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1 Introduction

In this class, we have encountered streaming algorithms for computing properties of a sequence

of inputs with limited memory. One area of interest is in graph streaming algorithms, where the

edges of a graph arrives in a stream and the algorithm computes properties of the graph such as

connectivity, bipartiteness or the size of a maximum matching using space sublinear in the number

of edges, which is O(n2) for a graph with n vertices. It can be proved 1 that in an adversarial stream

(an adversary gets to choose what order the edges arrive in), at least Ω(n log n) space is needed

to compute properties such as connectivity and bipartiteness. Therefore, most of the algorithms

studied in this survey use Õ(n) space, where Õ hides log n factors. In fact, for the model mentioned

above (insertion of edges, adversarial stream), we have seen algorithms using spaces that match

these lower bounds, e.g., by maintaining the spanning forest, greedy matching, bipartite-labeling,

etc. Here we will look at streaming algorithms for two modifications of this basic model:

1. Allow edge deletions in the stream in addition to insertions

2. Instead of an adversarial stream, the edges in the stream are ordered randomly

These modifications are interesting in many ways. First, they are more relevant to real-world

applications, since in reality graphs change over time (such as one adding and removing friends

on a social network). Also, in many applications the average-case result is more important than

the worst-case result. Analyzing a random stream order will tell us more about how much better

we can do than in the worst case, more specifically if we can do better than the Ω(n log n) space

lower bound. The techniques used in these algorithms are newsworthy by their own interests, too.

To handle edge deletions, [1] uses dimensional reduction methods to compute a sketch of a graph

which is sublinear in the number of edges. For randomized streams, [5] analyzed the problem from

the perspective of property testing, treating the stream as random measurements on the graph.

The results presented in this survey build on each other. We start with the method of graph

sketching and demonstrate how one can use it to solve the graph connectivity problem. Next

we focus on finding an approximation to maximum matching. First we use the graph sketching

techniques presented previously for an algorithm in the adversarial stream setting and then we

focus on the random edge arrival setting. Finally we will conclude by drawing some connections to

the techniques used in these streaming algorithms.

1This lower bound is proved in Homework 3
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2 Graph Sketching

A graph can be described by a stream of m edges on n nodes coming one by one. More generally, we

consider dynamic graph streams where edges can be both added and removed. To store the whole

graph can take O(n2) space. We want to use only Õ(n) space to analyze structures for dynamic

graphs, such as connectivity, bipartiteness, matching, etc.

2.1 Dynamic Streaming Model

First, let’s generalize the streaming model a bit to deal with edge deletions by introducing weights:

Definition 1 (Data Stream). A stream σ has the form 〈(x1,∆1), · · · , (xt,∆t)〉, where each xi is

an element from universe [n] and ∆i ∈ R is xi’s weight.

Definition 2 (Frequency Vector). σ’s frequency vector f ∈ Rn is defined as fx =
∑

i:xi=x
∆i for

each x ∈ [n].

Namely, f is the current state of σ, and σ describes changes in f . Recall the streaming model

we have studied in class where all ∆i = 1. The number of distinct elements in σ is the 0-norm of

f , and the heavy hitters in σ are x’s with large fx. We can ask more problems about f . What is its

p-norm? What is the median? Can we sample an element according to f?

2.2 Linear Sketches

An important class of algorithms in data streaming are linear sketches. Such algorithms maintain

a low dimensional sketch of the input stream while preserving its relevant properties. Formally,

Definition 3 (Linear Sketch). A linear sketch S is a random linear projection of f from Rn to Rk

for some k � n.

Our goal is to be able to infer some information about f from its low dimensional sketch S(f).

The linearity of S makes it easy to combine two streams σ1 and σ2. To get S(f(σ1 ◦ σ2)), where

◦ denotes concatenation, we simply add S(f(σ1)) and S(f(σ2)). Then we can update the current

sketch on a newly coming element, or divide the whole stream into pieces for distributed processing.

