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Abstract

The classical proof for Bloom filter false positive rates was shown to be incorrect due to a
subtle error regarding independence of events. Although the previously computed false positive
rate is asymptotically still correct, it is incorrect for small parameter values and is generally
only a lower bound [BGK+08]. Indeed, the correct analysis for Bloom filters does not admit
a convenient closed form, though efficient computations do exist [CRJ10]. In this paper, we
outline the strategy of the new analysis

Furthermore, we demonstrate that for large parameter values, we can use a Count-Min
[CM05] data structure to asymptotically recover a classical Bloom filter false positive rate using
only the naive analysis scheme. This has no practical applications, as the Bloom filter is strictly
better in every sense, but this construction may be useful pedagogically in demonstrating the
subtleties involved when working with independence. Lastly, exact expected false positive rates
are trivially computable for this structure; though the rates are worse than for regular Bloom
filters, this might somehow be useful theoretically.

1 Bloom Filters

Bloom filters are a space efficient probabilistic data structure developed in 1970 for testing set
membership [Blo70]. We start off with an empty bit array B, and use independent random hash
functions to map items to multiple locations in B. Given our set of interest, we set all of the
locations mapped to by items in our set to 1. Then, to test an item for membership in our set,
we simply check to see if all the random locations that item maps to in B have been set to 1.
Obviously, if the item is in our set, its locations will have been set to 1. However, we also have a
chance of false positives because even for items not in our set, there’s some chance that its locations
will have been set to 1 by chance from the insertion of other items (see figure 1).

More precisely, let Ω be the universe of possible set elements, and let Σ ⊂ Ω be our set of interest,
with n = |Σ|. Let B be a bit array of size m, and suppose we have k independent uniformly random
hash functions f1, . . . , fk : Ω→ [m]. Then, for each item x ∈ Σ set ∀i ∈ [k], B(fi(x)) = 1. In order
to test for set membership, we return “probably in set” if ∀i ∈ [k], B(fi(x)) = 1. We will denote
the false positive rate in what follows by δ.

1.1 Classical Analysis

Let’s naively analyze the false positive rate as a function of parameters k,m, n.
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1 2 3 4 5 6 7 8 9

x1 ∈ Σ X X
x2 ∈ Σ X X
B 0 0 1 0 0 0 1 0 1

y1 6∈ Σ × × TN
y2 6∈ Σ × × FP

Figure 1: An example Bloom filter B with parameters k = 2, m = 9, and n = 2. Each of the
positions corresponding to x1, x2 ∈ Σ have their bits set to 1. For most y1 6∈ Σ, not all of their hash
locations will be set, so we’ll have a true negative. However, sometimes, we’ll get a false positive
y2 6∈ Σ because all of their hash locations are set to 1 by chance.

Claim 1. A Bloom filter of length m bits using k hash functions and with n items inserted has a
false positive rate

δ =

(
1−

(
1− 1

m

)kn
)k

Proof. By uniformness, the probability that a particular bit B[j] in B is set by the hash function
fi applied to x ∈ Σ is 1

m . In order for B[j] = 0, none of the hash functions can map any of the
elements of Σ to y. Since we’ve assumed that the hash functions are completely independent (this
assumption is much stronger than is needed in practice, but makes the analysis easier),

P (B[j] = 0) =

(
1− 1

m

)kn

,

=⇒ P (B[j] = 1) = 1−
(

1− 1

m

)kn

.

The false positive rate is exactly the probability that for x 6∈ Σ, B(f1(x)) = B(f2(x)) = · · · =
B(fk(x)) = 1. Since f1, . . . , fk are independent,

δ = P(B(f1(x)) = 1, . . . , B(fk(x)) = 1) (1)

= P(B(f1(x)) = 1) · · ·P(B(fk(x)) = 1) (2)

=

(
1−

(
1− 1

m

)kn
)k

. (3)

As an aside, the classical analysis makes a subtle dependence error going from equation 1 to
equation 2. We will devote the rest of this paper to fully exploring, characterizing, and working
around this error.

