
Rounding fractional flows in O(m log n2

m)

Donggu Kang
MIT

donggu@mit.edu

James Payor
MIT

payor@mit.edu

Abstract

Algorithms for approximating or algebraically solving network flow problems with integral capacities
often produce solutions that assign fractional flow to edges, although it is usually desired to obtain an
integral solution. An integral solution with no worse cost always exists, and existing work has shown that
such a solution can be found in O(m logn) time. This paper first presents such an algorithm due to [Peng,
2014]. Then we describe a new algorithm that rounds a solution in O(n2) time, with simpler implemen-
tation and better performance for dense graphs. We then combine the approaches of each algorithm to
achieve rounding in O(m log n2

m), which is strictly faster than previous work.

Contents
1 Introduction 2

2 Background 2
2.1 Fractional and integral circulations . 2
2.2 Circulations and fractional cycles . 3
2.3 Link-cut trees . 3

3 Rounding in O(m logn) 4
3.1 Preliminaries . 4
3.2 Data Structure . 4
3.3 Algorithm . 5

4 Rounding in O(n2) 6
4.1 Algorithm . 7
4.2 Example . 7
4.3 Pseudocode . 9

5 Rounding in O(m log n2

m) 12
5.1 k-link-cut tree . 12
5.2 Algorithm . 13

1

1 Introduction
Algorithms for approximating or algebraically solving network flow problems with integral capacities often
produce solutions that assign fractional flow to edges. However, it is usually desired to obtain an integral
solution from this fractional flow - and it can be shown that such a solution with no worse cost always
exists. Many recent papers seeking fast max-flow approximations and fast exact solutions for classes of
graphs make use of flow rounding following an initial algebraic approximation, as seen in [Lee et al., 2013]
and [Madry, 2013]. Thus, fast algorithms for finding fractional flow solutions are complemented by a fast
rounding algorithm.

Existing work has shown that rounding a fractional flow to an integer flow of no worse cost in a costed,
integral capacitated graph can be achieved in O(m logn) time. [Lee et al., 2013] showed such an algorithm
relying on random-walk analysis, and [Madry, 2013] gave an algorithm that reduced the general flow round-
ing problem into the perfect b-matching rounding problem.

Note that there is no difference in the difficulty of rounding flows and circulations. Circulations are a
special case of flows, so any algorithm that rounds a flow will also round a circulation. To round a flow
given an algorithm for a circulation, we can add a dummy edge (sink,source), with flow value equal to the
flow into sink and cost −∞, which creates a circulation we can round. The negative infinite cost guarantees
the rounding doesn’t decrease the source-sink flow.

Further, such a scheme also lets us round fractional solutions to approximate max-flow problems with-
out decreasing the flow, by taking the costs of the edges to be zero. As such, an algorithm for rounding a
min-cost circulation can be applied to round fractional solutions to all of these standard problems.

We first present preliminary theorems and background on required data structures. Then we introduce
the algorithm by [Peng, 2014] that cancels cycles using the link-cut tree data structure [Sleator and Tarjan,
1981], and our approach to rounding in O(n2) time. Finally, we apply our approach in the O(n2) algorithm
on top of link-cut trees of restricted size to achieve an algorithm with O(m log n2

m) time, performing strictly
better than previous approaches in both dense and sparse graphs.

2 Background

2.1 Fractional and integral circulations
A circulation over a graph G = (V,E) with capacities c(u,v) on each edge (u,v) is an assignment f (u,v) of
flow to each (u,v) ∈ E that satisfies three conditions:

• ∀v ∈V,∑u|(u,v)∈E f (u,v) = 0: The net flow into a node is zero.

• ∀(u,v) ∈ E, f (u,v) =− f (u,v): The assignment of flow is antisymmetric.

• ∀(u,v) ∈ E, f (u,v)≤ c(u,v): The assignment of flow to each edge does not exceed the capacity of the
edge.

We call a circulation fractional if it may assign edges (u,v) a non-integral value of flow f (u,v). Con-
versely, circulation is integral if all values of f (u,v) are integral.

2

2.2 Circulations and fractional cycles
The key to the algorithms presented in this paper is the following observation about fractional circulations -
that is, circulations that may have non-integral assignments of flow f (u,v).

