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Abstract

The well-established Prophet Inequality concerns an online algorithm that observes
a sequence of random variables X1, . . . , Xn with known distribution in order, and must
decide, when it observes the value wi of each variable Xi, whether to end the game by
accepting wi and obtain reward R = wi, or to reject wi and continue with no chance of
returning. The algorithm is compared to a “prophet” that can see all the wi ahead of
time and simply pick the best one. The optimal competitive ratio has been known to
be 2 for this problem since 1976. We survey some results related to generalizations of
the Prophet Inequality where the prophet and algorithm are allowed to choose multiple
variables and obtain reward equal to their sum.

1 Introduction
The “Prophet Inequality” is an important result in optimal stopping theory, a body of work
concerned with online algorithms for choosing when to take an action with the goal of max-
imizing some reward. The foundational Prophet Inequality was proven in 1978 by Krengel
and Sucheston [9].

In many regards, the Prophet Inequality is similar to the famous Secretary Problem,
possibly the most famous problem in optimal stopping theory, in which an online algorithm
observes a series of candidates and tries to stop at the best candidate or maximize the
expected value of the chosen candidate, likewise with no chance of returning to previous
candidates after they have been rejected. However, in the Secretary Problem the order of
candidates is randomized while the values and their distributions are adversarial and un-
known, while in the Prophet Inequality the order of candidates is fixed adversarially but
known and the values are randomly drawn from known distributions. Despite these differ-
ences, the problems are tightly interrelated; for example, Azar, Kleinberg, and Weinberg [3]
develop a method for converting many secretary problem algorithms into prophet inequality
algorithms.

The Prophet Inequality and related results have found widespread applications in the field
of designing Bayesian optimal mechanisms, which are roughly mechanisms for maximizing
profit from selling items to potential buyers. The original Prophet Inequality can be applied
as a way to sell one item to one of a list of potential buyers, who will name prices drawn
from known distributions not known ahead of time. The idea of studying generalizations of
the prophet inequality where the algorithm can accept multiple values arises naturally when
one has multiple items for sale. Different constraints on the prophet inequality problem arise
with different bidding market rules.

Many generalizations and modifications of the Prophet Inequality have been studied (see,
for instance, Hill and Kertz [7] for an earlier survey). In this survey, we will primarily focus
on Prophet Inequalities where multiple values can be accepted instead of only one. We will
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look at increasingly general restrictions on what subsets of values may be accepted; the
allowed sets are termed “feasible sets”. We will discuss several choices for constraints that
might be imposed on the families of feasible sets, primarily “subsets of at most k values”,
“subsets belonging to a matroid ”, and “subsets belonging to an arbitrary downward-closed
family”. We will examine shared concepts and techniques, including the idea of thresholds.

2 Preliminaries
In this section, we define some basic terms relating to the prophet inequality.

Definition 1. An instance of the prophet inequality problem consists of a sequence
of nonnegative random variables X1, X2, . . . , Xn, which must be indepdendent but are not
necessarily identically distributed.

Note that, for our purposes, the order of these variables shall be fixed and known ahead
of time. Some authors also analyze the problem where the order can be chosen by the
algorithm, or adversarially and dynamically chosen based on the algorithm’s choices and
revealed values.

Definition 2. An online algorithm for the Prophet inequality problem is an algo-
rithm that knows the distributions of X1, X2, . . . , Xn beforehand, but receives the actual
values wi of Xi online one at a time. Right after the algorithm receives the value wi

of some Xi, it must decide irrevocably whether to accept Xi, in which case the problem
ends and the algorithm receives reward R = wi, or reject it, in which case the problem
continues with Xi+1 and following random variables. (We will somewhat interchangeably
say that the algorithm accepts a variable or that it accepts a value.) The algorithm’s goal
is to maximize its reward R.

In comparison, a “prophet”1 for the prophet inequality problem similarly has to
accept one of the Xi, but can see all of the actual values wi of Xi before deciding which
wi to accept. The prophet also receives award equal to the value it accepts, and also seeks
to maximize that reward. Clearly, the prophet will just pick the maximum wi. We will
denote the reward of the prophet (a random variable) by OPT.

Definition 3. The competitive ratio of an online algorithm for the Prophet in-
equality problem or any of its generalizations is the maximum ratio between the prophet’s
expected reward and the online algorithm’s expected reward

E[OPT]
E[R]

.
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Clearly, the online algorithm cannot do any better than the prophet, so the competitive
ratio is at least 1, and a lower competitive ratio indicates a better online algorithm.

Note that some authors call the inverse of this the “competitive ratio”. Fortunately, there
is usually no ambiguity which definition is being used, because the inverse is at most 1.

3 The Original Prophet Inequality
Krengel and Sucheston [9] were the first to state the prophet inequality and show that the
best possible competitive ratio is 2. The example that shows that the competitive ratio of 2
is best possible ([9], [8]) is as follows.

Example 1. Let there be two random variables X1 and X2. Let X1 be 1 with probability
1, and let X2 be n with probability 1/n and 0 otherwise.

