
O(nm)-TIME ALGORITHM FOR MAX FLOW

MAX ZIMET AND ADAM EAGLE

MAXZIMET@MIT.EDU, AREAGLE@MIT.EDU

Abstract. In this paper, we describe the recent work by Orlin[1] which gives

a strongly-polynomial O(nm)-time algorithm for max flow, where m is the

number of edges in our graph and n is the number of nodes. This is the best

asymptotic running time that has been attained for the max-flow problem.

The algorithm’s central idea is to reduce the number of nodes in the graph we

are concerned with by an amount depending on the capacities of edges, and

then to run the fastest-known scaling algorithm – that of Goldberg and Rao[2]

– on the new graph. The max-flow on the new graph can then be used to find

a max-flow on the original graph.

1. Introduction

The max flow problem is an important problem in combinatorial optimization.

We state the problem as follows:

Consider a directed graph G = (N,A) with n = |N | nodes, m = |A| edges,

and non-negative integer-valued edge capacities uij in which the largest capacity is

bounded by U . There are two special nodes in G, a source s and a sink t. The flow

on edge (i, j) is denoted as xij , where for each edge (i, j) we require xij ≥ 0, and

the flow satisfies the conservation constraint:∑
(i,j)∈A

xij −
∑

(j,i)∈A

xij = 0 ∀i ∈ N \(s, t).

A flow is feasible if it also satisfies the capacity constraints, xij ≤ uij ∀(i, j) ∈ A.

The value of a flow x is the net flow out of the source, which is equal to the net

flow into the sink. In the max flow problem, we seek a feasible flow with the largest

possible value.

The fastest strongly polynomial algorithm was published by King et. al. [3]; this

has a running time of O(nm logm/(n logn) n). When m = Ω(n1+ε) for any ε > 0, the

running time of this algorithm is O(nm). The fastest weakly polynomial algorithm,

published by Goldberg and Rao[2], has a running time of O(Λm log (n2/m)) per

scaling phase, where Λ = min(n2/3,m1/2). This algorithm uses logU scaling phases,

each of which reduces the difference between the current s-t cut capacity and the

minimum s-t cut capacity by a factor of 1/2. Karzanov[4] proves using the method

of preflows that the max flow problem can be solved in O(n3) time.

Date: December 9, 2013.

1

2 MAX ZIMET AND ADAM EAGLE MAXZIMET@MIT.EDU, AREAGLE@MIT.EDU

Orlin[1] shows that max flows can always be found in O(nm) time by providing

an O(nm + m31/16 log2 n)-time algorithm; when m = O(n(16/15)−ε), this running

time is O(nm). Since King et. al. [3] find a max flow in O(nm) time for all other

m, namely, m > n1+ε, Orlin’s algorithm establishes that the max flow problem can

be solved in O(nm) time for all n and m.

This paper summarizes and clarifies some of the ideas in Orlin’s paper without

going into too much technical detail regarding specific implementations of subrou-

tines and data structures. References are provided for the reader who wishes to

investigate these matters more closely.

2. Additional Notation and Assumptions

We will now define a few properties that will used frequently in the rest of this

paper. The residual capacity of an edge (i, j) is rij = uij−xij+xji, and it expresses

the amount of additional flow that can be sent from i to j, given a flow x. We will

denote the vector of residual capacities as r and the residual graph by Gr.

An s-t cut [S, T] is a partition of N into S and T such that s ∈ S and t ∈ T . An

edge (i, j) is a forward edge of [S, T] if i ∈ S and j ∈ T . Similarly, an edge (i, j) is a

backward edge of [S, T] if j ∈ S and i ∈ T . The capacity of an s-t cut is u(S, T) =∑
i∈S,j∈T uij and the residual capacity of an s-t cut is r(S, T) =

∑
i∈S,j∈T rij .

Finally, we assume that there is, in fact, a feasible flow in the network we are

studying. If there were not such a flow, then we could detect this condition using

a breadth-first search; thus, this case is uninteresting.

