represent a sketch as
a carefully selected subset Ŝ⊂ S with size m = |Ŝ| � n.
Then the scaled rank within Ŝ

R̂(v, Ŝ)≡ n
m

rank(v, Ŝ) (5)

will be a rank estimator. Rank estimation is equivalent
to the ε-all-quantile sketch problem, so when R̂(v, Ŝ)
satisfies (4), we also call Ŝ an ε-sketch.

D. Known lower bounds

An ε-sketch must consume at least O(ε−1) memory: if
fewer than ε−1/2 values are stored, there must be some
gap exceeding 2εn consecutive unstored items. Asking
for a rank at the midpoint of this gap will fail to find
any answer within εn of the requested rank.

union

Ŝ1 Ŝ2

Ŝ1∪ Ŝ2

Fig. 1. A simple fact: when the union of two sets is taken, the rank
of an element within the union of the sets is the sum of the rank of the
element within each of the two sets. This can be seen by red-coloring
elements ≤ v, and noting that the rank of v within a set is the count of
red elements. This fact means that, even if Ŝ1 and Ŝ2 are very dissimilar
from each other, as long as they are both ε-sketches that give good
rank estimates for underlying streams S1 and S2, the union Ŝ1∪ Ŝ2 will
be an ε-sketch that gives a good rank estimate for S1 ∪S2.

Furthermore, it is known that O(ε−1) memory is not
enough: Hung and Ting [3] have shown how to con-
struct an adversarial stream that grows the largest gaps
between any algorithm’s stored items. Their approach
forces a deterministic quantile sketch to store at least
O(ε−1 logε−1) items. The same adversary can be applied
to any randomized algorithm by choosing δ tiny enough
to run on all n! permutations of the stream with a high
probability of success [4]. The resulting lower bound for
randomized algorithms is O(ε−1 log logδ−1).

III. A DETERMINISTIC THOUGHT EXPERIMENT

To warm up our intuition, begin by considering how to
improve the trivial algorithm which stores all n items in
a single sorted array Ŝ of length m = n. The qth quantile
is estimated as Ŝ[mq]. Since we accept ε error, the array
should still be a valid ε-sketch if we reduce the size of
m by dropping items evenly.

How to identify the right items to drop is tricky when
streaming. Imagine dropping 1/2 of the items by skipping
every even-indexed item in the stream. An adversarial
stream could place all the smallest items on the skipped
indexes so Ŝ[1] ends up with a value near the median
instead a value near the smallest.

A. Compacting a sketch in batches

A more refined method to drop half the items would be
to drop all the even-indexed items after we have sorted
them. Then the maximum gap between the retained items
is 1, and the error is minimized. This might not seem
helpful since it uses double the storage again, but it turns
out to work when applied in small batches.

Theorem 1: Suppose we have two streams S1 and S2,
each with an ε-sketch Ŝ1 ⊂ S1 and Ŝ2 ⊂ S2. Then Ŝ1∪ Ŝ2
is a ε-sketch for stream S1∪S2.

Proof: See Figure 1. We show that since Ŝ1 and Ŝ2
are good rank estimators for S1 and S2, the union of the

2

keep odd

Û

Ŝ

Fig. 2. Compacting a sketch (by sorting and keeping only the odd-
numbered items) can be done while only introducing a rank error of 1.
Here for some element v, we have colored all elements ≤ v red. Sorting
the elements of Û moves all cu red elements to the left. Keeping the
odd-numbered items keeps cs = dcu/2e of the items in Ŝ, which means
that 2cs differs from cu by at most 1.

samples is a good rank estimator for the union of the
streams. The true rank of v within S1 and S2 may be very
different from each other, but they sum to the true rank
of v within S1∪S2. Similarly, the ranks within the union
of the estimators Ŝ1 and Ŝ2 are the sum of the ranks
within each estimator. Thus error bounds add, and rank
estimates given by the union are within ε(|S1|+ |S2|) of
rank(v,S1)+ rank(v,S2) = rank(v,S1∪S2).

The above proof shows that we can always merge subset-
based ε-sketches without without making them worse
(in terms of ε error).

In particular, we use the fact to make a series of small
sketches and save some memory: divide up stream S into
a series of buffers of size |Si|= k≥ ε−1. Then sorting and
dropping even-indexed items of each buffer Si will make
an ε-sketch Ŝi of size ∼ k/2. Taking the union Ŝ≡

⋃
Ŝi

results in an overall ε-sketch of size ∼ n/2.

IV. THE MRL ALGORITHM

In this section we improve the batching idea by applying
it recursively. The result is our first interesting algorithm:
quantile sketches in O(ε−1 log2

εn) space.

A. Hierarchical compaction

To apply batching recursively, we use the following idea:
instead of only compacting buffers of raw input, we
compact buffers that already contain ε-sketches. Again
the easiest way to understand the process is to think of
the ε-sketches as rank estimators.

Theorem 2: Suppose Û is an ε-sketch of stream S, where
|Û |= 2k and |S|= n as usual. Then we can create a subset
Ŝ⊂ Û , of size dke, which is an (ε +1/2k)-sketch of S.

Proof: See Figure 2. Sort the elements of Û , and
then set Ŝ to be the subset of elements in odd-indexed
sorted order. The picture illustrates that the only errors
introduced are due to rounding. To quantify the error,
fix any v, and red-color all the elements of Û which are

Ŝ0,i

Ŝ1,i

...