• When an online algorithm observes X1 to see w1, it must decide whether to accept
or reject it (or possibly make a randomized choice between the two), but since w1

is fixed as always 1, the online algorithm has no new information about the actual
values of the Xi to base this choice on. Therefore, the only two sensible online
algorithms are “always pick X1” or “always pick X2”. Clearly, both have expected
value 1.

• On the other hand the prophet would just pick the largest value, which is n with
probability 1/n and 1 with probability (n− 1)/n, thus achieving an expected value
of 2− 1/n.

Thus, letting n → ∞ shows that the competitive ratio for the basic prophet inequality
can not be better than 2.

Now, to prove the Prophet Inequality, we only need to exhibit online algorithms that
achieve a competitive ratio of 2. Although Krengel and Sucheston were first to prove the
basic Prophet Inequality, we will present two simpler proofs by later authors with explicit
algorithms that achieve a competitive ratio of 2, which also demonstrate useful ideas for
studying our generalizations. To introduce the explicit algorithms and lay the groundwork
for understanding generalizations, we will discuss the important and general concept of
“thresholds”.

3.1 On Thresholds

In general, it’s easy to see that any sensible online algorithm for the Prophet Inequality
problem is determined by a threshold function, which maps each possible observed prefix
w1, w2, . . . , wi of the sequence of values to a threshold Ti+1 ∈ R+ ∪ {∞}, such that Xi+1

will be accepted iff wi+1 ≥ T (or iff wi+1 > T — the two strategies are the same if the
distribution of Xi+1 has no point mass, but if not, there are technical differences that must
be worked around.) This just means that given some prior observerations, if the online
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algorithm would have accepted some value, it would have accepted any higher value in the
same position, which means the set of values it would have accepted in that position can be
described by a single threshold. This is a natural consequence of the key propety that all the
variables are independent: observing a higher value is always better, and will not negatively
correlate with later variables. In all the generalizations we study, this observation will hold.

3.2 Constant Threshold Algorithms

One particularly simple class of algorithms for the original prophet inequality problem is
those with constant threshold, for which the threshold function of every Xi is the same and
does not depend on either the position or prior observations. In other words, the algorithm
simply starts with a real number T computed from the distributions Xi and accepts the first
value wi that is ≥ T (or > T ).

In fact, a constant threshold strategy is enough to achieve a competitive ratio of 2.
Samuel-Cahn [13] was the first to propose and analyze a constant-threshold strategy; how-
ever, as part of their exposition, Kleinberg and Weinberg [8] present a different threshold
that works just as well. Here we present both proofs in a unified fashion to emphasize their
similarities.

Theorem 1. As before, let OPT denote maxiXi (i.e. the result obtained by the “prophet”
or optimal offline algorithm) and denote the algorithm’s reward by R (a random variable).
Then:

• Let m be the median of the distribution of OPT, i.e. the value m such that

P [OPT < m] ≤ 1/2 and P [OPT > m] ≤ 1/2.

Then at least one of the algorithms “accept the first element with value ≥ m” and
“accept the first element with value > m” achieves an expected value of E[R] ≥
E[OPT]/2, and thus competitive ratio 2.

• Let t be E[OPT]/2. Then the algorithm “accept the first element ≥ t” achieves an
expected value of E[R] ≥ E[OPT]/2, and thus competitive ratio 2.

Intuitively, the proof breaks down the expected value of R into two parts

R = min(R, T ) + max(R− T, 0) :

the part below T (which is T if the algorithm finds a value above its threshold, and 0 if
not) and the part above T (which is potentially unbounded depending on how lucky the
algorithm is).23 If OPT is high, then the part of R below T is guaranteed to be high because

2The second part max(R − T, 0) is sometimes denoted (R − T )+, using the “positive clamp” function
(x)+ := max(x, 0). We won’t use this notation here, but some of the referenced papers use it without
definition.

3Many papers explore the connection between the prophet inequality and auctions. One way to frame
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the algorithm will accept OPT or something before it, and the part of R above T is likely to
be high because the algorithm has a fixed chance of not encountering any elements exceeding
OPT before T .

We provide a formal proof below.

Proof. Let the random weights of the elements be X1, . . . , Xn, and consider the algorithm
“accept the first of X1, . . . , Xn that is observed to be >

?
T ”, where “>

?
” represents either “>”

or “≥”, and T is a constant threshold, both to be chosen later.
R is the first element Xc >

?
T above the threshold, if one exists. If no such element exists,

we assume the algorithm gets reward R = 0 for ease of analysis. (Since Xi are nonnegative,
the algorithm in practice should always choose the last value and will do better.) Let p be
the probability that the algorithm successfully accepts a value R >

?
T .

As promised, we will look at the decomposition of E[R] into the part below T and the
part above T :

E[R] =

∫ ∞

0

P [R > x] dx

=

∫ T

0

P [R > x] dx︸ ︷︷ ︸
E[min(R,T )]

+

∫ ∞

T

P [R > x] dx︸ ︷︷ ︸
E[max(R−T,0)]

We bound these separately:

• First part E[min(R, T )]: We have

E[min(R, T )] =

∫ T

0

P [R > x] dx ≥ pT

(“the part of R below T ”) because when x < T , clearly P [R > x] ≥ P [R >
?
T ] = p.