Theorem 1. If a circulation f has the property that the subgraph containing all edges with potentially
fractional flow forms a forest, then f is an integral circulation.

Proof. Suppose not. Then there must be a leaf node v in the forest with only one connected edge that has
fractional flow. Then the net flow into v cannot be zero as its remaining edges have integral flow, which
violates the net flow condition on a circulation.

This leads to the following corollary.

Corollary 1. If a circulation f contains no cycles of edges with fractional flow, then f is an integral circu-
lation.

Proof. The subgraph of edges with fractional flow can only be a forest if there are no cycles.

So, if we are able to cancel all fractional cycles in a circulation, the remaining circulation must be
integral. Each of the algorithms presented in this paper develops methods to efficiently find and cancel
fractional cycles in order to round circulations.

2.3 Link-cut trees
[Peng, 2014]’s O(m logn) algorithm and our O(m log n2

m) algorithm both utilize the link-cut trees of [Sleator
and Tarjan, 1981]. A link-cut tree is a data structure that allows the maintenance of a dynamic forest of
rooted trees over a set of nodes, and tree-path operations over the forest. This section details the amortized
logarithmic time operations enabled by the data structure that we will require in section 3. The implemena-
tion details (splay trees, preferred paths) and analysis thereof are neglected here, as the original paper can
provide further background.

Each operation described below is logarithmic in the maximum link-cut tree size involved - e.g. Link(u,v)
runs in O(lognu + lognv) where nu and nv are the size of the trees u and v are contained in. This property is
explicitly required when we restrict the size of link-cut trees in section 5, and in other cases guarantees that
operations take O(logn) time in a graph of n nodes.

We make use of the following operations supported by link-cut trees:

• Link(u,v): Create an edge between u and v. Makes the node v a child of u.

• Cut(u,v): Remove the edge between u and v.

• FindRoot(v): Find the root of a tree which v belongs to.

• LCA(u,v): Report the lowest common ancestor of u and v.

• PathAdd(u,v,c): Add a number c to the weight of every edge along the u-v path.

• PathMin(u,v): Report the edge with minimum weight over the u-v path. Break ties by reporting the
edge closest to u.

• PathSum(u,v): Report the sum of edge weights over the u-v path.

3

3 Rounding in O(m logn)

There are several existing works that give algoritms for rounding a fractional flow into an integral flow in
O(m logn). [Peng, 2014] gave a O(m logn) algorithm for rounding circulations In this section, we present
this algorithm. Given a costed graph G = (V,E) with integral capacities, and a fractional circulation over
this graph, the algorithm will find an integral circulation of no worse cost over the graph.

This algorithm relies on the insight of corollary 1: it repeatedly cancels fractional cycles, and when none
remains the circulation must be integral.

3.1 Preliminaries
First, we will establish the following notation:

• Let f (u,v) be the fractional circulation (as defined in section 2.1) to be rounded.

• Let f ′(u,v) be the new circulation the algorithm finds, which will ultimately be integer-valued.

• Let available(u,v) = d f (u,v)e− f ′(u,v). For example, if f (u,v) = f ′(u,v) = 0.6, available(u,v) =
0.4 and available(v,u) = 0.6, indicating that we can push 0.4 units of flow from u to v or 0.6 units
from v to u before the flow on the edge becomes integral.

• Let cost(u,v) be the cost for each unit flow on the edge (u,v).

We will refer to available(u,v) as the availability of the edge (u,v). We will require at all times that f ′

satisfies net flow constraints, as well as available(u,v)≥ 0 for all (u,v), and claim that this guarantees that
f ′ is a feasible circulation.

Theorem 2. If f is a feasible circulation and f ′ satisfies the net flow constraints, then f ′ is a feasible
circulation if available(u,v)≥ 0 for all (u,v).

Proof. If available(u,v)≥ 0 and available(v,u)≥ 0, then:

d f (u,v)e ≥ f ′(u,v)∧d− f (u,v)e ≥ − f ′(u,v) =⇒ b f (u,v)c ≤ f ′(u,v)≤ d f (u,v)e

As the graph has integer capacities, any flow value on (u,v) between d f (u,v)e and b f (u,v)c must satisfy the
capacity constraints given that f (u,v) does. So f ′ satisfies all capacity and net flow constraints, and is thus
a feasible flow.