ŜH

k item summary

n = k ·2H items streamed so far

H
layers

Fig. 3. By cascading equal-weight merges, we create a series of
sketches that summarize larger ranges of input. The entire process can
be thought of as a binary tree of merges.

≤ v. Suppose there are cu red elements in Û . Taking all
the odd-indexed elements in sorted order keeps exactly
cs = dcu/2e red elements in Ŝ. Thus

2cs =

{
cu if cu is even
cu +1 if cu is odd

(6)

Û is assumed to be an ε-sketch, so (n/2k)cu is within
nε of the true rank of v. This means that relation (6)
implies (n/k)cs is within nε +(n/2k) of the true rank
of v. Dividing by n, we find that the compacted array Ŝ
is an (ε +1/2k)-sketch of the original stream.

This compaction process halves the size of any sketch
while introducing only incremental errors. By combining
Figure 1 and Figure 2, we can see that a merge and
compaction can reduce any two k-sized sketches into a
single k-sized sketch with only incrementally more error.
Figure 3 shows a generalization of this procedure.

To process n = k · 2H elements, we only need at most
two k-sized buffers at each level 0 ≤ h ≤ H. When a
new bottom-level buffer of k input elements is read, it is
stored in the buffer at level h = 0 unless there is already
a buffer stored at that level. If it is the second buffer at
that level, then the new and old buffer are joined and
sorted together. The sorted pair is then compacted back
down to a buffer of size k by keeping every odd element.
The result is stored in level h+1. If there is already a
buffer at that level, the process is repeated. We recurse
upwards as much as needed. After all k ·2H elements are
processed, the result is a single buffer ŜH containing a
sample of size k.

Theorem 2 tells us that each level of recursion gives rise
to an additional 1/2k error, so we can withstand at most
2kε recursions while staying within ε error. Since the
depth of recursion is H = log2(n/k), we can carefully
choose k to ensure that the whole error is bounded
log2(n/k)/2k ≤ ε . Choosing k = O(ε−1 log2(εn)) satis-
fies the needed constraint.

3

How much space does this process use? As we have
discussed, it uses at most two buffers for each level of
Figure 3, since each compaction frees a buffer at that
level. The number of buffers needed is thus O(H) =
O(log2(n/k)) = O(log2(εn)). So the total space we need
is O(kH) = O(ε−1 log2(εn)).

In the family tree of quantile sketches, this was the
first clever algorithm. Manku, Rajagopalan, and Lindsay
describe it as the balanced merging algorithm in [5], and
they attribute the original idea to Munro and Patterson
[6]. We refer to this algorithm as MRL.

As we have described it, MRL must consume a multiple
of 2H stream size n = k · 2H , but [5] describes several
improvements including a generalization for any n. This
modification achieves the same space bound.

V. GK SUMMARIES

When choosing elements to drop from the sketch, it is
possible to do better than MRL by tracking detailed
information about each stored item. This is the strategy
used by the GK algorithm designed by Greenwald
and Khanna [2], achieving space O(ε−1 logεn). GK is
the best deterministic algorithm known, but it is also
idiosyncratic. Here we give some intuition about how it
works, and how it different from other approaches.

Before we begin, we must warn the reader that the full
algorithm and analysis of GK is complex. Fortunately,
the basic idea of GK is easy enough to understand,
and knowing all details of GK is not critical for
understanding the other algorithms in this paper. While
KLL does incorporate GK, it only uses it as an opaque
subroutine.

A. Intuition: find and exploit easy situations

GK can be motivated by imagining an easy stream:
suppose that the first element of the stream s1 happens
to be the stream median. By counting later items higher
and lower than s1, we can verify s1 is the exact median
in O(1) space. This same idea can be extended to all
quantiles. We can maintain higher- and lower-counts for
each of the first k = ε−1 elements. These counts will
enable us to check if these first elements are already a
good ε-sketch using only O(ε−1) memory.

GK maintains information for every stored item that is
equivalent to these counts. And by applying a form of
rank verification, it can (in the best case) use as little as
O(ε−1) memory in the fortunate case where the early
items in the stream already form an ε-sketch.

However, GK is also different from MRL in that it
consumes a varying amount of memory depending on the
ordering of the input stream. In the worst case, GK will
detect that the early elements are not a good ε-sketch
and will retain more elements to create an ε-sketch that
includes later items, accumulating up to another O(ε−1)
elements each time the stream doubles in size.

B. Details: what GK tracks for each item

How does GK know when to keep or drop an element?
GK is based on the observation that by maintaining
counts, we can always know the lower (rmin) and upper
(rmax) bound on the possible rank of any stored item.
These numbers allow us to ensure that the stored set
is an ε-sketch of the stream so far by maintaining this
invariant for all adjacent stored items:

rmax(ŝi)− rmin(ŝi−1)< b2εnc (7)

Here the stored ŝi are indexed in sorted order, and n is
the size of the stream so far. With (7), GK will never
drop an item that would leave adjacent elements that are
uncertain enough (or far enough apart) to have a gap of
ranks greater than 2εn.

Because it leads to both cleaner analysis and faster
implementations, GK represents rmin and rmax using
attributes ∆i and gi for each element, where:

∆i ≡ rmax(ŝi)− rmin(ŝi) (8)
gi ≡ rmin(ŝi)− rmin(ŝi−1) (9)

With this encoding, adjacent gi must be updated to keep
track of gaps when an element is dropped. Elements
initially have gi = 1, but when an element ŝi−1 is dropped,
the right-adjacent gi must be updated to add gi−1.