• Second part E[max(R− T, 0)]: We also have

P [R > x] ≥ (1− p)
∑
i

P [Xi > x]

because there is at least (1 − p) probability that all Xj before Xi do not pass the
threshold, and thus (1 − p)P [Xi > x] probability that Xi will be the first value that
surpasses the threshold, in which case the algorithm will choose Xi and will get reward
R = Xi > x. Next, we have ∑

P [Xi > x] ≥ P [OPT > x]

the prophet inequality in terms of auctions is that you have one object that you are trying to sell to one
of n bidders and you are trying to maximize your revenue. In this model, analyzing the threshold strategy
involves privately declaring that the cost for producing the item was T , and separately analyzing the part
of the revenue for recouping expenses plus the profit over the base cost.
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by union-bound. Therefore,

E[max(R− T,0)] =

∫ ∞

T

P [R > x] dx

≥ (1− p)

∫ ∞

T

∑
i

P [Xi > x] dx

≥ (1− p)

∫ ∞

T

P [OPT > x] dx

= (1− p)E[max(OPT− T,0)].

Putting the two bounds together to bound the value E[R], we have

E[R] =

∫ T

0

P [R > x] dx︸ ︷︷ ︸
E[min(R,T )]

+

∫ ∞

T

P [R > x] dx︸ ︷︷ ︸
E[max(R−T,0)]

≥ pT + (1− p)

∫ ∞

T

P [OPT > x] dx︸ ︷︷ ︸
E[max(OPT−T,0)]

.

Now, separately observe that

T +

∫ ∞

T

P [OPT > x] dx︸ ︷︷ ︸
E[max(OPT−T,0)]

≥
∫ T

0

P [OPT > x] dx︸ ︷︷ ︸
E[min(OPT,T )]

+

∫ ∞

T

P [OPT > x] dx︸ ︷︷ ︸
E[max(OPT−T,0)]

=

∫ ∞

0

P [OPT > x] dx

= E[OPT].

For simplicity, let β = E[max(OPT − T, 0)] =
∫∞
T

P [OPT > x] dx. Then, to summarize,
we have shown above that

E[R] ≥ pT + (1− p)β and T + β ≥ E[OPT].

The proofs for the two different thresholds are now a few lines:

• (Samuel-Cahn [13]) Choose T to be a median of the distribution of OPT, so that
P [OPT < T ] ≤ 1/2 and P [OPT > T ] ≤ 1/2. Then we can choose >

?
to be > or ≥ and

thus get p ≤ 1/2 or p ≥ 1/2, respectively.

– If T ≤ β, we choose >
?

to be >, so p ≤ 1/2 and (1− p) ≥ 1/2.

– If T ≥ β, we choose >
?

to be ≥, so p ≥ 1/2 and (1− p) ≤ 1/2.

In both cases it immediately follows that

E[R] ≥ pT + (1− p)β ≥ (1/2)T + (1/2)β ≥ E[OPT]/2,

as desired.

Page 6 of 20



Brian Chen Multiple-Choice Prophet Inequalities

• (Kleinberg and Weinberg [8]) Let T = E[OPT]/2. Then β ≥ E[OPT]− T = T , so

E[R] ≥ pT + (1− p)β ≥ pT + (1− p)T = T = E[OPT]/2

as desired.

Combining this with the Example, we have now proven the basic Prophet Inequality,
which is to say:

Theorem 2. The optimal competitive ratio for the Prophet Inequality Problem is 2.

Although all the results about generalizations are considerably more difficult and we will
generally only sketch analyses of algorithms for them, many analyze threshold strategies
with decompositions similar to the above analysis.

4 Prophet Inequalities with Choice of k Values
In the simplest generalization of the prophet inequality in the direction of allowing multiple
choices, we fix some positive integer k and allow the prophet and algorithm to accept any
k values instead of only one; we then define their reward to be the sum of the k accepted
values and compare the ratio of the rewards. As mentioned in the introduction, when
prophet inequalities are applied to sale mechanisms, this generalization arises naturally as
the analogue of having multiple identical items for sale.

Definition 4. Let k be a positive integer. An online algorithm for the k-Choice
Prophet problem knows the distributions of X1, X2, . . . , Xn beforehand, but receives
the actual values wi of Xi online one at a time. Right after the algorithm receives the
value wi of some Xi, it must decide irrevocably whether to accept or reject Xi. The algo-
rithm can accept at most k variables. After it has observed and made a decision on the
last variable, the problem ends and the algorithm receives reward R equal to the sum of
the values it has accepted.

The reward of the prophet, still denoted by OPT, is the sum of the largest k values wi

of distinct variables Xi.

(Note that after the algorithm has accepted k variables, it must reject all the remaining
variables no matter what it observes, but for simplicity and consistency with later definitions,
we will still have the algorithm finish observing all of the variables.)