3. Overview of Algorithm

We now give an overview of the algorithm.

3.1. Improvement Phases. Our algorithm will proceed via a sequence of im-

provement steps. Each improvement step will take as input a flow, specified by

a vector r of residual capacities (so for each edge (i, j), r contains an entry rij);

and an s-t cut, specified by the subset of nodes S which contains s and the subset

of nodes T which contains t. We denote this input as (r, S, T). The procedure

Improve(r, S, T), detailed in Section 5, implements each improvement phase. The

output of this procedure is a new flow, specified by a vector r′ of residual capacities,

and a new s-t cut, specified by subsets S′, T ′ ⊂ V .

We want to quantify the extent of improvement accomplished by each improve-

ment phase. To do so, we let ∆ be the residual capacity of the s-t cut (S, T), which

we denote by r(S, T). We note that the max flow-min cut theorem implies that ∆

is an upper bound on the max-flow in the residual graph; we therefore refer to ∆ as

the flow bound. For reasons that will become clear later, we also associate to each

phase a number Γ, which we call the compactness parameter. We will choose Γ so

that 0 ≤ Γ ≤ ∆. We also require that each improvement phase satisfy the improve-

ment property: ∆′ ≤ Γ/(8m), where ∆′ = r′(S′, T ′). In particular, ∆′ ≤ ∆/(8m),

so the flow bound improves by a factor of at least 8m after each phase.

O(nm)-TIME ALGORITHM FOR MAX FLOW 3

3.2. Critical Nodes, Compact Network. The essential idea used to make this

algorithm fast is, in each phase, to single out some nodes of our graph G as being

Γ-critical, or simply critical if the value of Γ is clear. (That is, while talking about

a particular improvement phase, which has a fixed value of Γ, we may simply

use the term critical, leaving the value of Γ implicit). These are, intuitively, the

nodes adjacent to edges with significant amounts of residual capacity. Let C be

the number of Γ-critical nodes in a particular improvement phase. We show in

Theorem 3 that the number of such nodes, over all improvement phases, is O(m).

We then just need to upper bound the time spent by the algorithm per Γ-critical

node in each improvement phase. That is, let T be the time taken by the algorithm

during a particular improvement phase. We want to prove the upper bound T/C =

Õ(m15/16) (where the tilde means we ignore log factors of m and n). Note that given

this upper bound, the time to run the total algorithm is Õ(m·m15/16) = Õ(m31/16),

as there are O(m) critical nodes over all improvement phases. Finally, using our

assumption that m = O(n16/15−ε) for some positive ε, we find that the running

time of our algorithm is Õ(m · n1−ε(15/16)) = O(mn).

We prove the upper bound T/C = Õ(m15/16) by considering two cases. The

first case is if there are many critical nodes (C ≥ m9/16), in which case we can

accomplish the goal of this improvement phase by running O(log n) Goldberg and

Rao scaling phases, and T/C is upper bounded because C is large. The second case

is if there are few critical nodes (C < m9/16). In this case we create a new network,

called the compact network, whose nodes are the critical nodes, and which has

O(m) edges. We find a flow on this network, and use this to find an approximate

max-flow on the original network. We use the fact that the compact network has

only C nodes and m edges to upper bound T/C.

There is an intuitive way to see why the running time of this algorithm is in-

dependent of U . The output of each improvement phase is an s-t cut whose ca-

pacity is at most 1/(8m) times that of the s-t cut which was the input to this

phase. Since the edge capacities are integers, the smallest capacity an s-t cut

can have is 1 (assuming there is a possible flow). The largest capacity an s-t cut

can possibly have is mU . Therefore, there are at most log8mmU ≤ 1 + logU

improvement phases. If we need few improvement phases, we may as well have

used Goldberg-Rao. So, assume that there are Θ(logU) improvement phases, so

the average number of critical nodes per improvement phase is O(m/ logU). We

emphasize this statement because it is the key to the strongly-polynomial run-

time of this algorithm: we construct compact networks with C nodes, where C

scales inversely with logU . If logU ≤ m7/16, then again the Goldberg-Rao algo-

rithm completes in time O(mn). So, assume that logU > m7/16. Since the time

needed to run the Goldberg-Rao algorithm on a graph with C nodes and O(C2)

edges is Õ(C8/3 logU), it follows that the total time needed to run the algorithm is