Note that the invariant (7) can now be written:

gi +∆i = rmax(ŝi)− rmin(ŝi−1)< b2εnc (10)

C. Insight: uncertainty and capacity

While (10) dictates when not to drop an element, GK
has additional rules to decide when to finally drop an
element. The rules are based on two key insights.

The first insight is that every incoming stream element
should be assigned ∆i = b2εnc − 1 (with a ∆i = 0
exception for new min and max elements), and that
∆i never changes. The large initial ∆i means that we are
maximally uncertain about the true rank of each incoming
element since the existing set may have gaps of up to
b2εnc−1. But afterwards, uncertainty never increases,
because all future element ranks relative to ŝi are known
and tracked by sorting them into the set.

4

The second key insight is that maintaining the invariant
(10) is expensive if ∆i nearly equal to 2εn. Then gi can
not be increased much larger than 1, which means we
cannot drop many (or any) items adjacent to the left of
ŝi. Motivated by this consideration, the capacity of an
element is defined as b2εnc−∆i. High capacity elements
are the oldest elements whose ranks are known with
high precision and which permit a maximal number of
adjacent dropped elements.

D. Rough idea of algorithm and analysis

Capacity gives GK a score to use when deciding which
elements to drop. To maximize overall capacity, the
algorithm strongly favors dropping elements with low
capacity first. The way GK arranges to do this is
somewhat intricate: it organizes stored elements in a tree
with levels according to capacity, and it chooses items to
drop by identifying subtrees of low capacity that can be
dropped at once while maintaining the invariant.

Full details can be found Sections 2 and 3 of the original
GK paper [2]. The key to the analysis is a way to organize
all stream elements into O(logεn) capacity bands where
it can be shown that at most O(ε−1) elements are retained
in each band. Summing the bands yields a total space
bound of O(ε−1 log(εn)).

This concludes our rough sketch of GK. The current
theoretical lower bound does not grow with n, so it is
still not known whether GK is optimal, or if there is a
more efficient deterministic approach.

VI. A RANDOMIZED THOUGHT EXPERIMENT

Is there a simpler way to estimate quantiles? If we allow
randomness, the simplest approach is to use a perfectly
random sample |Ŝ|= m to estimate ranks:

R̂(v, Ŝ)≡ n
m

rank(v, Ŝ)≈ rank(v,S) (11)

To ease analysis, we draw Ŝ uniformly with replacement
[7] so each sampled item is independent.

We can quantify the accuracy of R̂(v, Ŝ) by appealing to
Hoeffding’s inequality, which provides an exponential
limit on the probability of deviations of a sample mean
from the true mean of any set of bounded random
variables Vi ∈ [Vmin,Vmax] with Vmax−Vmin ≤ γi.

(Hoeffding) Pr(∑Vi−∑E(Vi)> α)≤ e−2α2/∑γ2
i (12)

In the unit case where all m variables have range γi = 1,
the inequality can be written as:

Pr(∑Vi−∑E(Vi)> εm)≤ e−2mε2
(13)

How does a bound on means of sums have anything to
do with a median or any other quantile? To see how, we
convert rank estimation to a sum of random variables,
and prove a bound in the form of (4).

Theorem 3: When Ŝ is a sample of m independent
elements of S, the rank estimate R̂(v,S) satisfies the
following bound for any single v:

Pr(|R̂(v, Ŝ)− rank(v,S)| ≥ εn)≤ 2e−2mε2
(14)

Proof: Define independent indicator variables Vi
whose sum is the estimated rank of v:

R̂(v, Ŝ)≡ n
m

rank(v, Ŝ) =
n
m ∑

s∈Ŝ

Vs (15)

where we define, for each s ∈ Ŝ:

Vs =

{
1 if s≤ v
0 otherwise

(16)

Because Ŝ is uniformly sampled from S, the expected
value of Vs is equal to the portion of stream elements
≤ v, i.e., E(Vs) = rank(v,S)/n, so

rank(v,S) = nE(Vs) (17)

=
n
m ∑

s∈Ŝ

E(Vs) (18)

It is now clear that the error in estimated rank is a
difference between a sample mean (15) and true mean
(18), so it can be bounded by Hoeffding’s (13):

Pr(R̂(v, Ŝ)− rank(v,S)≥ εn) (19)

= Pr(
n
m ∑Vs−

n
m ∑E(Vs)≥ εn) (20)

= Pr(∑Vs−∑E(Vs)≥ εm) (21)

≤ e−2mε2
(22)

A similar computation limits the probability that R̂(v, Ŝ)
is an underestimate below rank(v,S)− εn. Therefore the
whole probability of error has double the bound. Dou-
bling (22) yields (14), proving the assertion.

Theorem 3 describes the probability of error for one
particular v. To limit error so that with probability
1− δ all values of v satisfy |R̂(v, Ŝ)− rank(v,S)| < εn
simultaneously, we must choose m that achieves:

2e−2m(ε/2)2 ≤ εδ/2 (23)

This allows us to guarantee that for 2ε−1 values selected
to tile the range of ranks in S, each individual falls within
ε/2 of its true quantile with probability 1−εδ/2, so all
of them simultaneously fall within those bounds with
probability 1− δ , by union bound. This is enough to
provide accurate answers within ε for every possible
query simultaneously. Plugging in these values, the total

5

size needed for simultaneously satisfying all quantiles
within ε with probability 1−δ comes to:

m =
2log(δε/4)

ε2 = O(ε−2 log(δ−1
ε
−1)) (24)

Note that the space used exceeds ε−2, which is wasteful:
when querying our sample sketch, we could discard all
but ε−1 samples, so this summary is wasting a factor of
more than ε−1 space.