3.2 Data Structure
We use a link-cut tree to maintain a forest that consists of only edges (u,v) with fractional flow, f ′(u,v). In
accordance with the operations given in section 2.3, we use the following operations, each of which runs in
O(logn) time over our graph of n nodes:

• PushFlow(u,v,x): Add x to the flow values of each edge on the u-v path, where x can be negative.
This is a PathUpdate operation.

• FindMin(u,v): Report the minimum available(x,y) for an edge (x,y) on the u-v path. This is a
PathQuery operation we can support, as PushFlow simply subtracts from the availability along a
path, akin to the situation with PathMin and PathAdd in section 2.3.

4

• FindIntegralEdge(u,v): Report an edge with integral flow on the u-v path. It may report none.
Integral edges are found when Min(u,v) or Min(v,u) is zero, as zero availability implies an integral
flow.

• FindCost(u,v): Report the cost per unit flow along the u-v path.

Note that typically queries over the a link-cut tree are undirectional, but FindMin(u,v) and FindMin(v,u)
may report different values as available(x,y) 6= available(y,x). We can achieve this by remembering avail-
ability in both directions on edges of the tree, aggregating minimums of both values.

3.3 Algorithm
Initially we are given a circulation f over a costed graph G = (V,E), to be rounded. We initialize our new
circulation as f ′ = f . We construct a graph without edges G′ = (V,E ′ = {}), and add edges (u,v) ∈ E with
fractional flow f ′(u,v) one by one. If the edge to be added forms a cycle in G′ (as (E,H) in figure 1a below),
we push flow around the cycle in the direction of a smaller cost until at least one edge becomes integral
(figure 1b). The amount we have to push to achieve this is the minimum availability along the cycle, as
availability measures how close the flow along each edge is to the next integer.

Now, the flow in one of two directions around the cycle will have negative or zero cost, so we never
increase the cost of the circulation f ′. As we add this flow to f ′, note that we maintain that f ′ is a feasible
circulation. Pushing flow around a cycle cannot violate any net flow constraints, and theorem 2 applies as
we never reduce the availability of an edge below zero.

Finally, we remove integral edges from G′ introduced by pushing flow (figure 1c). This guarantees that
G′ no longer has a cycle, as we remove at least one edge for every cycle we introduce. After processing all
edges with fractional flow, G′ must still be a forest. It also must be the subgraph of remaining fractional
edges in f ′. Then by theorem 1, f ′ is an integral circulation (and G′ has no edges remaining).

A more detailed specification of the algorithm is as follows:

1. Represent G′ = (V,E ′) using link-cut trees, with each node initially it’s own tree.

2. For every edge (u,v) ∈ E with fractional f ′(u,v):

• If FindRoot(u) 6= FindRoot(v): Simply perform Link(u,v) to add the edge to G′, as this doesn’t
introduce a cycle.

• If FindRoot(u) = FindRoot(v): This means there exists a path P between u and v. The path
P together with (u,v) forms a cycle (as in figure 1a). The cost of unit flow through P and the
edge (v,u) is cost(u,v)− ce. If this cost isn’t positive, we push flow around the cycle until
one of edges in the cycle becomes integral without increasing the total cost. The amount of
additional flow to make an edge integral is the minimum availability on the cycle, f lowAmount =
min(FindMin(u,v),available(v,u)). (In figure 1b, the minimum availability is 0.2.)
To update the flow on the path P, we use PushFlow(u,v, f lowAmount). This makes at least one
edge integral, because at least one edge now has availability zero. To remove such edges, while
FindIntegralEdge(u,v) isn’t null, we perform Cut(FindIntegralEdge(u,v)). Finally, if f ′(u,v)
is still not integral, we perform Link(u,v) to add it to G′. In figure 1c, the edge with minimum
availibility is (B,C) with 0.2, which becomes zero and is then disconnected.
If the cost of the cycle was positive, we can push flow in the other direction with negative cost
as above.

5

3. After processing all fractional edges, f ′ is an feasible integral flow with no worse cost than f , by the
above the analysis.