Recall the Count-Min Sketch Algorithm which we have seen in class. It first chooses l inde-

pendent random hash functions h1, · · · , hl: [n]→ [b], and then maintains l different b-dimensional

vectors CMS1, · · · , CMSl. Each CMSij =
∑

x:hi(x)=j
fx. So they are random linear projections of

f , and thus Count-Min Sketch is a linear sketch from Rn to Rlb. Specifically, it is used to estimate

fx within εn-additive error.

2.3 `0-Sampling

For a non-zero vector x ∈ Rn, an `0-sampler is an algorithm that takes in a stream of updates to

x and in the end returns some element in the support of x uniformly at random.

Definition 4 (`0-Sampling). A δ-`0-sampler for a non-zero x ∈ Rn fails with probability at most δ

and otherwise returns some i ∈ supp(x) with probability 1
| supp(x)| .
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Due to Jowhari et al. [3], `0-sampling for the frequency vector f of a stream σ can be performed

via linear sketches:

Lemma 1. δ-`0-sampling can be performed in O(log2 n log δ−1) space by a linear sketch based

algorithm.

We omit the full proof since it involves a lot of machinery out of the scope of this survey.

Informally, the algorithm randomly chooses log n subsets of [n], and restricts x to the coordinates

in each subset. Some of the restricted version of x should be sparse in expectation, from which we

easily identify elements in supp(x). To store these subsets in a small space, the algorithm starts

from a random seed in size polylog(n), and uses a pseudorandom generator to get the random sets.

2.4 Sketching Graphs

Now we examine how to use linear sketches on graphs. One way to do it is to sketch the adjacency

matrix A of a graph G. For each node v, av ∈ {0, 1}n denotes its neighbors, i.e. avu = 1 iff u is a

neighbor of v. If we apply linear sketches for `0-sampling of av, we can get a random neighbor of

v by querying S(av). When an edge is added or removed, we can easily update these sketches on

account of linearity. However, if we repeatedly update and query S(av), the random neighbors it

returns are not independent (when there is no update, S just returns the same random neighbor).

In particular, we are not allowed to use sketches adaptively. That is to say, we cannot query a

neighbor u from S(av), then remove u and query again to get another neighbor of v. Otherwise

we could recover all neighbors of v from a O(log2 n log δ−1) size sketch, which is clearly impossible.

Therefore, we need to sketch graphs more carefully and cleverly, to avoid adaptively updating a

sketch based on itself.

3 Connectivity

In this section, we present a single-pass streaming algorithm to test connectivity of dynamic graphs

using Õ(n) space. It is based on constructing linear sketches for `0-sampling of a graph represen-

tation we now define:

Definition 5 (Graph Representation). Given a graph G = (V,E), for each node i ∈ V , define a

vector ai ∈ {−1, 0, 1}(
n
2):

ai{j,k} =


1, if i = j < k and (j, k) ∈ E
−1, if j < k = i and (j, k) ∈ E
0, otherwise

The non-zero entries of ai correspond to i’s incident edges. Moreover, for any subset of nodes

S ⊂ V , the non-zero entries of
∑

i∈S ai correspond to the edges across the cut (S, V \S). This nice

property can be naturally used in linear sketches: if we want to merge two nodes i and j, by adding

S(ai) and S(aj), we get S(ai + aj) which exactly corresponds to the linear sketch of supernode

(i, j).
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Consider a simple local algorithm to count the number of connected components in a graph G

by merging nodes. At first, let V̂ = V be the initial set of supernodes. In each stage, find an

edge from each supernode to another supernode if it is not isolated. Then merge all the resulting

connected supernodes into one supernode. Continue this process until every supernode is isolated,

so that each of them represents a connected component.

Suppose G has cc(G) connected components. Let’s analyze how many stages we need before the

graph collapses to cc(G) supernodes. After a stage, each supernode either comes from an isolated

supernode, which means it already represents a connected component; or is merged from at least

two supernodes. Therefore, the difference between the number of supernodes and cc(G) halves. So

after t = O(log n) stages we are done.

Now we convert the above local algorithm to a streaming algorithm:

Algorithm 1 Connected Components

1: Maintain t sketches S1, · · · ,St for a1, · · · ,an

2: Initialize V̂ ← V

3: for i = 1, · · · , t do

4: For each v̂ ∈ V̂ , sample an incident edge of v̂ by querying Si
(∑

v∈v̂ av
)

5: Merge connected supernodes and update V̂

6: return V̂

Note that we need to use t different sketches for each stage, to avoid using sketches adaptively,

which is not allowed as we have elucidated before. It suffices to set δ to be a small constant, e.g.