Õ((m/ logU)8/3 logU) = Õ(m8/3(logU)−5/3) = Õ(m8/3−(7/16)·(5/3)) = Õ(m31/16).

4 MAX ZIMET AND ADAM EAGLE MAXZIMET@MIT.EDU, AREAGLE@MIT.EDU

As we noted above, our assumption that m = O(n16/15−ε) implies that this is

O(mn).

4. Constructing the Compact Network

We denote the compact network by Gc = (Nc, Ac). In order that the max-flow

value in the compact network be close to the max-flow value in the original network,

we choose the Γ-critical nodes to be those with significant residual capacities coming

in or out of them. To make this precise, we introduce a number of definitions.

4.1. Cuts in the Compact Network. Because improvement steps in our algo-

rithm, and scaling steps in the Goldberg-Rao algorithm, require a cut as input, we

explain how we will obtain a cut in the compact network from an s-t cut in the

original network, and vice versa. This will guide our construction of the compact

network.

First, we show how to get a cut in the compact network from an s-t cut in the

original network. Take an s-t cut [S, T] of the original network. We call the cut

[Sc, Tc] of Gc defined by Sc = S ∩Nc and Tc = T ∩Nc the cut induced by the s-t

cut [S, T].

Next, we show how to obtain an s-t cut [S, T] in the original network from a cut

[Sc, Tc] in the compact network. We note that our algorithm proceeds by finding a

cut [Sc, Tc] in the compact graph with small capacity, and then uses this to find an

s-t cut in the original network with small capacity. So, the capacity of the induced

cut in the original network should not be much more than that of [Sc, Tc]. We

introduce the concept of abundant edges in order to satisfy this condition.

Recall that ∆ is the flow bound. So, if an edge has capacity greater than ∆, then

we will not include it in the s-t cut which is the output of the current improvement

phase. (If we did, then the s-t cut would have capacity greater than ∆). This

motivates the following definition.

Definition 1. An edge (i, j) is said to be ∆-abundant if rij ≥ 2∆. An edge (i, j)

is said to be ∆-anti-abundant if rji ≥ 2∆. A path in Gr is an abundant path if it

consists entirely of abundant edges. Denote the set of abundant edges by Aab and

the set of anti-abundant edges by A−ab.

We frequently drop the ∆’s if the value of ∆ is obvious; for instance, we may

simply write that an edge is abundant.

Using this definition, we can give a procedure for inducing s-t cuts in the original

network from cuts [Sc, Tc] in the compact network. Namely, let S be the subset of

N consisting of nodes which are reachable from a node in Sc via an abundant path

in Gr; let T = N\S.

We will now use these procedures for inducing cuts to guide our construction of

the compact network. Orlin[1] shows that the capacities of the induced cuts do not

differ significantly from the capacities of the original cuts.

O(nm)-TIME ALGORITHM FOR MAX FLOW 5

4.2. Contraction. As we have argued, we frequently do not need to consider abun-

dant edges. Therefore, our first step in creating the compact graph is to contract

many such edges. The concept of contraction was introduced by Goldberg and

Rao[2, 1]. We need the following definition.

Definition 2. The abundance graph Gab is the subgraph of G whose nodes are N

and whose edges are the ∆-abundant edges.