In the above, processing each edge takes O(1) link-cut tree operations, excluding those involving remov-
ing integral edges. FindIntegralEdge reports a result at most m times, so the cost of deleting integral edges
that are formed is amortized to O(1) per edge. As each operation takes O(logn), the total running time of
the algorithm is O(m logn).

(a) Adding an edge (H,E) forms a cycle.
(b) The minimum availability on the cycle is
available(B,C) = 0.2.

(c) Push 0.2 units of flow around the cycle, de-
creasing availabilities. (B,C) becomes integral,
thus (B,C) is cut. (d) Resulting link-cut tree.

Figure 1: A procedure of the O(m logn) algorithm.

4 Rounding in O(n2)

In [Peng, 2014]’s algorithm, we added edges with fractional flow to the link-cut tree in some arbitrary order,
maintaining a forest by cancelling fractional cycles as they occurred and deleting integral edges. Instead, we

6

will process edges from the same node in one batch, cancelling all the cycles introduced at once. This takes
O(n) time for each node, achieving a running time of O(n2).

4.1 Algorithm
We maintain a tree of processed nodes. To process a node x, we consider its fractional edges that are
connected to nodes in the tree. If x has more than 1 edge with the tree, then cycles will be formed, which we
will cancel in batch. The algorithm that achieves this will be called Cancel, which we run on the root. After
Cancel(u) we guarantee that the subtree of u has no cycle through x - that is, there is at most one path to x
through the subtree.

To perform Cancel(u), first call Cancel(c) for each child c of u. Each call to a child cancels cycles and
returns the remaining path to x if exists, or null. After that, if more than one of u and its children have paths
to x, there will be a cycle consisting of two disjoint paths to x. Let the paths be pathDown and pathU p,
such that pathDown is a u-x path, pathU p is an x-u path, and cost(pathDown)+ cost(pathU p)≤ 0. (If the
cost is positive, we can switch pathDown and pathU p to negate the cost.) We will send flow F equal to
the minimum availability of pathDown and pathU p around the cycle - down pathDown, and up pathU p.
This will create at least one edge with availability zero on the cycle, and we remove this edge (which is now
integral). Cancelling each cycle removes one path to x. We repeat this until there is only one path left, then
return this path.

To send flow around all of the cycles through x in O(n) time, instead of immediately updating the
availability of every edge on pathDown and pathU p, we record F on the edge out of u on pathDown,
and −F on the edge out of u on pathU p, deferring pushing F and −F units along the paths to x. After
cancelling all the cycles formed by adding x, we traverse the tree again to push flow along these paths to x
in the procedure PushFlow.

At termination, every fractional edge has been processed and only the edges left in the tree can have
fractional flow. Then by theorem 1 we have an integral flow.

4.2 Example
Figure 2 illustrates some of the steps in processing a node X with edges into the existing tree. In figure 2a
we are performing Cancel(H). Cancel(J) and Cancel(K) have each returned paths to X , which together
form a cycle. The cost for the cycle is negative in the H-K direction, so we let pathDown be H-K-L-X and
pathU p be X-J-H. The minimum availabilities on each path are 0.3 (for (K,L)) and 0.1 (for (X ,J)), so we
will send 0.1 units of flow around the cycle to make (X ,J) integral, then delete (X ,J). (Note that in the
actual implementation, updates are deferred.)

We now arrive at figure 2b, still in Cancel(H), with two paths to X remaining. Again the cycle cost is
negative in the H-K direction, with pathDown as before and pathU p as X-H. The minimum availability
on the paths in 0.2 for (K,L), so we send 0.2 units of flow around the cycle and delete (K,L). After this
operation we have figure 2c. Cancel(H) has now cancelled all cycles within the subtree, and returns the
remaining path to X , which is the edge (H,X).

Now, Cancel(C) can begin cancelling cycles, as in figure 2d. Both F and H have returned paths to X ,
and we cancel that cycle by sending 0.1 units of flow around in the C-F direction, deleting (C,F). This takes
us to figure 2e, and Cancel(C) is complete. Note that there is now a zero availability edge (X ,H) as we only
delete one integral edge for each cycle we cancel.

7

(a) In Cancel(H), cancelling the cycle through J and K. (b) In Cancel(H), cancelling the cycle through L.

