\documentclass{article} \usepackage{me} \usepackage{amssymb} \setlength{\parindent}{0pt} $\newcommand{\cN}[1]{\mathcal{N}\left(#1\right)}$ $\newcommand{\Ex}[1]{\mathbb{E}\left[#1\right]}$ $\newcommand{\Prob}[1]{\text{Pr}\left[#1\right]}$ $\newcommand{\Var}[1]{Var\left(#1\right)}$
\begin{center} Lecture 6: Dimensionality Reduction \end{center}

Today: How to represent high-dimensional data in low-dimensions.

Johnson-Lindenstrauss Lemma

Lemma: For any set of $n$ $d$-dimensional vectors $x^1, \ldots, x^n\in \mathbb{R}^d$, and any $\frac{1}{2}\geq \varepsilon>0$, there exists an $k$-by-$d$ matrix $A$, with $k=O(\varepsilon^{-2}\log n)$ such that \[ (1-\varepsilon) \|x^i-x^j\|_2^2 \leq \|Ax^i - Ax^j\|_2^2 \leq (1+\varepsilon) \|x^i-x^j\|_2^2, \] for any $i$ and $j$.

Proof

Extensions and Different Variants