At the beginning of an improvement phase, we contract each directed cycle of

the abundance graph to a single node. We also contract abundant external edges,

where external edges are edges adjacent to either s or t. Any edge coming into /

going out of one of these contracted nodes in the original abundance graph will have

a corresponding edge coming into / going out of the new node. We also have to

modify the flow in the new graph. The exact details of contraction are discussed in

Goldberg and Rao. The important facts about this process, as stated by Orlin[1],

are:

(1) the flows in the expanded and contracted graphs have the same value;

(2) we can expand a contracted graph (essentially reversing the process of con-

traction);

(3) the time taken, per improvement phase, for contraction and for expansion

is O(m).

As we show in Lemma 5, the number of improvement phases is O(m2/3), so the

total time on contractions and expansions is O(m5/3) = o(m31/16), and therefore

these operations are not bottleneck operations.

Note that one consequence of contracting cycles is that if (i, j) is in the modified

abundance graph (which I henceforth simply refer to as the abundance graph), then

(j, i) is not.

4.3. Compaction. We will now provide the definitions necessary for identifying

Γ-critical nodes.

Definition 3. An edge (i, j) is said to be Γ-medium if Γ/(64m3) ≤ uij + uji, and

neither (i, j) nor (j, i) is ∆-abundant.

Definition 4. Let r̂out(i) and r̂in(i) denote, respectively, the total residual capacity

of anti-abundant edges going out of/into node i. Then, node i is Γ-critical if it is

incident to a Γ-medium edge or if |r̂out(i) − r̂in(i)| > Γ/(16m2). Nodes which are

not Γ-critical are called Γ-compactible.

With these definitions, we can now define the compact graph. The nodes of the

compact graph are the Γ-critical nodes. Denote the set of these nodes by Nc. The

edges may be divided into three classes. Writing Ac for the edge set of the compact

graph, we write Ac = A1 ∪ A2 ∪ A3. Edges in A1 are called original edges, and

they correspond to edges between critical nodes which are in the original network;

the residual capacity of these edges are unchanged from their residual capacity in

6 MAX ZIMET AND ADAM EAGLE MAXZIMET@MIT.EDU, AREAGLE@MIT.EDU

the original network. Edges in A2 are called abundant pseudo-edges. There is such

an edge between critical nodes i and j if there is a path in the abundance graph

from i to j. The residual capacity of this edge is 2∆. Finally, edges in A3, called

anti-abundant pseudo-edges, are created by the following procedure, adapted from

[1].

1 Input: (r, Γ)

2 Result: Some capacity is transferred from anti-abundant edges in the

original graph to anti-abundant pseudo-edges in the compact

graph

3 Let H be the subset of edges of A−ab incident to Γ-compactible nodes;

4 foreach (i, j) ∈ H do

5 qij = rij ;

6 end

7 while H 6= ∅ do

8 select a node i of H with no incoming edges;

9 use depth first search to find a path P that starts at node i and ends

at a node ` such that ` ∈ Nc or ` has no outgoing edge (or both);

10 let δ = min(qjk : (j, k) ∈ P);

11 if (i, `) ∈ Nc then

12 A3 = A3 ∪ (i, `);

13 rci` = δ;

14 end

15 forall the (j, k) ∈ P do

16 qjk = qjk − δ;
17 end

18 delete each edge (j, k) from H such that qjk = 0;

19 forall the pairs (i, j) ∈ Nc do

20 aggregate all edges in A3 from i to j in a single edge (i, j);

21 end

22 end

Algorithm 1: Transfer Capacity

Note: rci` in line 13 is the residual capacity of edge (i, `) in the compact graph

(before we aggregate the edges together in line 20).

This algorithm keeps the capacity of certain paths between critical nodes which

travel only over anti-abundant edges: namely, those paths which travel only through

compactible nodes, except for at the endpoints of the path. So, we lose capacity

when going from the original network to the compact network when we have a path

of anti-abundant edges which cannot be extended to a path of anti-abundant edges

that starts and ends on a critical node. We call this capacity lost capacity.