Turning things around, let’s consider the required number of bits m to store n items in the
Bloom filter with error δ in the asymptotic limit as n→∞.

Claim 2. In the limit as n → ∞, a Bloom filter storing n items needs m ≈ 1.44n log2 δ bits in
order to maintain a false positive rate δ.
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Proof. Obviously, from equation 3, the false positive rate increases with n unless m is also scaled
up commensurately. Let m = cn, where c is a constant. Then

lim
n→∞

δ = lim
n→∞

(
1−

(
1− 1

cn

)kn
)k

=

(
1− lim

n→∞

(
1− 1

cn

)kn
)k

=
(

1− e−
k
c

)k
=
(

1− e−
kn
m

)k
(4)

Furthermore, holding n and m constant, we can minimize δ with respect to k. Setting the partial
derivative to 0,

0 =
∂δ

∂k
=
(

1− e−
kn
m

)k [
log
(

1− e−
kn
m

)
+
k · n

m · e
− kn

m

1− e−
kn
m

]
,

and with a little work we can recover the extrema k = 0 and k = m
n log 2. Although k = 0 does

indeed globally minimize the false positive rate, it also increases the false negative rate to 100%,
and so is rather undesirable as a solution. Thus, k = m

n log 2.
Substituting back into equation 4,

δ =

(
1

2

)m
n

log 2

=⇒ m =
1

log 2
n log2 δ ≈ 1.44n log2 δ.

Thus, asymptotically, to maintain a δ false positive rate, we need m = 1.44n log2 δ bits using
the classical analysis.

1.2 Non-independence error

Unfortunately, there was a subtle error in the classical analysis presented above [BGK+08]. Going
from equation 1 to 2 required the assumption that the events B(f1(x)) = 1, . . . , B(fk(x)) = 1 are
independent. This is not the same as independence of the hash functions f1, . . . fk, which is what
we’re given. (As a historical aside, Bloom himself did not make this error, but instead simply
started his analysis from the fraction of set bits, without worrying about how to compute the
fraction of set bits.)

To see this in an easy example, we fully flesh out an example given in [BGK+08]. Consider a
trivial Bloom filter with k = 2, m = 2, and n = 1, for which it’s possible to explicitly list out all 16
possibilities resulting from random choice of hash functions in table 1.

Note that since each of the scenarios the table are equally likely given independent uniform
random hash functions, we have a false positive rate of 10

16 . However, equation 3 gives δ = 9
16 .

The reason for this discrepancy comes from the fact that although the hash functions themselves
are independent, the chances that the hash functions both hit set bits in B is not. In table 1 this
phenomenon manifests in that when both bits of B are set, no matter where the hash functions
map x2, there will be a false positive. Thus, the fact that f1(x2) = 1 tells you that it’s more likely
than not that f2(x2) = 1. Specifically, P(f2(x2) = 1) = 3

4 , but P(f2(x2) = 1|f1(x2) = 1) = 5
6 , so

the two events are not independent.
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f1(x1) f2(x1) B(a) B(b) f1(x2) f2(x2) B(f1(x2)) B(f2(x2)) FP

a a 1 0 a a 1 1 X
a a 1 0 a b 1 0
a a 1 0 b a 0 1
a a 1 0 b b 0 0
a b 1 1 a a 1 1 X
a b 1 1 a b 1 1 X
a b 1 1 b a 1 1 X
a b 1 1 b b 1 1 X
b a 1 1 a a 1 1 X
b a 1 1 a b 1 1 X
b a 1 1 b a 1 1 X
b a 1 1 b b 1 1 X
b b 0 1 a a 0 0
b b 0 1 a b 0 1
b b 0 1 b a 1 0
b b 0 1 b b 1 1 X

Table 1: The false positives for a Bloom filter with parameters k = 2, m = 2, and n = 1, where
we’ve labelled the two bit positions in B by a, b. Say x1 ∈ Σ and x2 6∈ Σ and we have hash functions
f1, f2.

