1 Suffix Trees

Weiner 73 “Linear Pattern-matching algorithms” IEEE conference on automata and switching theory
McCreight 76 “A space-economical suffix tree construction algorithm” JACM 23(2) 1976
Chen and Seifras 85 “Efficient and Elegegant Suffix tree construction” in Apostolico/Galil Combninatorial Algorithms on Words

Another “search” structure, dedicated to strings.

Basic problem: match a “pattern” (of length \(m \)) to “text” (of length \(n \))

- goal: decide if a given string (“pattern”) is a substring of the text
- possibly created by concatenating short ones, eg newspaper
- application in IR, also computational bio (DNA seqs)
- if pattern available first, can build DFA, run in time linear in text
- if text available first, can build suffix tree, run in time linear in pattern.
- applications in computational bio.

First idea: binary tree on strings. Inefficient because run over pattern many times.

- fractional cascading?
- realize only need one character at each node!

Tries:

- used to store dictionary of strings
- trees with children indexed by “alphabet”
- time to search equal length of query string
- insertion ditto.
- optimal, since even hashing requires this time to hash.
- but better, because no “hash function” computed.
- space an issue:
 - using array increases storage cost by \(|\Sigma| \)
 - using binary tree on alphabet increases search time by \(\log |\Sigma| \)
– ok for “const alphabet”
– if really fussy, could use hash-table at each node.

• size in worst case: sum of word lengths (so pretty much solves “dictionary” problem.

But what about substrings?

• Relevance to DNA searches
• idea: trie of all n^2 substrings
• equivalent to trie of all n suffixes.
• put “marker” at end, so no suffix contained in other (otherwise, some suffix can be an internal node, “hidden” by piece of other suffix)
• means one leaf per suffix
• Naive construction: insert each suffix
• basic alg:
 – text $a_1 \cdots a_n$
 – define $s_i = a_i \cdots a_n$
 – for $i = 1$ to n
 – insert s_i
• time, space $O(n^2)$

Better construction:

• note trie size may be much smaller: $aaaaaaa$
• algorithm with time $O(|T|)$
• idea: avoid repeated work by “memoizing”
• also shades of finger search tree idea—use locality of reference
• suppose just inserted aw
• next insert is w
• big prefix of w might already be in trie
• avoid traversing: skip to end of prefix.

Suffix links:

• any node in trie corresponds to string
• arrange for node corresp to ax to point at node corresp to x
• suppose just inserted \(aw\).
• walk up tree till find suffix link
• follow link (puts you on path corresp to \(w\))
• walk down tree (adding nodes) to insert rest of \(w\)

Memoizing: (save your work)
• can add suffix link to every node we walked up
• (since walked up end of \(aw\), and are putting in \(w\) now).
• charging scheme: charge traversal up a node to creation of suffix link
• traversal up also covers (same length) traversal down
• once node has suffix link, never passed up again
• thus, total time spent going up/down equals number of suffix links
• one suffix link per node, so time \(O(|T|)\)

half hour up to here.
Amortization key principles:
• Lazy: don’t work till you must
• If you must work, use your work to “simplify” data structure too
• force user to spend lots of time to make you work
• use charges to keep track of work—earn money from user activity, spend it to pay for excess work at certain times.

Linear-size structure:
• problem: maybe \(|T|\) is large \(n^2\)
• compress paths in suffix trie
• path on letters \(a_i \cdots a_j\) corresp to substring of text
• replace by edge labelled by \((i, j)\) (implicit nodes)
• Example: tree on \(abab\)
• gives tree where every node has indegree at least 2
• in such a tree, size is order number of leaves = \(O(n)\)
• terminating \(\$\) char now very useful, since means each suffix is a node
• Wait: didn’t save space; still need to store characters on edge!
• **see if someone with prompting can figure out**: characters on edge are substring of pattern, so just store start and end indices. Look in text to see characters.

Search still works:

• preserves invariant: *at most* one edge starting with given character leaves a node
• so can store edges in array indexed by first character of edge.
• walk down same as trie
• called “slowfind” for later

Construction:

• obvious: build suffix trie, compress
• drawback: may take n^2 time and intermediate space
• better: use original construction idea, work in compressed domain.
• as before, insert suffixes in order s_1, \ldots, s_n
• compressed tree of what inserted so far
• to insert s_i, walk down tree
• at some point, path diverges from what’s in tree
• may force us to “break” an edge (show)
• tack on *one* new edge for rest of string (cheap!)