Before we continue, we note that even with the idea of allowing k values to be chosen,
these are not the only choices of constraints and reward function, and they were not the first
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choices to be studied. Kennedy [10] studies the ratio between the best reward of a prophet
that can accept k values and the best reward of an algorithm that can accept k′ values, which
is more general than our setup (where k = k′), but only gives significant results for the case
k = 1. Assaf and Samuel-Cahn [2] also allow the online algorithm to accept k values, but
consider the maximum of the k values instead of the sum as the reward, and analyzes its
ratio to the prophet’s best single choice (clearly, giving the prophet multiple choices in this
setting does not help).

Hajiaghayi, Kleinberg, and Sandholm [6] were the first to obtain concrete bounds on
the ratio between the best sum-of-value rewards of a prophet and an online algorithm, each
of which can accept k values. They proved (Theorem 7) that the competitive ratio βk is
bounded by

1 +

√
1

512k
≤ βk ≤ 1 +

√
8 ln k

k
.

The strategy they use to achieve the upper bound is also a simple threshold rule that accepts
the first k elements it sees with value above T , where T is the infimum of thresholds satisfying∑

P [xi > T ] ≤ k −
√
2k ln k.

The lower bound on the competitive ratio is obtained by considering
√
k/8 variables Xi

that are always 1, followed by 2k variables that take values independently and uniformly at
random from the set {0,2}.

The asymptotic gap in the competitive ratio was bridged by Alaei [1], who analyzes
the same problem and obtains an improved competitive ratio of 1 + O(1/

√
k), showing

that this ratio is asymptotically tight. The proof is difficult to express in isolation because
the paper reformulates it as another problem with a magician and wands that is useful
for studying combinatorial auctions, but it also involves a threshold-like value T such that∑

i P [Vi > T ] = k.
The most recent result on this problem is due to Azar, Kleinberg, and Weinberg [3],

who develop strategies for prophet inequalities that only need limited information about the
distributions of the variables Xi. Their algorithm only requires one random sample drawn
from the distributions of each of the variables (which are of course independent of the actual
samples that it will encounter during the problem.) Their strategy is as follows.

“Rehearsal Algorithm”: Randomly sample the distributions {Xi}. Given the samples
sorted in decreasing order s(1) ≥ · · · ≥ s(n), make a list of k thresholds T1, T2, . . . , Tk

where the top k − 2
√
k thresholds T1, T2, . . . , Tk−2

√
k are equal to the top k − 2

√
k sam-

ples s(1), . . . , s(k−2
√
k) and the bottom 2

√
k thresholds are all equal to the (k − 2

√
k)th

sample from the top s(k−2
√
k). Now observe the variables in sequence. Maintain a list of

“unmatched” thresholds; whenever a value is observed that is greater than an unmatched
threshold, accept it and remove the largest unmatched threshold that is less than that
value from the list.

Analysis of the algorithm is also rather complicated, reducing it to analyzing a random
walk; we omit details.
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5 Prophet Inequalities with Matroid Constraints
Further generalizations of multiple-choice prophet inequalities are possible. These general-
izations are characterized by specifying a family of allowed “feasible sets”, subsets of the {Xi}
that the algorithm is allowed to accept.

In the previous section, the family of feasible sets was just the family of sets with at
most k elements. A common constraint that is more general than this is to take the family
of feasible subsets to be a matroid, a combinatorial structure of subsets that mimics and
generalizes linear independence of vectors in a vector space, among other structures seen in
combinatorics.

Definition 5. A matroid is a pair (U , I) where U is a finite set called the ground set
and I is a family of subsets of U called the family of independent subsets, satisfying
these properties:

• The empty set is independent.

• (Hereditary property or Downward-closedness) Any subset of an independent
set is independent.

• (Augmentation) If A and B are two independent sets and A has fewer elements
than B, then some element b of B can be added to A so that A ∪ {b} is still
independent.

The rank of a matroid is the size of any maximal independent subset (it is the same
for any maximal independent subset, which can quickly be seen from the augmentation
property).

While the definition of a matroid may seem somewhat artificial, they are commonly
studied in optimization problems, which largely derives from the well-known “greediness
property”:

Proposition 1. Consider a weight function on a matroid w : U → R+, which assigns
a nonnegative weight to each element of the matroid’s ground set, and the algorithmic
task of finding the independent subset with the largest total weight. Such a subset can be
found by the greedy algorithm, which at each step greedily takes the element of the ground
set with greatest value that forms an independent set with the elements it has taken in
previous steps.

A well-known example of this greedy algorithm is Kruskal’s algorithm for computing a
minimum spanning tree. This is because in any graph, we can define a matroid with the
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graph’s set of edges as its ground set, where a set of edges is independent iff it forms no
cycles (i.e. is a forest). Such a matroid is called a graphic matroid.

Proof. Let the matroid’s rank be k and let an independent subset with maximal weight
be M . At the ith step, after the greedy algorithm has chosen i elements A, note that by
applying the augmentation property n− i times we could add n− i elements from M to A
while maintaining its independence. Thus, the element u of maximal weight that could be
added to A while preserving its independence has weight at least that of the (n−i)th-smallest
weight in M . Summing across i gives the desired result.