A. Using sampling as a subroutine

Although it is wasteful in ε , the random sampling
approach has the remarkable property that the needed
sample size does not grow with the stream size n. That
means that sampling can be used as a tool to remove the
n dependence from other quantile algorithms.

For example, suppose we have a quantile sketch algorithm
A whose space requirement depends on n. We can
choose a target sample size m=O(ε−2 logδ−1ε−1) large
enough to make an (ε/2)-sketch with probability 1−δ/2.
But we do not need to store m items. Instead, we
can configure A to also create an (ε/2)-sketch with
probability 1− δ/2 when fed a stream of size m. As
long as n is known in advance, with constant space,
we can sub-sample the stream down to length m and
feed these samples into A . With probability 1− δ/2,
the output of A will be an (ε/2)-sketch of the random
sample which itself is an (ε/2) sketch of the original
stream with probability 1−δ/2. By summing errors and
applying union bound on probabilities, the sketch by A
will be an ε-sketch with probability 1−δ . The storage
consumed will be the space complexity of A with n
replaced by m, removing any dependence on n.

This simplistic approach only works if n is known in
advance. In the more common and useful case when n
is not known in advance, sampling is still a key tool for
eliminating dependence on n, but the rate of sampling
must drop as the stream grows, so the algorithm which
consumes the sampled stream must be structured to be
expect varying input sample rates. We will see such an
approach when discussing KLL.

B. Hacking Hoeffding’s inequality

Although simple random sampling requires too much
storage, the analysis of the random sampling approach
reveals a strategy for achieving good efficiency.

1) The random choices are arranged so that the final
sample is an unbiased estimator of the true result.
The mean expected behavior is exactly correct.

join and sort

flipkeep odd (or keep even)

Ŝ0,1 Ŝ0,2

Û1,1

Ŝ1,1

Fig. 4. An individual join-sort-flip-compact operation. The c items
≤ v are highlighted in red. Choosing odd items will result in dc/2e
elements in the merge, and choosing even items instead will result in
bc/2c. The ACHPWY algorithm chooses between these alternatives
on each merge using a random coin-flip.

2) Randomness is arranged such that overstepping
error bounds requires an unlucky accumulation of
many small accidents.

One opportunity for improvement is to apply strategy
(2) more effectively. Simple sampling accumulates only
m random events where each contributes ∼ ±1/m
randomness, so to achieve small tail bounds, we need to
increase the memory m proportionally to the number of
desired independent events.

We might improve the efficiency of the algorithm if we
could create a procedure that uses a larger number of tiny
independent events, for example 2m events where each
contributes ∼±2−m randomness. Then a small increase
in memory would create a much tighter concentration
towards the mean.

This is the idea that drives the recent clever algo-
rithms by KLL and ACHPWY. These methods use a
memory-efficient sampling scheme that utilize O(2m)
tiny independent events instead of O(m) larger events.
The story is a bit more complicated because, in these
schemes, not all the events can be arranged to be equally
tiny. Nevertheless, the idea still works well enough to
eliminate a factor of ε−1 space.

VII. MERGEABLE SUMMARIES

The ACHPWY mergeable summaries approach designed
by Agarwal, et al [1] is very similar to the MRL balanced
merging algorithm we described in Section IV, but the
compaction step is modified to use one bit of randomness.
In symbols, it computes a hierarchy of merged buffers
Ŝh, j using coin-flips Fh, j:

Ûh, j ≡ sort(Ŝh−1,2 j ∪ Ŝh−1,2 j+1)

Fh, j ∈ {−1,1} randomly

Ŝh, j ≡

{
odd-half(Ûh, j) if Fh, j is 1
even-half(Ûh, j) if Fh, j is -1

(25)

This process is illustrated in Figure 4. When a 2k-sized

6

2H−1 errors ±1

2H−h errors ±2h−1

...

total error ∑
H
h=1 ∑

2H−h

i=1 Xh, j

k item summary

n = k ·2H items streamed so far

H
layers

Fig. 5. The entire merge process can be seen as producing a series
of coarser-grained estimates of counts of elements ≤ v for any given v.
After the hth level of merging, the counts are off by 2H−h×±2h−1.

sorted join Ûk, j is compacted to size k buffer Ŝk, j by
discarding every other item, the decision to keep the odd
or even-indexed items is done with a random coin-flip
Fk, j. The result is a randomized process within which the
rank of each item in the summarized buffer converges
to the mean, correct rank.

After all the sorting and compacting, ŜH contains a very
smoothed out random sample whose elements are not
independent of each other. Instead, as we will see, the
jth element in sorted order is much more likely to be
close to rank j ·2H in the stream than it would be in a
sample of independent elements.

A. Error bounds for ACHPWY

To see why the convergence is effective, we use the same
technique as in MRL (Section IV): choose a threshold
element value v at any rank of interest, and imagine red-
coloring all elements which satisfy ≤ v, so the number
of red elements in the stream is the rank of v.

As with MRL, the errors in counts occur only when
rounding c/2, but unlike with MRL, we now round up
and down with equal probability. Since a fair coin-flip is
used to choose between the dc/2e and bc/2c case, the
mean number of red elements in the result is exactly c/2,
i.e., doubling the sample count produces an unbiased
estimator of the original count before compaction.

