1 Heaps

Shortest path/MST motivation. Discuss Prim/Dijkstra algorithm.
Note: lots more decrease-key than delete.
Response: balancing

- trade off costs of operations
- making different parts equal time.

d-heaps:

- $m \log_d n + nd \log_d n$.
- set $d = m/n$
- $O(m \log_{m/n} n)$

1.1 Fibonacci Heaps

Fredman-Tarjan, JACM 34(3) 1987.

Key principles:

- Lazy: don’t work till you must
- If you must work, use your work to “simplify” data structure too
- force user to spend lots of time to make you work
- analysis via potential function measuring “complexity” of structure. user has to do lots of insertions to raise potential, so you can spread cost of complex ops over many insertions
- another perspective: procrastinate. if you don’t do the work, might never need to.
- Why the name? Wait and see.

Lazy approach:

- During insertion, do minimum, i.e. nothing.
- For first delete-min, cost is n
- So, amortized cost 1.
- Problem with second and further delete mins
- n delete mins cost n^2—means amortized n
Use your work to simplify

- As do comparisons, remember outcomes
- point from loser to winner
- creates “heap ordered tree” (HOT)
- might not be full or balanced, but heap ordered
- now you take out the root, so get set of HOTs
- next time, min is among roots of HOTs—less work to find
- eg, if build perfect binary tree, just need to check 2 children
- problem: can’t control tree shapes
- problem: may get star, next delete min loses all useful info

Summary/Goals

- Maintain set of HOTs
- Formalize notion that scan through existing HOTs is “paid for” by consolidation
- Devise mechanism so not too many additional trees added by removal of min

Heap ordered trees implementation

- definition
- represent using left-child, parent, and sibling pointers
- keep double linked list of HOTs
- in constant time, can link two of them (Fibonacci heaps are mergeable in constant time)
- in constant time, can add item
- in constant time, can decrease key (split key off, then merge)
- time to find min equal to number of roots, and simplifies struct.
- Problem: after building star heap ordered tree, one del-min loses all gains

Method: use heap-ordered trees, but keep degree small!

- method: ensure that any node has descendant count exponential in degree.
- how?
bucket HOTs by degree
- only link HOTs of same degree
- start at smallest bucket; link pairs till < 2 left, next bucket.

- lemma: if only link heaps of same degree, then any degree- \(d \) heap has \(2^d \) nodes.
- creates “binomial trees” (draw)
- “Binomial heaps” do this aggressively—when delete items, split up trees to preserve exact tree shapes.

Idea: adversary has to do many insertions to make consolidation expensive.

- analysis: potential function \(\phi \) equal to number of roots.
 - amortized, \(i = \text{real}_i + \phi_i - \phi_{i-1} \)
 - then \(\sum a_i = \sum r_i + \phi_n - \phi_0 \)
 - upper bounds real cost if \(\phi_n \geq \phi_0 \).
 - sufficient that \(\phi_n \geq 0 \) and \(\phi_0 \) fixed

- insertion real cost 1, potential cost 1. total 2.
- deletion: take \(r \) roots and add \(c \) children, then do \(r + c \) scan work.
- \(r \) roots at start, \(\log n \) roots at end. So, \(r - \log n \) potential decrease
- so, total work \(O(c + \log n) = O(\log n) \)

Result: constant insert, \(O(\log n) \) amortized delete

What about decrease-key?

- basically easy: cut off node from parent, make root.
- problem: may violate exponential-in-degree property
- “saving private ryan”
- fix: if a node loses more than one child, cut it from parent, make it a root (adds 1 to root potential—ok).
- implement using “mark bit” in node if has lost 1 child (clear when becomes root)
- may cause “cascading cut” until reach unmarked node
- why 2 children? We’ll see.

Analysis: must show
- cascading cuts “free”
• tree size is exponential in degree

Second potential function: number of mark bits.
 • if cascading cut hits r nodes, clears r mark bits
 • adds 1 mark bit where stops
 • amortized cost: $O(1)$ per decrease key
 • so, number of new roots (additions to first potential function) is $O()$ number of operations.
 • so, doesn’t harm first potential function analysis
 • note: if cut without marking, couldn’t pay for cascade!
 – this is binomial heaps approach. may do same $O(\log n)$ consolidation and cutting over and over.

Analysis of tree size:
 • node x. consider current children in order were added.
 • claim: i^{th} remaining child (in addition order) has degree at least $i - 2$
 • proof:
 – Let y be i^{th} added child
 – When added, the $i-1$ items preceding it in the add-order were already there
 – i.e., x had degree $\geq i - 1$
 – So i^{th} child y had (same) degree $\geq i - 1$
 – y could lose only 1 child before getting cut
 • let S_k be minimum number of descendants (inc self) of degree k node.
 Deduce $S_0 = 1$, $S_1 = 2$, and
 \[S_k \geq \sum_{i=0}^{k-2} S_i \]
 • deduce $S_k \geq F_{k+2}$ fibonacci numbers
 • reason for name
 • we know $F_k \geq \phi^k$

Practical?
 • Constants not that bad
• i.e., fib heaps reduce comparisons on moderate sized problems
• but, regular heaps are in an array
• fib heaps use lots of pointer manipulations
• lose locality of reference, mess up cache.
• non-amortized versions with same bounds exist.

1.2 Minimum Spanning Tree

minimum spanning tree (and shortest path) easy in \(O(m + n \log n) \).

More sophisticated MST:
• why \(n \log n \)? Because deleting from size-\(n \) heap
• idea: keep heap small to reduce cost.
 – choose a parameter \(k \)
 – run Prim till region has \(k \) neighbors
 – set aside and start over elsewhere.
 – heap size bounded by \(k \), delete by \(\log k \)
 – “contract” regions (a la Kruskal) and start over.

Formal:
• phase starts with \(t \) vertices.
• set \(k = 2^{2m/t} \).
• unmark all vertices and repeat following
 – choose unmarked vertex
 – Prim until attach to marked vertex or heap reaches size \(k \)
 – mark all vertices in region
• contract graph in \(O(m) \) time and repeat

Analysis:
• time for phase: \(m \) decrease keys, \(t \) delete-mins from size-\(k \) heaps, so \(O(m + t \log k) = O(m) \).
• number of phases:
 – At end of phase, each compressed vertex “owns” \(k \) edges (one or both endpoints)
 – so next number of vertices \(t' \leq 2m/k \)
– so $k' = 2^{2m/t'} \geq 2^k$
– when reach $k = n$, done (last pass)
– number of phases: $\beta(m, n) = \min \{ i \mid \log^{(i)} n \leq 2m/n \} \leq \log^* n$.

Remarks:

• subsequently improved to $O(m \log \beta(m, n))$ using edge packets
• chazelle recently improved to $O(m \alpha(n) \log \alpha(n))$ using “error-prone heaps”
• ramachandran gave optimal algorithm (runtime not clear)
• randomization gives linear.