In the matroid prophet inequality problem, the family of feasible subsets are the indepen-
dent subsets of some matroid with the set of variables {Xi} as its ground set.4

Definition 6. An instance of the Matroid Prophet problem consists of a sequence
of independent nonnegative random variables X1, X2, . . . , Xn as usual, plus a matroid I
on the ground set U = {X1, . . . , Xn}.

An online algorithm for the Matroid Prophet problem knows the distributions of
X1, X2, . . . , Xn and the matroid I beforehand, but receives the actual values wi of Xi

online one at a time. Right after the algorithm receives the value wi of some Xi, it must
decide irrevocably whether to accept or reject Xi. At all times, the set of variables the
algorithm has accepted must be an independent set in the matroid I; it can only accept
variables that maintain this property. After it has observed and made a decision on the
last variable, the problem ends and the algorithm receives reward R equal to the sum of
the values it has accepted.

The reward of the prophet, still denoted by OPT, is the maximum sum of values of
variables in some indepndent set of the matroid I.

It is easy to verify that for any nonnegative integer k, one can obtain a matroid on any
ground set by letting sets be independent iff their size is ≤ k. This matroid is called the
uniform matroid of rank k. Thus, Matroid Prophet is a generalization of k-Choice
Prophet. Kleinberg and Weinberg [8] study the Matroid Prophet problem and shows
the same tight competitive ratio 2 of the original Prophet problem is attainable. We begin
discussing this proof with some definitions from their paper.

Definition 7. Let A be a feasible subset of the variables {Xi}. Consider a random
sequence of values w′

1, . . . , w
′
n drawn from the distributions Xi and let the prophet’s set

of accepted variables for that instance be B. Then let the remainder Rem(A) of A be the

4An analogous generalization of the secretary problem, the matroid secretary problem, can also be defined.
It is correspondingly more well-studied than the matroid prophet inequality.
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subset of B with maximum total value such that A ∪ Rem(A) is still feasible, and let the
cost Cost(A) of A be the remaining elements of B,

Cost(A) = B \ Rem(A).

Let W ′(Rem(A)) and W ′(Cost(A)) denote these subsets’ total values computed from the
aforementioned random sequence of values.

Note that both Rem(A) and Cost(A) are random variables, and if we let OPT′ be the
prophet’s reward on the samples {w′

1, . . . , w
′
n}, then Rem(A) + Cost(A) = OPT′. Also, in

practice, A will be the set of accepted variables partway through the execution of our algo-
rithm; despite this, the random sequence {w′

i} in the definition above are entirely separate
samples drawn from the problem instance’s distributions, independent of whatever values wi

may have been observed by the algorithm.
Properties of matroids imply the following two lemmas, which we only have room to

sketch proofs of. Still, note the usefulness of the greedy algorithm and property in reasoning
about matroids.

Lemma 1. For a fixed sequence of values w′
1, . . . , w

′
n and definitions from Definition 7,

the feasible A ∪ Rem(A) is the feasible set with largest total value containing A. Thus,
Rem(A) can be found by greedily adding elements of maximal weight to A that maintain
its feasibility.

Proof. (Sketch) If you run two greedy algorithms in parallel, one of which is committed
to accepting A, then by matroid properties, the only time they make different decisions
is when the first algorithm’s choice would conflict with independence with A and is thus
unavailable to the second algorithm. So the elements that would be greedily added to A are
a subsequence of the elements that would be greedily added to the empty set.

Lemma 2. W ′(Rem(·)) is a submodular set function, i.e.

W ′(Rem(S)) +W ′(Rem(S ∪ {x,y})) ≤ W ′(Rem(S ∪ {x})) +W ′(Rem(S ∪ {y}))

where all unions are disjoint set unions.

Intuitively, this states that if you force the prophet to accept two particular variables
in conjunction, the combined forced loss is greater than the sum of the forced losses from
needing to accept the two variables separately.
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Proof. (Sketch) If you run two greedy algorithms committed to accepting S and S ∪ {x} in
parallel, then by matroid properties, the former algorithm will make at most one acceptance
of some w′

i different from the latter, which replaces x. If you also run two greedy algorithms
committed to accepting S ∪{y} and S ∪{x, y} in parallel, the former algorithm will likewise
make at most one acceptance of some w′

j different from the latter. Because of the way the
restrictions interact, i is no earlier than j, so w′

i is the same or worse than w′
j; since both of

these would be replacing x, the conclusion follows.

The following property of an algorithm is a midpoint in Kleinberg and Weinberg’s demon-
stration of an algorithm for the matroid secretary problem with competitive ratio 2:

Definition 8. An online algorithm for the matroid prophet inequality problem has 2-
balanced thresholds if, for every instance, if the algorithm ends with accepting variables
A, and B is a set disjoint from A such that A ∪B is feasible, then∑

xi∈A

Ti ≥
1

2
E[W ′(Cost(A))]

∑
xi∈B

Ti ≤
1

2
E[W ′(Rem(A))],

where Ti is the algorithm’s threshold when it observed Xi and the expectations are over
a sequence of values {w′

i} drawn independently from {Xi} described in Definition 7.