Generically, the events B(f1(x)) = 1, . . . , B(fk(x)) = 1 are “positively correlated”, so equations
1 and 2 need to be modified to

δ = P(B(f1(x)) = 1, . . . , B(fk(x)) = 1) ≥ P(B(f1(x)) = 1) · · ·P(B(f1(x)) = 1).

We will make this notion more precise in the next section, but roughly speaking, all the results in
the previous section are therefore only lower bounds.

1.3 Modern analysis

Although the easy way out is simply to do what Bloom did and start the analysis from the fraction
of bits set, it’s much more useful to have bounds in terms of the number of items inserted into
the filter. As such, a more modern analysis was presented in [BGK+08], resolving this issue and
explicitly computing the fraction of set bits.

For this analysis, we will first do the easy step of computing the false positive probability given
some pattern of set bits in B. Let A be the false positive event that for x 6∈ Σ, B(f1(x)) = · · · =
B(fk(x)) = 1, so P(A) = δ, the false positive probability.

Lemma 1. Let I ⊂ [m], and let EI be the event that I is exactly all the set bits in B. Then

P(A|EI) =
(
|I|
m

)k
.

Proof. A false positive happens when all of the hash functions accidentally hit a set bit. The
probability that an individual hash function accidentally hits a set bit is just the fraction of set bits
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in B, given by |I|m . Since each of the k hash functions is independent, the probabilities multiply,
proving this lemma.

Then, by simply breaking up the probability into components conditioned on the pattern of set
bits, we get

P(A) =
∑
I⊂[m]

P(A|EI) · P(EI). (5)

Thus it remains only to compute P(EI).

Lemma 2.

P(EI) =
1

mkn

l∑
j=0

(−1)j
(
l

j

)
js

Proof. Since we do not want to repeat the mistake in the classical analysis, we cannot consider
each of the hash functions separately. Instead, we have to count the number of collections of k hash
functions hi : [n]→ [m] that have image exactly I when applied to Σ. Since our hash functions are
uniformly random, this is equivalent to counting all surjections from a set of size kn to a set of size
|I|. From any basic enumerative combinatorics text (e.g. Stanley’s Enumerative Combinatorics,
section 1.9 [Sta11]), recall that the number of ways to partition a set of size s to l unlabeled
non-empty subsets is given by the Stirling number of the second kind

S(s, l) =
1

l!

l∑
j=0

(−1)j
(
l

j

)
js.

However, counting surjections to positions I ⊂ B carries labels since B itself is labeled. Thus,
counting the number of surjections requires us to multiply the Stirling number of the second kind
by the number of permutations of the |I| set bits, giving

(l)! · S(kn, |I|) =

l∑
j=0

(−1)j
(
l

j

)
js

distinct surjections from a set of size kn to a set of size |I|.
Then, we’ll need to divide that by the number of all collections of k hash functions hi : [n]→ [m].

This is easy to compute because each hash function randomly returns a location for each element
in [n]. Thus, there are mn such hash functions, so the number of all collections of k (possibly
non-distinct) hash functions is then simply mkn.

Thus, we get

P(EI) =
1

mkn

l∑
j=0

(−1)j
(
l

j

)
js.
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Putting all the lemmas together into equation 5, we get

δ = P(A) =
∑
I⊂[m]

(
|I|
m

)k

·
|I|∑
j=0

(−1)j
(
|I|
j

)
jkn · 1

mkn

=

m∑
l=1

(
m

l

)(
l

m

)k

·
l∑

j=0

(−1)j
(
l

j

)
jkn · 1

mkn

=
1

mk(n+1)

m∑
l=1

lk
(
m

l

) l∑
j=0

(−1)j
(
l

j

)
jkn. (6)