1/100, for `0-sampling. The algorithm uses O(n log3 n) space.

Theorem 1. There exists a single-pass, O(n log3 n)-space algorithm for dynamic connectivity.

4 Bipartiteness

The bipartiteness problem can be reduced to the problem of counting connected components, then

we can solve it using Algorithm 1 in dynamic graph streams.

Definition 6. Given a graph G = (V,E), construct a graph D(G) = (V ′, E′) as follows: for each

node v ∈ V , create two nodes v1, v2; for each edge (u, v) ∈ E, create two edges (u1, v2) and (u2, v1).

Lemma 2. G is bipartite if and only if cc(D(G)) = 2 · cc(G).

Proof. Let G1, · · · , Gk be the connected components in G. They correspond to D(G1), · · · , D(Gk)

which are disjoint in D(G). We claim that if Gi is bipartite then D(Gi) has two connected compo-

nents; otherwise D(Gi) is connected. Then cc(D(G)) ≤ 2 · cc(G), with equality holds if and only if

every Gi is bipartite, i.e. G is bipartite.

Suppose Gi = (Vi, Ei). Pick any node u ∈ Vi. For each v ∈ Vi, there is a path p from u to v in

Gi. In D(Gi), p either connects (u1, v1) and (u2, v2), or connects (u1, v2) and (u2, v1), depending

on the parity of its length. Hence D(Gi) has at most two connected components, represented by

u1 and u2.
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If there is a an odd cycle c in Gi, let u be a node in c. c will connect u1 and u2, thus D(Gi)

is connected. Conversely, if u1 and u2 are connected in D(Gi), it corresponds to an odd cycle in

Gi.

Theorem 2. There exists a single-pass, O(n log3 n)-space algorithm for dynamic bipartiteness.

5 Streaming Algorithms for Matching

There are efficient streaming algorithms for a variety of problems, and recently a lot of attention

has been put into solving the maximum matching problem in a streaming model. A maximum

matching in a graph is the largest set of edges without common vertices. In a non-streaming

setting, for bipartite graphs it can be reduced to max flow, and for general graphs there is a classic

algorithm by Edmonds [2] solving it in polynomial time. We have also seen in class a linear-

time 1/2-approximation algorithm by greedily picking edges without common vertices, which finds

a maximal matching. This algorithm is easy to implement in a streaming model without edge

deletions, by keeping track of the vertices covered by previous selected edges and selecting each

new edge in the stream that does not include a covered vertex. However there is no known single

pass algorithm that achieves a better approximation than the greedy algorithm, and there are lower

bounds [4] showing that one cannot do better than 1−1/e ≈ 0.632 approximation with Õ(n) space.

However when we consider dynamic streams (allowing edge deletions), [6] showed that there are no

constant factor approximation algorithms using Õ(n) space.

We summarize the results about matching in the following table; the results that we will focus

on in the next few sections are marked with asterisks (*).

Deletion Passes Input Space Result

No Single Adversarial Õ(n) 1/2 approximation (best result so far)

Yes Single Adversarial Õ(n) Impossible

Yes Multiple Adversarial Õ(n) 1/2 approximation*

No Single Random polylog(n) polylog(n) approximation*

In our survey we will first present a multiple-pass dynamic streaming algorithm [1] (allowing

edge insertions and deletions) achieving a constant-factor approximation using Õ(n) space. This

algorithm makes use of the graph sketching tools developed in Section 2. Next we will consider the

random arrival model (as opposed to the adversarial streaming model) and present a single-pass

streaming algorithm [5] with a polylog(n) approximation factor but only using polylog(n) space.