As illustrated in Figure 5, errors can be accounted for
one level at a time. When the full algorithm processes
a stream of k · 2H elements at height h = 0, the 2H

buffers of size k are all joined, sorted, and compacted
pairwise to become 2H−1 buffers Q̂1, i at level h = 1.
Each compaction will over- or under-estimate its number
of red elements by a random variable X1,i ∈ +1,0,−1,
so the final total error in the estimate of red elements
summing over all the results of first-level merges will
be ∑

2H−1

i=1 X1,i.

Higher levels of the hierarchy are similar; we just need
to remember that at each higher level h there are half the
number of merged buffers (2H−h), and each merged buffer
has weight 2h instead of 2; so compaction will introduce
estimation errors of ±2h−1. That is, each compaction will
over- or under-estimate its number of red elements by a
random variable Xh,i ∈ {+2h−1,0,−2h−1}, and the total
error in the estimated count of red elements introduced
by h-level merges will be ∑

2H−h

i=1 Xh,i.

Theorem 4: When ŜH is selected from a stream of size
k ·2H using ACHPWY (25), the probability of error in
estimated rank R̂(v, ŜH) exceeding εn is bounded by

Pr(|R̂(v, ŜH)− rank(v,S)| ≥ εn)≤ 2e−2k2ε2
(26)

Proof: The errors in estimated counts are cumulative
at each level, so the total in error when using the final
buffer ŜH to estimate the number of red elements is a
sum of random Xh,i ∈ [−2h−1,2h−1] at all layers:

R̂(v, ŜH)− rank(v,S) =
H

∑
h=1

2H−h

∑
i=1

Xh,i (27)

Recall, as before, the notation R̂(v, ŜH) denotes the
weighted count

R̂(v, ŜH)≡ 2H · |{s ∈ ŜH such that s≤ v}| (28)

Each merge provides an unbiased estimate of the count
of red items in its input, so R̂(v, ŜH) is an unbiased
estimate of rank(v,S), and we can use Hoeffding’s (12)
to quantify the probability of error. The main complexity
is that the random variables Xh,i are weighted so γh,i = 2h.
Nevertheless, an evaluation of geometric sums reveals
∑

H
h=1 ∑

2H−h

i=1 22h = 2H+1(2H−1)≥ 22H , so the exponential
terms in (32) cancel:

Pr(|R̂(v, ŜH)− rank(v,S)| ≥ εn) (29)

= Pr(|
H

∑
h=1

2H−h

∑
i=1

Xh,i−E(
H

∑
h=1

2H−h

∑
i=1

Xh,i)| ≥ εn) (30)

≤ 2exp(−2(εn)2/
H

∑
h=1

2H−h

∑
i=1

γ
2
h,i) (31)

= 2exp(−2ε
2k222H/

H

∑
h=1

2H−h

∑
i=1

22h) (32)

≤ 2e−2k2ε2
(33)

thus establishing the bound.

Comparing (33) to (14) shows that this new procedure
does succeed in reducing error more quickly for each unit
of additional memory. We used kH units of memory, and
our probability of error is 2e−2k2ε2

rather than 2e−2mε2
:

the exponent grows quadratically.

7

With a suitable choice of k1 = ε−1
√
(1/2) log2δ

−1
1 , we

can achieve error of ε with probability 1−δ1 for a single
rank estimation for one v. To achieve this estimate for all
quantiles simultaneously requires choosing a δ1 that is a
factor of ε smaller, so for all quantiles we need

k = O(ε−1
√
(1/2) log2ε−1δ−1) (34)

Notice that the error behavior does not depend on H, so
to process any n = k ·2H elements we can just select an
appropriate buffer size k, and continue the process with
arbitrarily large H = O(logεn) while maintaining the
same error bounds. The total memory needed is:

m = kH = O(ε−1 log1/2(ε−1
δ
−1) logεn) (35)

B. Further improvements

Agarwal, et al describe how to generalize this merging
process to stream lengths n which are not a multiple
of 2H , and also how to eliminate the logεn factor in
the size by attaching their merging process to a random
sampler. Their sampling procedure reduces the sampling
rate as n grows, but it also increases the weights of the
items outputted from the sampler so that sampled buffers
enter directly into an increasing level h of the merging
hierarchy instead of level 0 as n grows. This allows them
to keep a constant-height active merging tree even as
the top level H grows. We will revisit this technique
in Section VIII-B in our discussion of KLL, where we
discuss a growing sampler in detail.

Attaching the sampler to ACHPWY increases the error,
and in the end the algorithm achieves a memory bound
of O(ε−1 log3/2(ε−1) logδ−1).

VIII. KLL SKETCHES

The KLL algorithm introduces four main insights that
operate in conjuction with the ACHPWY mergeable
summaries and GK sketch previously discussed. Each
insight lowers the space complexity of the algorithm
while preserving ε accuracy. As will be shown, KLL does
this by optimizing the sizes of the stack of buffers.