MacReight 1976

• use suffix link idea of up-link-down
• problem: can’t suffix link every character, only explicit nodes
• want to work proportional to *real* nodes traversed
• need to skip characters inside edges (since can’t pay for them)
• introduced “fastfind”
 – idea: fast alg for descending tree if *know* string present in tree
 – just check first char on edge, then skip number of chars equal to edge “length”
 – may land you in middle of edge (specified offset)
 – cost of search: number of *explicit* nodes in path
Amortized Analysis:

- suppose just inserted string aw
- sitting on its leaf, which has parent
- Parent is only node that was (possibly) created by insertion:
 - As soon as walk down preexisting tree falls off tree, create parent node and stop
- invariant: every internal node except for parent of current leaf has suffix link to another explicit node
- plausible?
 - i.e., is there an explicit node for that suffix link to point at?
 - suppose v was created as parent of s_j leaf when it diverged from s_k
 - (note this is only way nodes get created)
 - claim s_{j+1} and s_{k+1} diverge at suffix(v), creating another explicit node.
 - only problem if s_{k+1} not yet present
 - happens only if k is current suffix
 - only blocks parent of current leaf.

- insertion step:
 - suppose just inserted s_i
 - consider parent p_i and grandparent (parent of parent) g_i of current node
 - g_i to p_i link has string w_1
 - p_i to s_i link w_2
 - go up to grandparent
 - follow suffix link (exists by invariant)
 - fastfind w_1
 - claim: know w_1 is present in tree!
 - p_i was created by s_i split from a previous edge (or preexisted)
 - so aww_1 was in tree before s_i inserted (prefix of earlier suffix)
 - so ww_1 is in tree after s_i inserted
 - create suffix link from p_i (preserves invariant)
 - slowfind w_2 (stopping when leave current tree)
 - break current edge if necessary (may land on preexisting node)
— add new edge for rest of w_2

Analysis:

• First, consider work to reach g_{i+1} (not suf(g_i))
 — Mix of fastfind and slowfind, but no worse then cost of doing pure slowfind
 — This is it most $|g_{i+1}| - |g_i| + 1$ (explain length notation)
 — So total is $O(\sum |g_{i+1}| - |g_i| + 1) = O(n)$
 — Wait: maybe $g_{i+1} - g_i + 1 < 0$, and I am cheating on sum?
 * Consider after inserting $s_{i+1} = \text{suf}(s_i)$
 * then p_i can’t point at s_{i+1}
 * so must point at ancestor
 * so g_i must point at ancestor of ancestor
 * i.e., g_i points at g_{i+1} or something higher
 * so $|g_{i+1}| \geq |g_i| - 1$

• Remaining cost: to reach p_{i+1} (possibly implicit) from g_{i+1}.
 — If get there during fastfind, costs at most one additional step from g_{i+1}
 — If get there during slowfind, means fastfind stopped at or before g_{i+1}.
 — So suf(p_i) is not below g_{i+1}.
 — So remaining cost (from g_{i+1}, not suf(p_i)) is
 $$|g_{i+1}| - |p_{i+1}| \leq |\text{suf}(p_i)| - |p_{i+1}| \leq |p_i| - |p_{i+1}| + 1$$
 — telescopes as before to $O(n)$
 — we mostly analyzed as if used slowfind. when was fastfind important?
 * in case when p_{i+1} was reached on fastfind step from g_{i+1}
 * ie, $p_{i+1} = \text{suf}(p_i)$
 * in that case, could not have afforded to do slowfind from g_{i+1} to p_{i+1}
 * since slowfind analysis only covered fslowfind to g_{i+1} and from p_{i+1}
 * however, don’t know that the case occurred until after the fact.

Ukonnen online version.
Suffix arrays: many of same benefits as suffix trees, but save pointers:
 • lexicographic ordering of suffixes
• represent as list of integers: b_1 is (index in text of) lexicographically first suffix, b_2 is (index of) lexicographically second, etc.

• search for pattern via binary search on this sequence

• some clever tricks (and some more space) let you avoid re-checking characters of pattern.

• So linear search (with additive $\log m$ for binary search.

• space usage: $3m$ integers (as opposed to numerous pointers and integers of suffix tree).

Applications:

• preprocess bottom up, storing first, last, num. of suffixes in subtree

• allows to answer queries: what first, last, count of w in text in time $O(|w|)$.

• enumerate k occurrences in time $O(w + |k|)$ (traverse subtree, binary so size order of number of occurrences (compare to rabin-karp).

• longest common subsequence is probably on homework.