This material takes 1:15

1 Heaps

Shortest path/MST motivation. Discuss Prim/Dijkstra algorithm.
Note: lots more decrease-key than delete.
Response: balancing

- trade off costs of operations
- making different parts equal time.
d-heaps:
- $m \log _{d} n+n d \log _{d} n$.
- $\operatorname{set} d=m / n$
- $O\left(m \log _{m / n} n\right)$

1.1 Fibonacci Heaps

Fredman-Tarjan, JACM 34(3) 1987.
http://www.acm.org/pubs/citations/journals/jacm/1987-34-3/p596-fredman/
Key principles:

- Lazy: don't work till you must
- If you must work, use your work to "simplify" data structure too
- force user to spend lots of time to make you work
- analysis via potential function measuring "complexity" of structure. user has to do lots of insertions to raise potential, so you can spread cost of complex ops over many insertions
- another perspective: procrastinate. if you don't do the work, might never need to.
- Why the name? Wait and see.

Lazy approach:

- During insertion, do minimum, i.e. nothing.
- For first delete-min, cost is n
- So, amortized cost 1 .
- Problem with second and further delete mins
- n delete mins cost n^{2}-means amortized n

Use your work to simplify

- As do comparisons, remember outcomes
- point from loser to winner
- creates "heap ordered tree" (HOT)
- might not be full or balanced, but heap ordered
- now you take out the root, so get set of HOTs
- next time, min is among roots of HOTs-less work to find
- eg, if build perfect binary tree, just need to check 2 children
- problem: can't control tree shapes
- problem: may get star, next delete min loses all useful info

Summary/Goals

- Maintain set of HOTs
- Formalize notion that scan through existing HOTs is "paid for" by consolidation
- Devise mechanism so not too many additional trees added by removal of min

Heap ordered trees implementation

- definition
- represent using left-child, parent, and sibling pointers
- keep double linked list of HOTs
- in contant time, can link two of them (Fibonacci heaps are mergeable in constant time)
- in constant time, can add item
- in constant time, can decrease key (split key off, then merge)
- time to find min equal to number of roots, and simplifies struct.
- Problem: after building star heap ordered tree, one del-min loses all gains

Method: use heap-ordered trees, but keep degree small!

- method: ensure that any node has descendant count exponential in degree.
- how?
- bucket HOTs by degree
- only link HOTs of same degree
- start at smallest bucket; link pairs till <2 left. next bucket.
- lemma: if only link heaps of same degree, than any degree- d heap has 2^{d} nodes.
- creates "binomial trees" (draw)
- "Binomial heaps" do this aggressively-when delete items, split up trees to preserve exact tree shapes.

Idea: adversary has to do many insertions to make consolidation expensive.

- analysis: potential function ϕ equal to number of roots.

$$
-\operatorname{amortized}_{i}=\operatorname{real}_{i}+\phi_{i}-\phi_{i-1}
$$

- then $\sum a_{i}=\sum r_{i}+\phi_{n}-\phi_{0}$
- upper bounds real cost if $\phi_{n} \geq \phi_{0}$.
- sufficient that $\phi_{n} \geq 0$ and ϕ_{0} fixed
- insertion real cost 1 , potential cost 1 . total 2 .
- deletion: take r roots and add c children, then do $r+c$ scan work.
- r roots at start, $\log n$ roots at end. So, $r-\log n$ potential decrease
- so, total work $O(c+\log n)=O(\log n)$

Result: constant insert, $O(\log n)$ amortized delete
What about decrease-key?

- basically easy: cut off node from parent, make root.
- problem: may violate exponential-in-degree property
- "saving private ryan"
- fix: if a node loses more than one child, cut it from parent, make it a root (adds 1 to root potential-ok).
- implement using "mark bit" in node if has lost 1 child (clear when becomes root)
- may cause "cascading cut" until reach unmarked node
- why 2 children? We'll see.

Analysis: must show

- cascading cuts "free"
- tree size is exponential in degree

Second potential function: number of mark bits.

- if cascading cut hits r nodes, clears r mark bits
- adds 1 mark bit where stops
- amortized cost: $O(1)$ per decrease key
- so, number of new roots (additions to first potential function) is $O()$ number of operations.
- so, doesn't harm first potential function analysis
- note: if cut without marking, couldn't pay for cascade!
- this is binomial heaps approach. may do same $O(\log n)$ consolidation and cutting over and over.

Analysis of tree size:

- node x. consider current children in order were added.
- claim: $i^{\text {th }}$ remaining child (in addition order) has degree at least $i-2$
- proof:
- Let y be $i^{\text {th }}$ added child
- When added, the $i-1$ items preceding it in the add-order were already there
- i.e., x had degree $\geq i-1$
- So $i^{\text {th }}$ child y had (same) degree $\geq i-1$
- y could lose only 1 child before getting cut
- let S_{k} be minimum number of descendants (inc self) of degree k node. Deduce $S_{0}=1, S_{1}=2$, and

$$
S_{k} \geq \sum_{i=0}^{k-2} S_{i}
$$

- deduce $S_{k} \geq F_{k+2}$ fibonacci numbers
- reason for name
- we know $F_{k} \geq \phi^{k}$

Practical?

- Constants not that bad
- ie fib heaps reduces comparisons on moderate sized problems
- but, regular heaps are in an array
- fib heaps use lots of pointer manipulations
- lose locality of reference, mess up cache.
- non-amortized versions with same bounds exist.

1.2 Minimum Spanning Tree

minimum spanning tree (and shortest path) easy in $O(m+n \log n)$. More sophisticated MST:

- why $n \log n$? Because deleting from size- n heap
- idea: keep heap small to reduce cost.
- choose a parameter k
- run prim till region has k neighbors
- set aside and start over elsewhere.
- heap size bounded by k, delete by $\log k$
- "contract" regions (a la Kruskal) and start over.

Formal:

- phase starts with t vertices.
- set $k=2^{2 m / t}$.
- unmark all vertices and repeat following
- choose unmarked vertex
- Prim until attach to marked vertex or heap reaches size k
- mark all vertices in region
- contract graph in $O(m)$ time and repeat

Analysis:

- time for phase: m decrease keys, t delete-mins from size- k heaps, so $O(m+$ $t \log k)=O(m)$.
- number of phases:
- At end of phase, each compressed vertex "owns" k edges (one or both endpoints)
- so next number of vertices $t^{\prime} \leq 2 m / k$
- so $k^{\prime}=2^{2 m / t^{\prime}} \geq 2^{k}$
- when reach $k=n$, done (last pass)
- number of phases: $\beta(m, n)=\min \left\{i \mid \log ^{(i)} n \leq 2 m / n\right\} \leq \log ^{*} n$.

Remarks:

- subsequently improved to $O(m \log \beta(m, n))$ using edge packets
- chazelle recently improved to $O(m \alpha(n) \log \alpha(n))$ using "error-prone heaps"
- ramachandran gave optimal algorithm (runtime not clear)
- randomization gives linear.