A. From ACHPWY to KLL layers

The first idea is to use different buffer sizes at each
layer as illustrated in Figure 6. The total memory
consumed by ACHPWY is O(kH) because every one
of the H layers requires O(k) memory. KLL reduces
this to O(kH) (where kH is the maximum buffer size) by
taking exponentially-decreasing buffer sizes (see Figure
6). Since the sum of a geometric series is proportional to

ACHPWY KLL

H

H ′

H ′′

H
layers

of
size

k

H−2s− logkH layers of size 2

logkH − s layers of size kH · cH−h

s layers of size kH

Fig. 6. Both the mergeable summaries algorithm designed by
ACHPWY and KLL execute a tree of merges over a stream using
a stack of buffers with one buffer per layer of the hierarchy. While
ACHPWY uses uniform k-size buffers at every level, KLL uses varying
buffer sizes, with only a few top s=O(log logδ) layers of size kH ; then
O(logkH) layers with exponentially decreasing buffer sizes. Remaining
layers have buffer size 2 and can be simulated using a single constant-
size sampler. While the data structure on the left consumes O(kH)
memory, the data structure on the right consumes only O(kH) memory.

the size of the largest item, this idea can reduce the total
size to O(kH) instead of O(kH). However, we do need to
ensure that errors remain small enough; and we also need
to consider what to do with the tiny fractional size buffers
given by the geometric series at the bottom.

More specifically, suppose the total height of hierarchy
is H. The buffer size kh at height h is set to

kh = kH · cH−h (36)

where c is a hierarchy shape perimeter that lies in (.5,1).
Note that KLL choose c = 2/3, but that any c ∈ (.5,1)
results in the same asymptotic error performance. To deal
with the fact that buffer sizes must be integers, for low
levels of the hierarchy, we must round up and define the
capacity of the smallest buffers to be at least 2. We will
seperately analyze this bottom subset of size 2 buffers
later.

Similar to the analysis of ACHPWY, we need to bound
the height of hierarchy first. Note that each level up in
the buffer hierarchy downsamples the input stream by a
factor of 2. Thus at level h, the sampling rate, or weight,
is given by wh = 2h−1. This can be interpreted as how
many items in the original input stream are represented by
a single item in level h. By definition, the top layer buffer
is not empty, and every element in it must be the result
of compacting elements from the level below. Therefore,
we can bound the number of elements seen so far by
n≥ kH−1wH−1 = kH−12H−2. Solving for H:

H ≤ log(n/kH−1)+2≤ log(n/ckH)+2 (37)

Next, we need to analyze the total error produced by
the sketch, which can be determined by considering the
error generated at each level. As in ACHPWY, each
level only introduces error during compaction, which is
related to its sampling rate (i.e. weight). For some level

8

h with weight wh = 2h−1, the number of compactions
mh is constrained by

khwhmh ≤ n

⇒ mh ≤ n/khwh ≤ (2/c)H−h−1 (38)

Abbreviating the pattern of analysis we have seen in
previous sections, denote the function R̂(v,h) as the
weighted rank of any element v in the union of all level-h
buffers in the compaction tree. We define the error due
to level h to be err(v,h) = R̂(v,h)− R̂(v,h−1). The total
error introduced after H levels of compaction is

H

∑
h=1

err(v,h) =
H

∑
h=1

mh

∑
i=1

whXi,h (39)

where Xi,h ∈ {−1,1} is the random coin flip determining
if the odd or the even elements are chosen for compaction.
For reasons we shall see in Section VIII-C, we parame-
terize error analysis by counting error for the bottom H ′

layers (for any H ′ ≤ H). Then we can apply Hoeffding
(12) as we did for the analysis of ACHPWY:

Pr(
H ′

∑
h=1

err(v,h)≥ εn) (40)

= Pr(
H ′

∑
h=1

mh

∑
i=1

whXi,h ≥ εn) (41)

≤ 2exp(−(ε2n2)/(2
H ′

∑
h=1

mh

∑
i=1

w2
h)) (42)

The geometric series sums evaluate as follows:

H ′

∑
h=1

mh

∑
i=1

w2
h =

H ′

∑
h=1

mhw2
h (43)

≤
H ′

∑
h=1

(c/2)H ′−h−122h−1 (44)

≤ ((2/c)H ′−1(2c)H ′)/4(2c−1) (45)

≤ (c22H ′)/8(2c−1) (46)

Plugging (46) into (42) and using the identities 22H ′ =
22H/22(H−H ′) and H = log(n/ckH)+2, we get

Pr(
H ′

∑
h=1

err(v,h)≥ εn)≤ 2e−c2(2c−1)ε2k2
H 22(H−H′)

(47)

Setting H ′ = H and requiring failure probability of at
most δ (i.e. 2e−c2(2c−1)ε2k2

H 22(H−H′) ≤ δ), KLL sets kH =
c2(2c−1)ε−1

√
log2δ−1. The space complexity of this

version of KLL is O(∑H
h=1 kh). Recalling that all buffers

must be of at least size 2, we know that
H

∑
h=1

kh ≤
H

∑
h=1

(kHcH−h +2) (48)

≤ kH/(1− c)+2H (49)
= O(kH + logn/kH) (50)

Union bounding over the failure probabilities of all
quantiles, this version of KLL uses O(ε−1

√
logε−1δ−1+

log(nε/ log(ε−1δ−1)). Note that this space bound is not
ideal, as it grows with the size of the stream. The next
improvement removes this dependence.

B. Replacing the bottom layers with a sampler

We have previously seen that a dependence on n can
be removed by introducing a sampler. KLL does this in
an elegant way that can be visualized in the bottom
layers of Figure 6: specifically, they notice that any
sequence of H ′′ buffers (where H ′′ ≤ H ′ ≤ H) all of
size 2 perform a uniform sampling. To see this, note
that for every 2H ′′ elements, the element that ends up in
the top buffer is the winner of a tournament of 2H ′′ −1
random binary choices. In other words, this simply is
a uniform random choice that can be done efficiently
in O(1) space instead of O(H ′′) space. It follows that
the total space used by buffers of size greater than 2 is
∑

H
h=H ′′+1 kHcH−h ≤ kH/(1− c) = O(kH).