6 Matching in Adversarial Streams

Similar to the connectivity problem, this algorithm starts with a parallel algorithm to find maximal

matchings as described in [7] and show that one can emulate it using linear sketches. We will first

describe this algorithm and show how we can turn it into a streaming algorithm. Since we are

memory limited, suppose there is memory for only η = Õ(n) edges so we can only do computation

on these many edges at a time. This algorithm works by making multiple passes over the stream,

sampling a subset of η edges and finds a maximal matching among them. Then we remove all the
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vertices included in the the matching and repeat until the remaining graph has less than η edges.

Now we can directly run the greedy algorithm. Algorithm 2 describes this process:

Algorithm 2 Iterative sampling algorithm for computing maximal matching

1: Start with graph G = (V,E)

2: while |E| > η do

3: E′ ←Sample a subset of η edges, pick each edge with probability p = η/|E|
4: M ← Maximal matching in the subgraph formed by E′ found by greedy algorithm

5: Remove the vertices associated with M from V

6: E ← subgraph induced by the remaining vertices

7: M ′ ← Maximal matching in remaining graph

8: return Union of edges in M in each round and M ′

How many rounds can there be? Suppose the initial graph is a complete graph and at each

round we choose edges belonging to a star graph. Then only 2 vertices are removed per round,

therefore in this worst case Ω(n) rounds are needed. However, this is not true in the average case.

We can show that in fact with high probability the number of edges is reduced by 1/2 each round,

and thus only O(log n) rounds are needed. This is proved by showing that:

1. If we randomly select each edge with probability p = η
|E| , then with high probability, any

subgraph induced by any set of vertices with more than |E|/2 edges has at least one of its

edges selected. Proof: For a particular subgraph of more than |E|/2 edges, the probability

of no edge being selected is at most (1− p)|E|/2 = (1− p)η/2p ≤ e−η/2. Using a union bound

over all subgraphs, the above probability is at least 1− e−n if η ≥ 4n.

2. If an edge is selected by random sampling at the start of a round, after that round it cannot

be in the subgraph G′. This is because at least one of its vertices is included in the maximal

matching.

Then we can see that with high probability the resulting subgraph has at most |E|/2 edges, thus

O(log n) rounds are needed.

How do we modify this algorithm for a streaming setting? Each round in algorithm 2 corre-

sponds to a pass over the stream of edges. After each pass we have η edges in memory, from which

we can compute a maximal matching and store its value in a counter. We can also remember the

vertices to include in the subgraph in the next round since it only takes O(n) space. All that is

left is to sample a subset of η edges at random after each pass on the stream. Define e to be the

indicator vector of edges. We maintain η different sketches of e in each pass, and at the end of the

pass sample an edge from each sketch for a total of η edges sampled. Here the chance of an edge

not being selected is (1− 1/|E|)η ≤ e−η/|E| = e−p, and the rest of the analysis is same as described

above. Since each sketch takes log2 n space, the total space needed is Õ(n).

7 Matching in Random Streams

When the edges of a graph are provided in a random stream (which contains each edge of the graph

in random order), we can estimate the size of the maximum matching to a polylogarithmic factor

6



in polylogarithmic space. In this section we will present the work [5], but we will not go into all the

details of the proof since it is rather involved and require material outside the scope of this survey.

7.1 Non-streaming algorithm

Let’s begin by describing a simple non-streaming algorithm for approximating the size of the max-

imum matching of a graph. We will then turn it into a streaming algorithm.

7.1.1 A condition for matchings

Let’s consider a graph G = (V,E). We’d like to find (approximately) the size of the largest matching

in the graph. It is sufficient to check whether there is a matching of size U (up to a polylogarithmic

factor, so we say YES if there is such a matching, and NO if the maximum matching is of size, say,

< U
logn). Then we can just binary search to find the size of the largest matching.

How do we check if there is a matching of size U? Intuitively, we might hope that if a graph

is very dense, it would have a large matching, and vice versa. For example, a complete graph of

size n has a matching of size n, the largest possible. On the other hand, a graph with no edges

certainly does not have any nonempty matching.

This is a good start, but it’s possible that a graph may have many edges, yet they are all

concentrated on a few vertices of massive degree, so there is no large matching. For example, if one

vertex is connected to all other vertices (a “star” graph), there are n− 1 edges, yet the maximum

matching is only of size 1.