Here we see threshold functions being applied in analysis. Note that sometimes the
matroid constraints imply the algorithm cannot accept a variable Xi no matter what its
value wi is; in those cases we set Ti = ∞.

Theorem 3. If an online algorithm for the matroid prophet inequality problem has 2-
balanced thresholds, then it achieves competitive ratio 2.

Proof. (Sketch) The proof is similar to their proof for the original prophet inequality; for
each accepted Xi, it decomposes the accepted value wi into Ti and wi − Ti; in other words,

E[R] = E

[∑
Xi∈A

wi

]
= E

[∑
Xi∈A

Ti

]
+ E

[∑
Xi∈A

(wi − Ti)

]
.

The first term is bounded by the expected value of Cost(A) in the definition of 2-balanced
thresholds. The second term is actually equal to

E

[
n∑

i=1

max(wi − Ti, 0)

]
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by the definition of thresholds, and can be bounded against Rem(A) using the second con-
dition of 2-balanced thresholds.

After defining this property and proving that it is sufficient, Kleinberg and Weinberg
demonstrate an algorithm exhibiting the property.

Theorem 4. There exists an online algorithm for the matroid prophet inequality problem
that has 2-balanced thresholds.

A possibly more intuitive understanding of the algorithm we are about to describe is to
imagine this two-stage extension to the matroid prophet inequality problem. The first stage
is the same: the online algorithm observes values w1, . . . , wn and accepts a feasible set as
usual, receiving reward equal to the sum of the accepted values. In the second stage, the
algorithm observes an entirely new set of independent samples w′

1, w
′
2, . . . , w

′
n from the same

distributions. Now, however, it gets to play the role of the prophet and choose which values
to accept with knowledge of all values, but (1) it is committed to accepting the variables with
their values from the first stage, and thus cannot select the same variables or any variables
that fail to form a feasible set with them in the second stage; and (2) it gets only 1/2 of each
value it accepts in the second stage. Then this online algorithm is one that accepts elements
that improve its expected reward in this two-stage game. Of course, the second stage never
actually occurs.

Proof. (Sketch) The algorithm accepts items into A such that the value

W (A) +
1

2
E[W ′(Rem(A))]

is nondecreasing. Note that initially it is equal to

1

2
E[W ′(Rem(∅))] = E[OPT]

2
,

which was the threshold in Kleinberg and Weinberg’s proof of the original Prophet in-
equality.

The first property of 2-balanced thresholds follows easily. The second property involves
invoking several properties of matroids to show that we can construct an injective map from
any B into Rem(A) such that every element of B could be replaced with the corresponding
element of Rem(A) while only increasing its total value (i.e. as per Lemma 1, Rem(A) is an
“optimal” set to add to A and greedily using parts of it can give partial optimality), and then
applying Lemma 2 that W ′(Rem(·)) is a submodular set function to compare the relevant
sums.

A further generalization of matroid restrictions worth mentioning is to take the family
of feasible subsets to be the intersection of multple matroids (a “polymatroid”), which is
studied by Kleinberg and Weinberg [8] as above, as well as by Dütting and Kleinberg [5].
The analysis involves more general α-balanced thresholds. We omit details.
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6 Prophet Inequalities with General Constraints
The most general possible multiple-choice constraint one could define on a prophet inequality
problem places no constraints on the family of feasible sets of all, except that they are
“downward-closed” (so if you’re allowed to accept a certain set of variables, you could have
accepted any subset of those variables.)5

Definition 9. A downward-closed family of subsets F of a set U is a family of sets
such that:

• The empty set is in F .

• Any subset of a set in F is in F .

In analogy with matroids, we will say that the rank of a downward-closed family is the
maximum size of a set in the family.

Definition 10. An instance of the Downward-Closed Prophet problem consists
of a sequence of independent nonnegative random variables X1, X2, . . . , Xn as usual, plus
a downward-closed family of subsets F on {X1, . . . , Xn}, elements of which are called
feasible sets.

An online algorithm for the Downward-Closed Prophet problem knows the dis-
tributions of X1, X2, . . . , Xn and the downward-closed family F beforehand, but receives
the actual values wi of Xi online one at a time. Right after the algorithm receives the
value wi of some Xi, it must decide irrevocably whether to accept or reject Xi. At all
times, the set of variables the algorithm has accepted must be a feasible set in F ; it can
only accept variables that maintain this property. After it has observed and made a de-
cision on the last variable, the problem ends and the algorithm receives reward R equal
to the sum of the values it has accepted.

The reward of the prophet, still denoted by OPT, is the maximum sum of values of
variables in some feasible set.