Let P be the set of paths found in this procedure which start and end at critical

nodes (so their capacity is not lost), and let Q be the set of paths found in this

O(nm)-TIME ALGORITHM FOR MAX FLOW 7

procedure which do not start and end at critical nodes (so their capacity is lost).

We want to bound the difference in min-cut capacities between the original and

compact networks. Our first step toward this is to bound the amound of residual

capacity that was lost.

Lemma 1. The amount of lost residual capacity was less than Γ/(16m).

Proof. Let qout(j) and qin(j), respectively, be the residual capacity out of / into

compactible node j at some iteration of the capacity transfer procedure. Let

Φ(j, q) = qout(j) − qin(j). When we begin the capacity transfer, |Φ(j, q)| =

|r̂out(j) − r̂in(j)| ≤ Γ/(16m2). In the end, Φ(j, q) = 0 because q = 0. Note

that Φ only changes when we transfer capacity from paths in Q.

First, suppose that r̂out(j)− r̂in(j) > 0. Because j is not in Nc, we will only ever

end a path at j if there are no outgoing edges from j. But, this will never be the

case, as every path that does not start at j will change rout(j) and rin(j) by the

same amount. So, if there are incoming edges to j, then there are outgoing edges

from j. Now, suppose we start a path at j. When j is selected to begin a path in line

8, we must have qin(j) = 0, so qout(j) = r̂out(j)− r̂in(j) ≤ Γ/(16m2). So, the total

amount of residual capacity lost due to paths starting at some compactible node

is at most Γ/(16m2). A similar argument shows that the total amount of residual

capacity lost due to paths ending at some compactible node is at most Γ/(16m2).

Since every path with lost capacity either begins or ends at some compactible node,

the total amount of lost capacity is less than or equal to nΓ/(16m2) ≤ Γ/(16m). �

4.4. Time to Create the Compact Network. We now upper bound the time

needed to create the compact network. Before we do so, however, we must briefly

mention a number of subroutines we use in this process.

First, we mention how we are able to quickly find which nodes are connected by

paths in the abundance graph.

Definition 5. The transitive closure of a graph G = (V,E) is G =
(
V,E

)
, where

there is an edge (i, j) ∈ E if there is a path in G from i to j.

Our algorithm will maintain the transitive closure of Gab over the course of all

improvement phases. The following lemma shows that edges are only ever added to

Gab over the course of our improvement phases, so that we may use the algorithm

of Italiano[5] to maintain this transitive closure.

Lemma 2. If (i, j) is ∆-abundant at the beginning of the ∆-improvement phase,

then (i, j) is also ∆′-abundant at the beginning of the ∆′-improvement phase if

∆′ < ∆.

Proof. This is obvious from rij ≥ 2∆, since the change in flow across (i, j) is at

most ∆, so after the ∆-improvement phase rij ≥ ∆ > 2∆′. �

Next, we note that our current construction of the compact network allows for

|A2| to become large. We want the number of edges in the compact graph to be

8 MAX ZIMET AND ADAM EAGLE MAXZIMET@MIT.EDU, AREAGLE@MIT.EDU

O(m). Note that |A1| ≤ m and |A3| ≤ m, since each iteration of the capacity

transfer algorithm deletes one edge from the original graph. Orlin[1] describes a

technique that allows him to reduce the size of A2 to be less than or equal to

C = O(m) (as is shown in Theorem 3).

Theorem 1. Suppose that each compact network has at most m9/16 nodes. Then,

the time it takes to create Gc is O(m9/8).

From the discussion of Section 3.2, we see that the hypothesis of this theorem is

indeed satisfied.

Proof. As already mentioned, contraction and expansion takes O(m) time. Deter-

mining which nodes are critical takes time O(m). Then, we find A1 in O(m) time.