To select the right kH , we once again use Hoeffding to
bound the probability of error, this time bounding the
total error by the sum of sampler and buffer errors. Let
R̂(v,h) be the height-h estimate of the rank of element v
after applying the sampler at height h. Denote the error
at height h as err(v,h) = R̂(v,h)− R̂(v,h− 1); the total
error up toe height H ′′ is:

H ′′

∑
h=1

err(v,h) =
H ′′

∑
h=1

mh

∑
i=1

2hXi,h (51)

In this case, mh is the number of times a sample operation
can occur at height h. Because a sampler at height h
takes elements of weight 2h−1 and the overall weight of
all items must be n, we know that

mh ≤ n/2h−1 (52)

Substituting in to solve for the total error due to the
sampler, we get

H ′′

∑
h=1

mh

∑
i=1

22h ≤
H ′′

∑
h=1

n2h+1 ≤ 4n2H ′′ (53)

We can now use this expansion to apply the Hoeffding
bound again. Using identities 22H ′′ = 22H/22(H−H ′′) and

9

H = log(n/ckH)+2, we get

Pr(
H ′′

∑
h=1

err(v,h, i)≥ εn)≤ 2e−cε2kH 2H−H′′/32 (54)

The total error due to a sampler and a set of buffers is
the sum of the two Hoeffding bounds. In other words, it
must hold that

Pr(
H ′

∑
h=1

err(v,h)≥ 2εn)

≤ 2e−c2(2c−1)ε2k2
H 22(H−H′)

+2e−cε2kH 2H−H′′/32

(55)

Observe that the bottom H ′′ = H − logkH/ log(1/c)
buffers must all be of size 2. Setting H ′ = H and union
bounding over all quantiles, we find that the optimal
selection of buffer size is kH = O(ε−1

√
log(ε−1δ−1)).

Since the total capacity of buffers of size greater than 2
is bounded by ∑

H
h=H ′′+1 kHcH−h ≤ kH/(1− c) = O(kH),

the total space requirement of this algorithm is also
O(kH) = O(ε−1

√
log(ε−1δ−1)).

To understand why this space does not depend on n even
though H can grow unbounded, consider the progress of
the algorithm as n grows. Obviously, there are a finite
number of buffers, meaning that at some point they will
all fill up. Eventually, the top-most buffer at level H
will overflow, forcing it to compact. This results in the
creation of a new buffer at level H + 1 with weight
2H .

With a new top layer we must redefine H← H +1 and
continue the algorithm. Applying the sizing formula kh =
kH ·cH−h, we can see that the creation of a new top level
buffer has caused every buffer in the hierarchy to have
less capacity because each buffer becomes c times smaller.
Besides causing a cascade of compaction operations to
prevent overflowing, the bottom buffer above the sampler
will also shrink below capacity of 2. This simply results
in that bottom buffer being absorbed by the sampler,
which now samples at half the rate. Thus, the longer the
stream, larger the height H of the buffer stack, yet, due
to clever use of the sampler, the overall algorithm uses
a non-increasing amount of memory.

While this is already an elegant result by itself (smoothly
integrating a sampler, and improving on the previous state
of the art for a randomized algorithm), KLL employs
two further improvements to achieve the lower bound
on randomized streaming algorithms.

C. Optimizing the top layers

In the previous section, we used Hoeffding to bound the
probability that the error introduced by buffers and a

sampler is more than εn. A key observation made by
KLL is that the majority of the contribution to error
is due to the top set of buffers. In other words, the
lower portion buffers (i.e. buffers of smaller size and
weight) are more accurate than they need to be (and thus
use more space than necessary) to ensure that the top
buffers do not break ε accuracy with constant probability.
In addition, for the top layers, Hoffeding bound is an
inadequate measure — since we are only looking at a
small portion of layers, their total error can be far from
the mean. To fix this issue, KLL separately considers the
error due to the top s layers and imposes a deterministic
bound. Details are given as follows.

Instead of making the top s layers exponentially decrease
in size (as was the case before), the top s buffers are
assigned size kH (as the MRL algorithm does). Due
to this, a deterministic bound similar to MRL can be
applied to bound the maximum amount of error. As
before, each layer of weight wh has mh compactions,
resulting in maximum error of ∑

H
s mhwh = ∑

H
s n/kh =

sn/kH . Obviously, we would like this error to be no more
than εn, which gives us the relation s≤ kHε .

Now consider the other layers (with H ′ = H − s and
H ′′ = H − 2s− logkH). Using Hoeffding, we see that
kH2s ≥

√
log(2ε−1δ−1)/(ε

√
c2(2c−1)). We would like

to choose values of s and kH such that both the top
s and bottom H ′ layers are within their respective
error bounds. Assigning s = O(log log(δ−1)) and kH =
O(ε−1 log log(δ−1)) satisfies both conditions.

The space requirement of the top s layers is O(skH) =
O(ε−1 log2 log(δ−1)). The space requirement of the
bottom H ′ layers is still O(kH) = O(ε−1 log log(δ−1)).
The space complexity is therefore dominated by the
topmost layers, meaning that this version of KLL (which
includes both a sampler at the bottom and a fixed size
buffer region at the top) uses O(ε−1 log2 log(δ−1)) space.
Not surprisingly, this result further improves upon the
state of the art.