However, if a graph is both dense, and has low degree, then there is a large matching. To be

precise:

Lemma 3 (Density Lemma). If a graph has ≥ dU edges, and every vertex has degree at most d,

there is a matching of size Ω(U).

Why? Let’s construct the matching. We simply pick an arbitrary edge and add its two vertices

to the matching. We have increased the size of our matching by 1, and decreased the number of

edges by at most 2d (because each vertex has degree ≤ d). Repeating this until we run out of edges,

we have a matching of size at least dU
2d = U

2 .

So, given a graph G, we can look for a subgraph G′ that is “dense and low degree” in order to

find a large matching. The converse is of course also true: if there is a matching of size U in G, it

is itself a graph with U
2 edges and degree exactly 1, i.e. dense and low degree.

7.1.2 The algorithm

How can we turn the previous observation into an algorithm? After all, we cannot search over

all possible subgraphs. Let us think. Since we’re only looking for an approximation algorithm, it

should be safe to just check some degrees, e.g. graphs of maximum degree n, n
2 , n

4 , etc. down to 1.

We’re looking for a subgraph with bounded degree but many edges. So, let’s just throw away any

vertices with too high of a degree, and count all the edges among the rest. By doing this iteratively,

we can check a series of graphs with lesser and lesser degree, and see if any of them have enough

edges.

Concretely, our algorithm is as follows:
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Algorithm 3 Checking Matching of size U

1: Let G0 ← G

2: Let d1, d2, d3, ..., dk = n, n2 ,
n
4 , ..., 1, so that k ≈ log n

3: for i = 1, · · · , k do

4: Starting with Gi−1, discard all vertices with degree > di, and any edges connected to them

5: Let Gi = (Vi, Ei) be the resulting graph

6: if |Ei| ≥ Udi then

7: return YES

8: return NO

So, we start by seeing if there are at least Un edges in the original graph (which would guarantee

a matching of size U). If not, we throw away vertices of degree > n
2 , and check if there is a matching

of at least Un
2 edges. We continue on in this way until we are left with vertices of degree at most 1,

and check if there are at least U edges. Note that this graph is just some vertices that are matched

with each other or disconnected, so the matching is exactly the number of edges. Now let’s prove

that this works.

Theorem 3. If Algorithm 3 returns YES, G has a matching of size Ω(U). Conversely, if a graph

has a matching of size M , Algorithm 3 will return YES when asked if G has a matching of size

U = M
8 log k .

Let’s do the forward direction first. If the algorithm returns YES, it found a subgraph of

degree ≤ di with Udi edges. By Lemma 3, this means there is a matching of size Ω(U), so we are

immediately done.

Now let’s do the reverse direction. Suppose that there is a matching M of size U (i.e. with U

vertices and U
2 edges) in G. The vertices in the matching have various degrees. If almost all of

them have low degrees - for example, if the matching M is disconnected from the rest of the graph

- the algorithm will not touch them until the very end, and the matching will be plain to see (the

graph will be exactly this matching, plus some disconnected vertices). On the other hand, if they

have high degrees, the algorithm may discard many vertices of the matching, and thus destroy the

matching. But, if the algorithm discards many vertices because they have high degree, this proves

that there is a dense subgraph, which again shows that there is a large matching.

To be more precise, if there is a matching of size U , the algorithm will report YES when asked

to check for a matching of size U
8k ≈

U
8 logn . There are two cases. In the first case, in some iteration

i of the algorithm, we discard at least U
4k vertices. Each vertex has degree > di, and therefore, we

throw away at least Udi
8k edges (since each edge must have been connected to at least one discarded

vertex). In other words, the algorithm will report YES on iteration i. On the other hand, suppose

that the first case never happens. Then, after k iterations, we will have discarded at most U
4

vertices. Then, we have discarded at most U
4 edges of M . Therefore, U

4 edges of M remain, and

this is enough for the algorithm to return YES on the last iteration. Therefore, whenever there is

a matching of size U , the algorithm finds it (up to a log factor).
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7.2 Streaming algorithm

To simplify things, let’s suppose that instead of a random permutation of the graph’s edges, we

have a stream in which each edge is a randomly sampled edge from the graph, independent of

previous samples.