Unfortunately, this cannot be simplified into a simple closed form solution. Furthermore, for
arbitrary parameter values, this does not even admit useful upper-bounds. However, [BGK+08]
were able to prove

pk < δ ≤ pk ×

(
1 +O

(
k

p

√
logm− k log p

m

))

for k ≥ 2, k
p

√
logm−2k log p

m ≤ c, c < 1, and p = 1−
(
1− 1

m

)kn
. Thus, for large m, δ ≈ O(pk), which

asymptotically matches the bounds we got using the (incorrect) classical analysis.
Furthermore, for smaller parameter values, it can also be necessary to directly compute δ,

despite the lack of a closed form solution. [CRJ10] give both iterative and recursive algorithms for
numerically computing δ in O(n) time.

Unfortunately, the sorts of results for δ in this modern analysis are not particularly amenable
for getting an intuitive understanding of the false positive rate. These difficulties arise from the
complicated dependence of events expressed above, and are an intrinsic component of Bloom filters
as defined. However, as we’ll see later, by modifying a Count-Min sketch, although we lose some
on the false positive rate for small parameters, the equivalent classical analysis is correct, making
for much more intuitive proofs.

2 Count-Min Bloom filter

1 Cormode and Muthukrishnan were interested in a more general class of problems than set mem-
bership when they developed the Count-Min sketch [CM05]. In particular, the general turnstile
problem allows for error on both sides in a generalization of the approximate counting problem.
Luckily, the Count-Min sketch only produces noise on the right. Thinking of the approximate set
membership problem as approximate counting, we’re interested in all items with counts of at least
1, so noise on the right side of the integer line does not matter to us. Naively one might directly
drop in a Count-Min sketch for a Bloom filter, but this wastes space because we don’t care about
keeping track of exact counts. However, the general structure still works, and we can then directly
apply the analogue of the classical Bloom filter analysis, this time correctly.

Recalling the setup for a Bloom filter, we do the same thing, but separate the range of each of
the hash functions from each other. In Bloom filters, the hash functions all range over the entire bit

1In response to reviewer comments, we have completely excised the former section 2, which was an introduction
to the Count-Min data structure. Relevant features have been moved into this section instead.
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B =

B1,f1(x)

B2,f2(x)

B3,f3(x)

B4,f4(x)

B5,f5(x)

B5,f5(x)

Figure 2: An example Count-Min Bloom filter B with parameters k = 6, m = 48, and n = 1. The
setup is exactly like the Bloom filter, except each item x maps to one random location in each of
the k rows, rather than to k arbitrary locations.

vector; here, we partition the bit-vector into rows corresponding to the range of each hash function,
which will give us the independence the classical analysis incorrectly assumed.

Let Ω be the universe of possible set elements, and let Σ ⊂ Ω be our set of interest, with
n = |Σ|. Create a k × w bit-table B, or equivalently a bit array of size m = kw. Suppose we have
k independently uniform random hash functions f1, . . . , fk : Ω → [w]. Then for each item x ∈ Σ,
set ∀i ∈ [k], Bi,fi(x) = 1. In order to test for set membership, we again simply check if all those
locations are set.

In some ways, this is slightly less space-efficient than a regular Bloom filter, because the hash
functions only range over a row, rather than the entire bit-table. However, this restriction does not
hurt us asymptotically, and as we’ll see, remedies the problem of dependence we ran into earlier in
our classical analysis.

Again, let’s analyze the false positive rate as a function of parameters k,m, n. By uniformness,
the probability that a particular bit Bi,y in B is set by the hash function fi applied to x ∈ Σ is
1
w . Since only fi maps to row i, we only need to worry about where fi maps all the elements of
Σ. Thus, in order for Bi,y = 0, we only need that none of the elements of Σ maps to y under fi.
Making use of our randomness assumption,

P (B(y) = 0) =

(
1− 1

w

)n

,

=⇒ P (B(y) = 1) = 1−
(

1− k

m

)n

.