Rubenstein [12] constructs an algorithm for Downward-Closed Prophet that demon-
strates a competitive ratio of O(log n) on n variables drawn from {0,1}, which can be con-
verted into an algorithm that achieves a competitive ratio of O(log n · log k) on n variables

5Actually, Rubenstein [12] also briefly examines prophet inequalities for the problem Non-Monotone
Prophet where the family of feasible sets does not even need to be downward-closed. In this generalization,
the online algorithm is allowed to have accepted an infeasible set of variables in the middle of the problem,
but must have accepted a feasible set at the end. This generalization is not very interesting — the structure
of feasible sets can force the online algorithm to precommit to one of Θ(n) random variables without any
information about them, and the prophet easily gets Θ(n) advantage in that case, n being the number of
variables.
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drawn from arbitrary nonnegative distributions where the largest feasible subset has size k.
We will first explain this conversion:

Theorem 5. Given an algorithm for Downward-Closed Prophet with random vari-
ables taking values in {0,1} that achieves competitive ratio O (log n), we can obtain an
algorithm for Downward-Closed Prophet with random variables of arbitrary distri-
butions that achieves competitive ratio O (log n · log k), where k is the size of the largest
feasible set.

Proof. We will classify all values (not variables!) the prophet accepts into buckets. First
note that we can ignore all values less than OPT/2r while only losing a constant factor in
our competitive ratio, since the total reward in any scenario obtained from accepting such
values can never exceed OPT/2. Now, we classify values into the log k + 3 intervals

[OPT/2k,OPT/k], [OPT/k,2OPT/k], . . . , [OPT, 2OPT], [2OPT,∞),

and look at the bucket with the largest expected contribution to the prophet’s reward, which
is at least Ω(1/ log k) fraction of it. To complete the proof, we only have to show we can
obtain an Ω (1/ log n) fraction of the expected prophet reward obtained from values in this
bucket, possibly using the O (log n)-competitive algorithm. There are two cases:

• (“Tail”) Values in the interval [2OPT,∞) have the largest expected contribution. In
this case, we will just accept all values that are at least 2OPT. There is at least 1/2
chance that no values above 2OPT will appear, so we can derive a constant bound on
the probability that we see a value above 2OPT but can’t take it due to feasibility
constraints. Thus we will obtain a constant fraction of the expected contribution of
values in this bucket.

• (“Core”) Values in some finite interval [ℓ, 2ℓ] have the largest expected contribution. In
this case, we will treat values in that interval as 1 and all other values as 0 and run
the O (log n)-competitive algorithm. When this algorithm obtains reward R, we obtain
reward at least ℓR, which loses at most a constant factor when comparing competitive
ratios.

We now turn to the strategy for random variables in {0,1}. First we note we can assume
E[OPT] > log n:

Proposition 2. If E[OPT] = O(log n), the trivial greedy algorithm achieves a competitive
ratio of O(log n).

Page 15 of 20



Brian Chen Multiple-Choice Prophet Inequalities

This is because the trivial greedy algorithm gets at least 1 reward in any sequence of
observations that is not all 0s, which is enough.

The analysis for the general case depends on the idea of a “restricted prophet”. A restricted
prophet is a prophet that has committed to either accept or reject each of the values up to
some point in the sequence, but can choose which of the remaining values to accept with full
knowledge of all values. While our online algorithm executes, it will consider the restricted
prophet that has committed to make the same acceptances or rejections that the algorithm
already has. Of course, the online algorithm does not know the restricted prophet’s actual
reward, but can compute its expected reward over the values that the online algorithm hasn’t
seen.

Note the similarity to the remainder and cost analyzed in the previous section, but also
note the difference: these restricted prophets are committed to accepting and rejecting vari-
ables as the algorithm has decided, while in the previous section they are only commmitted
to accepting variables the algorithm has accepted, and could accept or reject variables the
algorithm has rejected.

Throughout its execution, the algorithm maintains a target value τ and a target proba-
bility π, where π is the probability that the restricted prophet will achieve reward above τ .
We need an analyzable proxy for which variables are good to take:

Definition 11. Let τ and π be the values described above at some point in an online
algorithm’s execution. A future variable Xi is good if, under the condition it is the next
1 observed, the restricted prophet that accepts it (in addition to being committed to all
decisions made by the online algorithm so far) has at least π/n2 probability of achieving
award at least τ . Otherwise, it is bad.

Basically, the set of good variables are the variables whose chances of being 1 contribute
“significantly” to the restricted prophet’s probability of beating τ . Note that whether a
variable is good depends on the algorithm’s current state, including the previously observed
values, acceptances, rejections, and τ .

Let G be the random event that at least one good feasible variable will be observed to
have value 1 in the future. Also as before, let A denote the set of accepted variables.

Note that since we’re only dealing with values in {0,1} and there’s no point in accepting
0 values, the number |A| of accepted variables in any optimal algorithm will just be the
collected reward so far. However, in Kleinberg and Weinberg’s analysis, they have the
algorithm possibly “hallucinate” that some 0s it observes are actually 1s in the corner case
where no more good 1s are observed, for ease of analysis. In that case we still use |A| as our
accumulated reward in analysis. We maintain that, on expectation, only a constant fraction
of the variables we have accepted are hallucinated 1’s, so that we have a constant fraction
of “real” 1’s on expectation and we only lose a constant competitive ratio.