The result can be made tighter still.

D. Adding the GK sketch

The overall space complexity of KLL as described above
is O(skH). Knowing this, is it possible to further reduce
space usage with smart choice of kH? KLL answer this
question in the affirmative, claiming that it is possible
to set kH = ε−1. Intuitively, this makes sense because
a deterministic bound for GK is better than that of
MRL. Thus substituting GK into the top s layers should
provide reduced space usage. A more careful analysis
follows.

10

Let us ignore the top s layers for now. From before, we
know that the bottom H ′ layers are bounded by kH2s ≥√

log(2ε−1δ−1)/(ε
√

c2(2c−1)), which can be rewritten
as s ≥ O(log(ε−1k−1

H log(δ−1))). Setting kH = ε−1 and
s=O(log log(δ−1)) satisfies the condition. Note that this
choice of parameters results in undesirable error bounds
for the top s layers.

To fix this problem, we use a set of 2 GK sketches
positioned near the top of the hierarchy of buffers.
Specifically, they will be placed at heights h1 and h2,
which are both the largest height values that are also
multiples of s. It follows that h1 and h2 are placed at
heights of at least H−2S and H− s, respectively. Each
GK sketch receives as input the output of the buffer
one layer below it. The main reason for having 2 GK
sketches is that each time s additional buffers are formed,
the lower of the two is discarded to make room for the
next GK sketch. In this way, there is always at least one
non-empty GK sketch at all times.

Recall that GK sketches grow proportionally to the
size of the stream, an undesirable characteristic for a
randomized algorithm. That being said, this is not of
concern in this scenario because we can bound the total
number of elements inputted into a GK sketch before
it will be discarded. Recall that we previously used
the identity n ≥ KH−12H−2 to bound the total number
of items seen so far. Knowing that the height of a
GK sketch is at least h1 = H − 2s, we can bound the
total number of elements fed into the sketch by n1 =
kH22s. It follows that the memory required by the GK
sketch is at most O(ε−1 log(εn1)) = ε−1(log(εkH22s)).
Using optimal values of kH and s determined previously,
total space usage of each GK sketch is no more than
O(ε−1 log log(δ−1)). The space complexity of the rest
of the sketch is considerably smaller (O(kH) = ε−1),
so the overall space requirement is simply the cost of
maintaining the GK sketch.

One disadvantage of incorporating the GK sketch is
that, unlike ACHPWY and KLL-using-MRL, it is not
known to be mergeable. In detail, a GK sketch for two
streams containing the same exact values but streaming
in a different order may produce two different (but
correct) summaries. Because of this, there is no known
way to combine two sketches GK1 and GK2 other than
to replay all the values stored in GK2 into GK1. The
resulting GK sketch will have increased space usage
and may exceed the established size bounds for GK.
Therefore in practice, for very large streams which are
to be counted in a distributed system using merging,
it may be prudent to run a fully mergeable version of
KLL based on MRL, sacrificing single-machine memory
footprint for improved merging efficiency.

IX. CONCLUSION

We have given an overview of the state-of-the-art ap-
proaches for streaming quantile sketches. Starting with
a simple buffered thought experiment, we developed
the deterministic balanced merging MRL approach. We
reviewed the principles underlying the GK sketch. We
analyzed random sampling using Hoeffding’s inequality.
We then used the same technique to analyze the ACH-
PWY randomized improvement upon the MRL algorithm.
Then we showed how KLL improves upon ACHPWY,
smoothly combining it with sampling to create a more
economical algorithm. Finally we showed how the space
bound on KLL can be tightened by analyzing the top
layers as MRL, and tightened further by adding the GK
algorithm in the top layers. With this final approach,
KLL solves the streaming quantile sketch problem in
the smallest possible memory, achieving the randomized
lower bound of O(ε−1 log logδ).

REFERENCES

[1] P. K. Agarwal, G. Cormode, Z. Huang, J. M.
Phillips, Z. Wei, and K. Yi. “Mergeable summaries”.
In: ACM Transactions on Database Systems (TODS)
38.4 (2013), p. 26.

[2] M. Greenwald and S. Khanna. “Space-efficient
online computation of quantile summaries”. In:
ACM SIGMOD Record. Vol. 30. 2. ACM. 2001,
pp. 58–66.

[3] R. Y. Hung and H. F. Ting. “An Ω(1
ε

log(1
ε
))

space lower bound for finding epsilon-approximate
quantiles in a data stream”. In: International Work-
shop on Frontiers in Algorithmics. Springer. 2010,
pp. 89–100.

[4] Z. Karnin, K. Lang, and E. Liberty. “Optimal
Quantile Approximation in Streams”. In: 2016
IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE. 2016, in press.

[5] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
“Random sampling techniques for space efficient
online computation of order statistics of large
datasets”. In: ACM SIGMOD Record. Vol. 28. 2.
ACM. 1999, pp. 251–262.

[6] J. I. Munro and M. S. Paterson. “Selection and sort-
ing with limited storage”. In: Theoretical computer
science 12.3 (1980), pp. 315–323.

[7] B.-H. Park, G. Ostrouchov, N. F. Samatova, and
A. Geist. “Reservoir-Based Random Sampling with
Replacement from Data Stream.” In: SDM. SIAM.
2004, pp. 492–496.

11