The false positive rate is exactly the probability that for x 6∈ Σ, B1,f1(x) = · · · = Bk,fk(x) = 1. Since
not only f1, . . . , fk are independent, but those events are completely partitioned from each other
(no hash function can set bits in any other row, so there’s no information leakage) and therefore
independent as well, this time we can actually say that the false positive probability

δ = P(B1,f1(x) = 1, . . . , Bk,fk(x) = 1)

= P(B1,f1(x) = 1) · · ·P(Bk,fk(x) = 1)

=

(
1−

(
1− k

m

)n)k

(7)

This false positive rate is worse than the one given in equation 3 because there’s a k term in the
numerator over m, rather than in the exponent by n. However, as you’ll recall from the limit
definition of the exponential function, this does not change anything asymptotically.
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Carrying on, by repeating the rest of the classical analysis of Bloom filters, we get for m = cn

lim
n→∞

δ =
(

1− e−
kn
m

)k
.

Again, k = m
n log 2 minimizes δ, and by substituting back in,

m =
1

log 2
n log2 δ ≈ 1.44n log2 δ.

Thus, asymptotically, these “Count-Min Bloom filters” achieve the same space bounds as regular
Bloom filters while allowing for much easier analysis.

3 Conclusion

For basically no practical purposes are Count-Min Bloom filters going to replace regular Bloom
filters. Although they achieve the same space-efficiency asymptotically, for small parameter values
a regular Bloom filter will have a lower false positive rate than the equivalent Count-Min Bloom
filter. Indeed, setting parameters to k = 2,m = 2, n = 1 to match the toy example exhibiting
the non-independence error, the Count-Min Bloom filter will have a false positive rate δ = 1 (but
which is correctly predicted by the classical analysis). Furthermore, for a Count-Min Bloom filter
as defined, k must divide m. This assumption can be relaxed, but we lose the ease of analysis and
might as well use a regular Bloom filter.

However, although the false positive rates are higher, they are also much easier to compute.
Whereas correctly estimating false positive rate for a regular Bloom filter requires the complicated
surjection counting formula in equation 6, it is trivial to plug parameters into equation 7 for the
Count-Min Bloom filter. For most applications, we only care about minimizing the false positive
rate. In a hypothetical setting where it is more important to know the expected false positive rate
than to minimize it, the Count-Min Bloom filter could be useful.

More importantly though, the analyses in this paper show the dangers that can arise from
subtle dependencies between events. Just because we start off with independent hash functions
doesn’t mean that that independence carries through. This is a both a very important pedagogical
point to drive home, and is critical when it comes to actual implementations and we do not have
full independence, but rather only k-independence among hash functions, or sometimes not even
provable independence, but just some heuristic measure of independence.

Furthermore, this paper demonstrated one way to get around those subtle dependencies when
they arise, which is to more carefully separate each of the sources of randomness so that they don’t
mix in unexpected ways. This will usually come at some cost, in this case to false positive rates
at low parameter values, sometimes even to the constant at the end of the analysis. By doing this
though, it is often possible to achieve the same asymptotic goals in a rigorous manner while using
more naive mathematical machinery. This sort of approach may also be useful pedagogically to
prevent the need for “hand-waving” and unjustified (though perhaps accurate) approximations, as
was used in the classical analysis of Bloom filters.

Lastly, the authors suggest that when results at low parameter values are of paramount impor-
tance, it might be of practical use to relax the separation between sources of randomness. Although
it might then become exceedingly difficult to prove good error bounds, empirical bounds are of-
ten more useful in implementations anyway. For future work, it would be interesting to examine
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the relative error rates of the full Count-Min sketch with that of counting Bloom filters at low
parameter ranges, as that is the direct generalization of the topics covered in this paper.
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