The factor of n2 we are willing to tolerate in a good variable in Definition 11 seems like
a lot, but it turns out that “most of the time”, decreasing τ by 1 increases π by a factor
of 2, so we only need to decrease τ by log n to compensate; and since we are allowed to
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assume OPT = ω(log n) by Proposition 2, this decrease is fine. We more formally describe
the algorithm below and give a more detailed sketch of its analysis:

Algorithm. Let τ be a target reward initialized to E[OPT]/2. When P [G] ≥ 1/3,
observe values until you observe a good variable with value 1, and accept it. After each
newly accepted element, decrease τ until P [G] ≥ 1/3 or |A| > τ (in which case we are
already guaranteed more reward than our target τ , modulo “hallucinations”.)

If by the last good variable, no good 1s have been observed (so G has failed to occur),
then “hallucinate” that that last good variable has value 1, accept it (so that |A| is
incremented), and decrease τ by 1.

We now show the lemma achieves an O(log n) competitive ratio in a series of lemmas.
The first lemma shows that we start the algorithm in a good enough state:

Lemma 3. The initial value of π is

P

[
OPT ≥ E[OPT]

2

]
> 1/3− o(1).

Proof. (Sketch) We decompose E[OPT] similarly as before:

E[OPT] =
∫ ∞

0

P [OPT ≥ t] dt

=

∫ E[OPT]/2

0

P [OPT ≥ t] dt+

∫ 2E[OPT]

E[OPT]/2

P [OPT ≥ t] dt+

∫ ∞

2E[OPT]

P [OPT ≥ t] dt.

The first two terms are easy to bound as under

E[OPT]
2

and
3E[OPT]

2
· P

[
OPT ≥ E[OPT]

2

]
,

just by taking the obvious upper bounds of their integrands. The third term is more difficult
to bound, but based on an inequality by Ledoux [11], turns out to be O

(
e−OPT

)
= o(1).

Rearranging terms yields the desired bound.

Now we show that lowering our target τ substantially improves our chances π of hitting
the target:

Lemma 4. If P [G] ≤ 1/3, then subtracting 1 from τ at least doubles π.
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Proof. (Sketch) First, across choices of the unknown variables, the restricted prophet has
probability π of achieving reward above τ ; we claim that less than π/n (i.e. o(1) fraction)
of this probability comes from the case where G is false. This is true because if no good
variables have value 1, the first 1 selected by the restricted prophet decreases π by a factor
of n2, so a union-bound across which variable is the first 1 selected by the prophet gives the
desired result.

Next, we claim that, conditioned on G, the restricted prophet’s expected reward increases
by at most 1. To see this, note that G is a disjoint union of events of the form

Gj = “Xj is the next variable to be observed with value 1”

for good variables Xj. For each Gj, the restricted prophet’s expected reward conditioned on
Gj is at most 1 more than its reward conditioned on

Bj = “All variables up to and including Xj are observed to have value 0” ,

which is no better than its reward conditioned on nothing at all.
The lemma follows from these two claims, because the probability of achieving τ − 1 is

at least (3− o(1)) times the probability of achieving τ .

Now we can complete the analysis of the algorithm. At the start of the algorithm, π is at
least 1/4 by Lemma 3. Whenever we accept a variable, since we only accept good variables,
we know that π decreases by at worst a factor of Ω(1/n2) (and, in particular, never drops
to 0). Whenever we decrease τ , π doubles. We can obtain a desired bound on τ from π ≤ 1
since it’s a probability. This gives us a bound on the number of accepted variables |A| at the
end of the problem: because there are no good variables (or, indeed, any variables at all)
and no uncertainty left, π > 0 implies π = 1, so it can only be that |A| ≥ τ . Sometimes we
accept “hallucinated” 1’s, but since we only wait for 1’s when we have at least a 1/3 chance
of getting one, we expect that at least 1/3 of our accepted variables are non-hallucinatory
1’s, and thus our actual reward is Ω(1)|A| on expectation.

This implies the competitive ratio of O(log n) for Downward-Closed Prophet with
{0,1} variables, and thus O(log n · log k) for Downward-Closed Prophet with general
variables.

7 Conclusion
We surveyed multiple-choice prophet inequalities. We saw the importance of thresholds to all
algorithms for the class of problems, and the power of simple algorithms with simple thresh-
olds, as well as the common technique in analysis of decomposing values into parts above and
below a threshold. Although the classical prophet inequality and some of the generalizations
we surveyed have been solved and their optimal competitive ratios determined a long time
ago, many interesting gaps in bounds on competitive ratios remain in Downward-Closed
Prophet and other generalizations we have only been able to touch on. These is only the
tip of the iceberg with regards to generalizations, even multiple-choice ones; we have not
gone into studies of more specific types of matroids or generalizations where the variables
can be reordered by the algorithm or by a dynamic adversary, for example.
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This table summarizes the competitive ratios of the problems we have surveyed:
Competitive Ratio

Problem Discussed in Lower bound Upper bound
Prophet Section 3 2 [9] 2 [9]

k-Choice Prophet Section 4 1 + Ω(1/
√
k) [6] 1 +O(1/

√
k) [1]

Matroid Prophet Section 5 2 [9] 2 [8]
Downward-Closed Prophet Section 6 Ω(log n/ log log n) [4] O(log n · log k) [12]
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