(c) The result when Cancel(H) returns. (d) In Cancel(C), cancelling the cycle through F and H.

(e) The result when Cancel(C) returns.
Note available(X ,H) = 0.

Figure 2: O(n2) example

8

4.3 Pseudocode
The following pseudocode for RoundFractionalFlow implements this algorithm. It computes an integral
flow f ′ given the original flow f and flow graph G = (V,E). For every connected component in the graph it
maintains a tree (V ′,E ′) and incrementally processes nodes connected to the existing tree with ProcessNode.
ProcessNode in turn runs the cycle-cancelling traversal Cancel and the flow-pushing traversal ‘PushFlow’
to adjust f ′ to cancel fractional cycles with the new node, and restores the tree (V ′,E ′) by adding v to V ′ and
removing one integral edge from each cancelled cycle.

Algorithm 1 RoundFractionalFlow implementation.

1: function ROUNDFRACTIONALFLOW(G = (V,E), f)
2: for all x ∈V do
3: processed(x)← false
4: f ′← f . Initialise new flow.
5: function TRAVERSEGRAPH(v)
6: if not processed(v) then
7: processed(v)← true
8: root← v
9: for all (x,v)|(x,v) ∈ E,available(x,v) 6= 0 do

10: PROCESSNODE(x)
11: TRAVERSEGRAPH(x)
12: for all v ∈V do
13: V ′ = {}, E ′ = {}
14: TRAVERSEGRAPH(v)

return f ′

In this implementation, we defer pushing flow and deleting edges. The associative array f lowToPush(u,v)
tracks deferred flow and the list toDelete tracks the edges that are to be removed.

Algorithm 2 ProcessNode implementation.

1: function PROCESSNODE(x)
2: toDelete←{}
3: for all e ∈ E ′ do
4: f lowToPush(e)← 0
5: for all (u,x)|(u,x) ∈ E, processed(u) do
6: add (u,x) to E ′

7: CANCEL(root, null , x)
8: PUSHFLOW(root, null , x, 0)
9: for all e ∈ toDelete do

10: remove e from E ′

When we return from a node in Cancel, we remember the first edge on the remaining path to x (if it
exists) with the associative array edgeToX(u). This will be used in PushFlow later.

9

Algorithm 3 Cancel implementation.

1: function CANCEL(u, parent, x)
2: if u = x then
3: return 0, null , ∞, null , ∞

4: curEdge, curCost← null , ∞

5: curDownMin, curDownAvail← null , 0
6: curUpMin, curUpAvail← null , 0
7: for all v|(u,v) ∈ E ′,v 6= parent do . Iterating over all children.
8: childCost, childDownMin, childDownAvail,
9: childUpMin, childUpAvail← CANCEL(v, u, x)

10: if childCost = ∞ then . This indicates no path to x.
11: continue
12: nextCost← cost(u,v)+ childCost
13: if available(u,v)< childDownAvail then
14: nextDownMin← (u,v)
15: nextDownAvail← available(u,v)
16: else
17: nextDownMin← childDownMin
18: nextDownAvail← childDownAvail
19: if available(v,u)< childUpAvail then
20: nextUpMin← (v,u)
21: nextUpAvail← available(v,u)
22: else
23: nextUpMin← childUpMin
24: nextUpAvail← childUpAvail
25: if curCost = null then
26: needToSwichPaths← true
27: else
28: if currentCost - nextCost < 0 then . It’s profitable to take flow from the child.
29: flowAmount← min(curDownAvail, nextUpAvail)
30: curDownAvail −= flowAmount
31: curUpAvail += flowAmount
32: nextUpAvail −= flowAmount
33: nextDownAvail += flowAmount
34: f lowToPush(curEdge) += flowAmount
35: f lowToPush((u,v)) −= flowAmount
36: if curDownAvail = 0 then
37: add curDownMin to toDelete
38: needToSwitchPaths← true
39: else
40: add nextUpMin to toDelete
41: needToSwichPaths← false