Now, how do we turn the previous algorithm, which stores the entire graph in memory, into a

streaming algorithm that only uses polylogarithmic memory? The previous algorithm just does a

series of checks of the form, “Are there many edges in Gi?” The number of edges in Gi corresponds

to the probability that a random edge is in Gi. So we get some random edges from the stream, and

for each of them, check whether it is in Gi or not.

How do we perform this check? An edge (v, w) is in Gi iff both v and w are in Gi (since, when

we discard a vertex, we also discard its attached edges). Thus, the basic operation is to check

whether a vertex is in Vi or not.

v is in Vi iff it has not been discarded in any previous Vj . Suppose v survives V1, · · · , Vj−1 (i.e.

is not discarded in any of them). Then, it will be discarded in Vj if its degree in Vj−1 is too large

(that is, > dj), so we just need to check its degree in Vj−1. We can do this by again randomly

sampling some edges, and checking if these are edges connected to v in Vj−1. If the fraction of such

edges we see is >
dj
m , this indicates that v’s degree is probably larger than dj . Note that to perform

this check, we look at an edge (v, w), and we need to know if w is also in Vj−1 (so that the edge

has not already been discarded), so we need to make a recursive call.

To sum up, our algorithm is as follows:

Algorithm 4 Check-Level(v, i)

1: //Check whether v is in Vi.

2: //If yes, return i. Otherwise return the largest j such that v is in Vj .

3: for j = 1, · · · , i do

4: //We know v is in Vj−1, check if it is in Vj
5: Set count ← 0

6: for l = 1, · · · , Rj do

7: Sample an edge e

8: if e is of the form (v, w) and Check-Level(w, j − 1) = j − 1 then

9: count ← count + 1

10: //If v’s degree in Vj−1 is too high, it should be discarded

11: if count
Rj
≥ dj

m then

12: return j − 1

13: return i

Rj indicates the number of samples required to accurately test for membership in Vj , which

we will analyze in the next section. The Check-Level algorithm is clearly polylogarithmic space,

because it has a constant number of local variables, and the depth of the stack is at most k, which

is logarithmic in n.
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7.3 Sampling complexity

If we had an infinite stream of samples, the algorithm above is clearly correct, as it is approximating

the same quantities as Algorithm 3, and the approximations will be sufficiently accurate given

enough samples. However, we only have m samples. Therefore, we need to figure out how many

samples we need to carry out the algorithm.

7.3.1 Chernoff bounds

In order to approximate some quantity, e.g. the degree of a vertex in Vi, it is sufficient to get

a constant approximation. This is because in Algorithm 3, even if we discard some vertices at a

slightly wrong subgraph (off by one), it will affect the approximation by only a constant factor.

How many edges do we need to sample in order to get this constant approximation? Using a

straightforward application of the Chernoff bound we saw in class, we know that it is sufficient for

the expected value to be Θ(log n). Of course, if we are looking for some rare property, we will need

to sample many edges, and if we are looking for some common property, we only need to sample a

few edges; but in either case, the threshold that we are checking against (i.e. the expected value)

should be logarithmic in n.

7.3.2 Check-Level

In order to check that a vertex v is in Vi+1, we need to sample some edges. For each neighbor w

that we find, we need to check whether it is in Vi. This in turn is done recursively by sampling

edges and checking more neighbors, and so on. It seems that this could consume an exponential

number of samples, which is clearly too much. However, in reality, this cannot occur. v’s degree in

Vi cannot be too large, or else it would have had large degree in Vi−1, and it would have already

been discarded.

Concretely, let Ri+1 be the number of samples needed to check if a vertex v is in Vi+1. First, we

need to test whether v is in Vi, which takes Ri samples. Then, we take C m
di+1

samples of edges, and

for each neighbor w, we check whether it is in Vi. In order for v to be in Vi in the first place, it must

have had sufficiently small degree in V0, V1, ..., Vi−1. That is, in graph Vj , it must have had degree

at most dj+1. Thus, when we sample our edges, we expect to find at most C m
di+1
· dj+1

m = C
dj+1

di+1

edges of this type.