We can find A2 in O(C2) = O(m9/8) time by inspecting the transitive closure of

the abundance graph. Orlin[1] proves that he can find A3 in O(m log n) time. �

4.5. Transferring Flows from Compact to Original Network. Orlin[1] gives

a procedure for efficiently obtaining a flow on the original network, given a flow

on the compact network. The details are not very interesting. However, he also

shows that if the compact graph flow is close to optimal, then so is the flow on the

original graph – shortly, we will clarify the sense in which this is true. First, we

need a couple of lemmas.

Lemma 3. Suppose that P is a path in the original graph from i to j which contains

only anti-abundant edges. Suppose that [S, T] is an s-t cut in Gr with no abundant

forward edge. If i ∈ S and j ∈ T , then P has exactly one edge crossing the cut

[S, T]. If i 6∈ S or j 6∈ T , then no edge of P crosses [S, T].

Proof. If i ∈ S and j ∈ T , then there is obviously one edge in P crossing the cut.

If there were more than one, then there would also be a backward edge in P – that

is, there is a backward anti-abundant edge, so there is a forward abundant edge.

The proof for the other cases is similar. �

This lemma is used to prove the next lemma:

Lemma 4. Suppose that [Sc, Tc] is an s-t cut in Gc with no abundant forward edges.

Let [S, T] be the induced cut of G. Then rc(Sc, Tc) ≤ r(S, T) ≤ rc(Sc, Tc)+Γ/(16m),

where rc is the vector of reduced capacities in the compact graph.

Proof. Use Lemma 3 to create a correspondence between edges crossing the cut

[S, T] and paths in P ∪ Q which cross the cut. Each such edge in P transferred

its capacity to an edge in the cut (Sc, Tc), while the edges in Q lost their capacity.

By Lemma 1, the amount of lost residual capacity from the edges in Q is less than

Γ/(16m). �

The following theorem follows easily:

O(nm)-TIME ALGORITHM FOR MAX FLOW 9

Theorem 2. Take (yc, Sc, Tc), where yc is a flow in the Γ-compact network Gc
and [Sc, Tc] is a cut in Gc with r(Sc, Tc) ≤ v + α, where v is the value of yc. Let

y, S, T be the induced flow and s-t cut in G. Then, y has a flow value of v and

r(S, T) ≤ r(Sc, Tc) + Γ/(16m) = v + α+ Γ/(16m).

4.6. Number of Critical Nodes. Before moving on to discuss the improvement

phase, we prove the following important theorem.

Theorem 3. The number of Γ-critical nodes over all improvement phases is O(m).

Proof. We do not count the number of Γ-special nodes, as the proof that the num-

ber of Γ-special nodes, over all improvement phases, is O(m) consists of much

unenlightening algebra. The reader is referred to [1].

On the other hand, the proof that the number of nodes adjacent to Γ-medium

edges over all phases is O(m) is elegant. In fact, we prove that an edge can be

Γ-medium for at most 3 consecutive phases. Suppose that there is an edge (i, j)

that is Γ-medium: uij + uji ≥ Γ/(64m3). Let ∆′ be the flow bound at the next

phase. Then, uij + uji ≥ ∆′/(8m2). Continuing this way, we see that if ∆∗ is the

flow bound two phases after ∆′, then uij + uji ≥ 8∆∗. At this point, (i, j) or (j, i)

must be ∆∗-abundant, so (i, j) is not Γ∗-medium (where Γ∗ is the compactness

parameter associated to ∆∗). �

5. Improvement Phase

We begin our algorithm with an arbitrary feasible flow and s-t cut .

We now describe the steps taken during an improvement phase. This algorithm

is adapted from Orlin[1]. We first define a ∆-optimal flow to be a flow whose s-t

cut capacity differs from that of the minimum s-t cut capacity by a factor of ∆.