10

42: else . It’s profitable to push flow to the child.
43: flowAmount← min(nextDownAvail, curUpAvail)
44: curDownAvail += flowAmount
45: curUpAvail −= flowAmount
46: nextDownAvail −= flowAmount
47: nextUpAvail += flowAmount
48: f lowToPush(curEdge) −= flowAmount
49: f lowToPush((u,v)) += flowAmount
50: if curUpAvail = 0 then
51: add curUpMin to toDelete
52: needToSwichPaths← true
53: else
54: add nextDownMin to toDelete
55: needToSwichPaths← false
56: if needToSwitchPaths then . Switch current u-x path to the path through v.
57: curEdge← (u,v)
58: curCost← nextCost
59: curDownMin, curDownAvail← nextDownMin, nextDownAvail
60: curUpMin, curUpAvail← nextUpMin, nextUpAvail
61: edgeToX(u)← curEdge
62: return curCost, curDownMin, curDownAvail, curUpMin, curUpAvail

To implement PushFlow, we need to understand how to handle flow coming into the current node u from
its parent. This flow is intended for the path to x that the node returned to its parent earlier, so we add it to
the flow to be pushed down edgeToX(u). The remainder is straightforward - we add f lowToPush(u,v) to
f ′(u,v) for every child v, then recurse on v with f lowToPush(u,v) incoming flow.

Algorithm 4 PushFlow implementation.

1: function PUSHFLOW(u, parent, x, incomingFlow)
2: if u = x then
3: return
4: if incomingFlow 6= 0 then
5: f lowToPush(edgeToX(u)) += incomingFlow
6: for all v|(u,v) ∈ E ′,v 6= parent do . Iterating over all children.
7: f ′(u,v) += f lowToPush(u,v)
8: PUSHFLOW(v, u, x, f lowToPush(u,v))

The Cancel and PushFlow procedure both do work linear in the number of processed nodes and edges
between them, for O(n) work it total. As ProcessNode only adds linear overhead, each node is processed in
O(n) time, for an overall runtime of O(n2).

11

5 Rounding in O(m log n2

m)

Combining the cycle-cancelling via link-cut trees of the O(m logn) algorithm and the batch processing of the
O(n2) algorithm, it’s possible to achieve O(m log n2

m). We achieve this with a new data structure that allows

us to limit the nodes involved in path operations to O(n2

m).

5.1 k-link-cut tree
We introduce a k-link-cut tree as a method of restricting the sizes of involved link-cut trees. The basic idea
is to partition a tree into clusters so the size of each cluster is limited to some constant, 2k. We maintain a
link-cut tree over each cluster.

An edge connecting two nodes in different clusters is called a joint. Joints are not visible to the link-cut
tree operations, so different clusters are considered disconnected for these operations. Figure 3a shows a
tree partitioned into 6 clusters, and in this example FindRoot(F) D, not A, because the joint (B,C) is not
visible to the link-cut trees. We refer to the tree in which each node is a cluster and the edges are joints as
the primary tree.

We define operations for the k-link-cut tree below. Operations of link-cut trees are prefixed by “Old”.

• FindGlobalRoot(v): Report the root of a tree containing v. Joints are considered visible. To perform
this, we may have to move up through multiple clusters and joints.

• FindClusterRoot(v): Report the root of a cluster containing v. Joints are considered invisible. This is
the same as OldFindRoot(v).

• Size(v): Report the size of v’s cluster.

• Link(u,v): If Size(u) + Size(v) ≤ 2k, perform OldLink(u,v), and u and v will belong to the same
cluster. If the Size(u)+Size(v)> 2k, add a joint (u,v) without merging the clusters.

• Cut(u,v): If (u,v) is a joint, simply remove it. If not, u and v are in the same cluster, and we use
OldCut(u,v) to split the cluster in two. If u’s cluster has a neighboring cluster such that the sum of
their sizes is w such that size(cluster(uorv))+ size(w)≤ 2k, merge them, and repeat until there is no
such neighbor.

• Min, IntEdge,Cost,Flow(u,v): There may be multiple clusters between the node u and v. We simply
traverse the clusters and perform the operation on each cluster in O(logk). The number of clusters is
O(d +n/k), which will be proven later. Thus the running time is O((d +n/k) logk).

All operations try to merge two adjacent clusters whenever their total size is not greater than 2k. The
modified link-cut tree has several interesting properties:

1. Each cluster has at most 2k nodes.

2. For any two adjacent clusters, one of them has more than k nodes.

Proof. If not, they should have been merged into one.