For each neighbor in Vj , we will spend Rj time running Check-Level. Combining this with the

maximum number of neighbors in each subgraph, we get the recursive relation

Ri+1 = Ri + C
m

di+1
+ CR1

d1
di+1

+ ...+ CRi
di
di+1

Observe that the right-hand side of this has a series of terms
dj
di+1

. Since the dj form a geometric

series, if we make the gap between them large enough, we may get a reasonable bound on Ri+1 (in

the local algorithm, the gap was just a constant 2). Indeed, if we set the gap to say, polylogarithmic

in n, then induction on Ri+1 shows that Ri+1 = O
(

m
di+1

)
= O

(
m

polylog(n)

)
. Note that it does not

cause any problems to set the gap to polylogarithmic; we only need the gap to be at least constant

(so k, the number of subgraphs, is logarithmic) and at most polylogarithmic (so the ratio between

the di, which influences our approximation ratio, is polylogarithmic).
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7.3.3 Checking edges

As previously stated, once we know how to run Check-Level, we just run it on both vertices for a

random sampling of edges. For each edge (u, v), if it turns out that u is discarded in Vi and v in

Vj , we consume min(Ri, Rj) samples, because we can run the two tests in parallel and terminate

once we discard either u or v (which is the point at which we discard (u, v)). Furthermore, once

we find a sufficient number of edges in any subgraph, we can terminate. As before, our thresholds

for “sufficiently many edges” are only polylogarithmic, so using the O
(

m
polylog(n)

)
bound from the

previous section, we need to use at most m edges.

Finally, as in the previous case, we run this algorithm with geometrically increasing values of

U in order to find the maximum matching.

7.4 Random permutations

In reality, we do not have access to a random stream, but a random permutation of the graph’s

edges. In the permutation, every edge appears exactly once, whereas in a random stream, each

new edge is chosen independently of the rest of the stream. However, intuitively, it seems like a

random permutation of some items should be fairly “close” to a uniformly random stream of those

same items. It can thus be shown that the algorithm still works when the stream is a random

permutation.

8 Discussion and Conclusion

From previous sections we have seen two techniques that allows us to turn non-streaming algorithms

into streaming algorithms, namely linear sketches of the graph adjacency matrix and treating the

stream as random samples of edges. In this section, we will discuss the limitations of each technique,

what class of non-streaming algorithms they would work for, as well as some open questions.

Linear sketches enables us to work with dynamic streams, since with linearity we can update

each sketch dynamically as edges are inserted and removed. However, this comes with the caveat

that we can only use each sketch to sample once otherwise we would lose independence. There

is an interesting connection between this and parallel algorithms. The amount of storage space

needed is dependent on how many rounds of computation the algorithm needs to perform as we

need a separate sketch per round. In the connectivity example, we need to run log n rounds of

merging and sampling, therefore we also need log n sketches to sample from. We can also think of

the connectivity algorithm implemented in the map-reduce model. Each round can be parallelized

as a map-reduce step. In fact, the maximal matching algorithm is adapted from a similar algorithm

[7] developed for map-reduce. Therefore one interesting extension could be to consider map-reduce

graph algorithms and turn them into dynamic streaming algorithms.

Treating the stream as i.i.d. samples of edges allows us to turn local algorithms into a streaming

algorithm by estimating values used in the algorithm from random samples, but it works only in

the random edge arrival model. In fact, this assumption is crucial as the concentration bounds

in the proof depend on the samples being close to uniformly random, otherwise in an adversarial

setting concentration may not occur. Property testing algorithms solve a decision problem with a

number of queries smaller than the instance size, usually by randomly sampling. This technique
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suggests that one can transform property testing algorithms into graph streaming algorithms by

treating the stream as random samples from the graph. Another open question is whether there are

algorithms for adversarial streams that can achieve polylog approximation to maximum matching

in polylog space. It is known that a constant approximation better than 0.632 is not possible in

polylog space, but as the authors in [5] noted, current techniques are insufficient in proving this.

Although we presented results for specific problems, we think that the techniques used to turn

non-streaming algorithms into streaming ones are quite general in that they can be used for large

classes of algorithms, and can potentially be applied to other problems.
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