10 MAX ZIMET AND ADAM EAGLE MAXZIMET@MIT.EDU, AREAGLE@MIT.EDU

1 Input: (r, S, T)

2 Result: An improved approximate residual flow

3 ∆ := r(S, T);

4 let C’ be the number of ∆-critical nodes (C is the number of Γ-critical

nodes);

5 if C ≥ m9/16 then

6 let Γ = ∆;

7 find a Γ/(8m)-optimal flow in Gr using O(log n) Goldberg-Rao scaling

phases;

8 else if m1/3 ≤ C < m9/16 then

9 let Γ = ∆;

10 let Gc denote the Γ-compact network;

11 find a Γ/(16m)-optimal flow y on Gc using O(log n) Goldberg-Rao

scaling phases;

12 let y be the induced Γ/(8m)-opt flow on Gr;

13 update the residual capacities;

14 else if C < m1/3 then

15 choose the minimum value Γ such that the number C of Γ-critical

nodes in the network is less than m1/3;

16 let Gc denote the Γ-compact network;

17 find an optimal flow y on Gc using an O(C3)-time max-flow algorithm;

18 let y be the induced Γ/(16m)-opt flow on Gr;

19 update the residual capacities;

20

Algorithm 2: Improve Approximate Flow

Lemma 5. The number of improvement phases is O(m2/3).

Proof. There are O(m) Γ-critical and (Γ/2)-critical nodes over all improvement

phases. The algorithm makes it clear that in all 3 cases, the number of Γ/2-critical

nodes is at least m1/3. So, the number of improvement phases is O(m2/3). �

Lemma 6. The time to create all of the compact networks is O(nm+m43/24).

Proof. This proof is largely uninteresting. We prove the interesting part: we can

find Γ in O(m + n log n) time, when we are in the third case. For each node i,

look at the adjacent edges and find the greatest Γ for which i is in the Γ-compact

network. Sort all of the nodes by these values and select the smallest Γ so that the

compact network contains at most m1/3 nodes. �

Lemma 7. The algorithm determines the optimal or approximately optimal flows

in all of the compact networks in Õ(m31/16) time.

O(nm)-TIME ALGORITHM FOR MAX FLOW 11

Proof. In the first case, we need O(log n) Goldberg-Rao scaling phases, each of

which takes time T = Õ(m3/2), so T/C = Õ(m15/16). In the second case, we

need O(log n) Goldberg-Rao scaling phases, each of which takes time T = Õ(C2/3 ·
C2) = Õ(C8/3), so T/C = Õ(C5/3) = Õ(m15/16). In the third case, we need time

T = O(C3), and T/C = O(C2) = O(m2/3). Since, over all phases, there are O(m)

critical nodes, the total time is Õ(m31/16). �

Lemma 8. The total time it takes to transform the flows in compact networks to

the flows in the residual networks is O(nm+m5/3 log n).

Proof. This is based on the procedure for transforming the flows, which we have

not provided. However, this proof is not difficult and can be read in Lemma 10 of

Orlin’s paper[1]. �

All of these results, plus the discussion in Section 3.2, prove the following theo-

rem:

Theorem 4. The running time to find a maximum flow is Õ(m31/16). If m =

O(n16/15−ε) for any ε > 0, the running time is O(nm).

6. Conclusion

Orlin[1] has provided a strongly-polynomial algorithm that finds a max-flow in

O(mn) time when m = O(n16/15−ε) for any ε > 0. Together with the O(mn) time

algorithm of King et. al.[3], this shows that for any m and n, there is an O(mn)

time algorithm for max-flow with integer capacities.

References

[1] J.B. Orlin. Max flows in O(nm) time, or better. Proceedings of the 2013 Symposium on the

Theory of Computing, pages 765–774.

[2] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the ACM,

45:783–797, 1998.

[3] V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow algorithm. J. Algorithms,

23:447–474, 1994.

[4] A. V. Karzanov. Determining the maximal flow in a network by the method of preflows. Soviet

Mathematics Doklady, 15:434–437, 1974.

[5] G. Italiano. Amortized efficiency of a path retrieval data structure. Theoretical Computer

Science, 48(0):273–281, 1986.

Acknowledgements

The authors are grateful to Professor Karger for his amazing course in advanced

algorithms.