3. The number of internal nodes of a primary tree is O(n/k).

12

Proof. First we decompose the tree into a set of paths with one leaf node per path. This can be
achieved by numbering the leaf nodes in some order, and setting the first path to be from the leaf node
1 to the root, and then the i(> 1)-th path to be from the i-th leaf node to its lowest common ancestor
with the previous leaf nodes. Let xi be the number of internal clusters in the i-th path, and ni be the
total number of nodes in the i-th path. For every two clusters on a path, there are at least k nodes. Thus
ni ≥ b x+1

2 ck ≥
x
2 k. Summing up all the inequalities, we get ∑xi ≤ n

k . Thus the number of internal
nodes of the primary tree is O(n/k).

5.2 Algorithm
The algorithm is similar to O(n2). Suppose we are adding the node v, and the number of edges to the
processed nodes is d. Cycles are processed in this order:

Step1 Process cycles within a cluster.

Use Peng [2014]’s algorithm. Add edges and make a flow whenever there is a cycle. Every edge takes
O(logk) to process, so this step takes O(d logk). After this step, clusters may be split into smaller
ones. Instead of merging clusters now, later we will lazily merge split clusters with neighbors if their
size is not greater than 2k. After the step1, there is at most one edge between the node v and any
cluster.

In Figure 3a, the cluster 3 has three edges from v. Looking at a cycle (V, I,G,V), the minimum edge
(G, I) is canceled and results in two split clusters. After the step1, there is only one or no edge from v
to each cluster (3b).

Step2 Process cycles within a tree.

Use the DFS approach in our O(n2) algorithm on the primary tree. The number of edges traversed is
O(d +n/k) because the number of edges from leaves to their parents is O(d) and edges from internal
nodes to their parents is O(n/k) by the property 3. This proves the cost of Min, IntEdge,Cost,Flow
operations across multiple clusters is O((d +n/k) logk).

However, because of the lazy merging in the step1, we perform the merges if we find a pair of clusters
to be merged while travesing the edges. the actual cost is O((s+d+n/k) logk) where s is the number
of merges performed. Note that we relaxed the invariant that there are O(n/k) internal nodes at any
moment, but after s merges, we have O(n/k) remaining edges involved in the traversal.

In Figure 3b, the cluster 3 has three edges from v. Looking at a cycle (V, I,G,V), the minimum edge
(G, I) is canceled and results in two split clusters. After the step1, there is only one or no edge from v
to each cluster (3b).

Step3 Link clusters as needed.

After Step2, the node v has at most one edge to each tree. There is no cycle. Simply link all trees with
v. (For an edge (u,v), Link(u,v)). The cost of one linking is O(logk) so it’s O(d logk) in total.

The above steps have O((s+d+n/k) logk) running time for adding the node v. From ∑s = O(m),∑d =

O(m),∑n/k = n2/k. the total running time is O((m+n2/k) logk). Choosing k = n2

m , we get O(m log n2

m).

13

(a) Step 1. Process cycles within each cluster

(b) Step 2. Process cycles within each tree

(c) Step 3. Join components

Figure 3: Steps of O(m log(n2/m)) algorithms

14

References
Lee, Y. T., Rao, S., and Srivastava, N. (2013). A New Approach to Computing Maximum Flows using

Electrical Flows Categories and Subject Descriptors.

Madry, A. (2013). Navigating central path with electrical flows: From flows to Matchings, and back (Ex-
tended Abstract). In Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS,
pages 253–262.

Peng, R. (2014). Converting Any Circulation to an Integral One of Smaller Cost in O(mlog(n)) time. Per-
sonal Communication.

Sleator, D. D. and Tarjan, R. E. (1981). A data structure for dynamic trees. In Proceedings of the thirteenth
annual ACM symposium on Theory of computing - STOC '81. ACM Press.

15

	Introduction
	Background
	Fractional and integral circulations
	Circulations and fractional cycles
	Link-cut trees

	Rounding in O(m log n)
	Preliminaries
	Data Structure
	Algorithm

	Rounding in O(n2)
	Algorithm
	Example
	Pseudocode

	Rounding in O(m log (n2 / m))
	k-link-cut trees
	Algorithm

