
This material takes 1:15

1 Heaps

Shortest path/MST motivation. Discuss Prim/Dijkstra algorithm.
Note: lots more decrease-key than delete.
Response: balancing

• trade off costs of operations

• making different parts equal time.

d-heaps:

• m logd n + nd logd n.

• set d = m/n

• O(m logm/n n)

1.1 Fibonacci Heaps

Fredman-Tarjan, JACM 34(3) 1987.
http://www.acm.org/pubs/citations/journals/jacm/1987-34-3/p596-fredman/
Key principles:

• Lazy: don’t work till you must

• If you must work, use your work to “simplify” data structure too

• force user to spend lots of time to make you work

• analysis via potential function measuring “complexity” of structure. user
has to do lots of insertions to raise potential, so you can spread cost of
complex ops over many insertions

• another perspective: procrastinate. if you don’t do the work, might never
need to.

• Why the name? Wait and see.

Lazy approach:

• During insertion, do minimum, i.e. nothing.

• For first delete-min, cost is n

• So, amortized cost 1.

• Problem with second and further delete mins

• n delete mins cost n2—means amortized n

1



Use your work to simplify

• As do comparisons, remember outcomes

• point from loser to winner

• creates “heap ordered tree” (HOT)

• might not be full or balanced, but heap ordered

• now you take out the root, so get set of HOTs

• next time, min is among roots of HOTs—less work to find

• eg, if build perfect binary tree, just need to check 2 children

• problem: can’t control tree shapes

• problem: may get star, next delete min loses all useful info

Summary/Goals

• Maintain set of HOTs

• Formalize notion that scan through existing HOTs is “paid for” by con-
solidation

• Devise mechanism so not too many additional trees added by removal of
min

Heap ordered trees implementation

• definition

• represent using left-child, parent, and sibling pointers

• keep double linked list of HOTs

• in contant time, can link two of them (Fibonacci heaps are mergeable in
constant time)

• in constant time, can add item

• in constant time, can decrease key (split key off, then merge)

• time to find min equal to number of roots, and simplifies struct.

• Problem: after building star heap ordered tree, one del-min loses all gains

Method: use heap-ordered trees, but keep degree small!

• method: ensure that any node has descendant count exponential in degree.

• how?

2



– bucket HOTs by degree

– only link HOTs of same degree

– start at smallest bucket; link pairs till < 2 left. next bucket.

• lemma: if only link heaps of same degree, than any degree-d heap has 2d

nodes.

• creates “binomial trees” (draw)

• “Binomial heaps” do this aggressively—when delete items, split up trees
to preserve exact tree shapes.

Idea: adversary has to do many insertions to make consolidation expensive.

• analysis: potential function φ equal to number of roots.

– amortizedi = reali + φi − φi−1

– then
∑

ai =
∑

ri + φn − φ0

– upper bounds real cost if φn ≥ φ0.

– sufficient that φn ≥ 0 and φ0 fixed

• insertion real cost 1, potential cost 1. total 2.

• deletion: take r roots and add c children, then do r + c scan work.

• r roots at start, log n roots at end. So, r − log n potential decrease

• so, total work O(c + log n) = O(log n)

Result: constant insert, O(log n) amortized delete
What about decrease-key?

• basically easy: cut off node from parent, make root.

• problem: may violate exponential-in-degree property

• “saving private ryan”

• fix: if a node loses more than one child, cut it from parent, make it a root
(adds 1 to root potential—ok).

• implement using “mark bit” in node if has lost 1 child (clear when becomes
root)

• may cause “cascading cut” until reach unmarked node

• why 2 children? We’ll see.

Analysis: must show

• cascading cuts “free”

3



• tree size is exponential in degree

Second potential function: number of mark bits.

• if cascading cut hits r nodes, clears r mark bits

• adds 1 mark bit where stops

• amortized cost: O(1) per decrease key

• so, number of new roots (additions to first potential function) is O() num-
ber of operations.

• so, doesn’t harm first potential function analysis

• note: if cut without marking, couldn’t pay for cascade!

– this is binomial heaps approach. may do same O(log n) consolidation
and cutting over and over.

Analysis of tree size:

• node x. consider current children in order were added.

• claim: ith remaining child (in addition order) has degree at least i− 2

• proof:

– Let y be ith added child

– When added, the i−1 items preceding it in the add-order were already
there

– i.e., x had degree ≥ i− 1

– So ith child y had (same) degree ≥ i− 1

– y could lose only 1 child before getting cut

• let Sk be minimum number of descendants (inc self) of degree k node.
Deduce S0 = 1, S1 = 2, and

Sk ≥
k−2∑
i=0

Si

• deduce Sk ≥ Fk+2 fibonacci numbers

• reason for name

• we know Fk ≥ φk

Practical?

• Constants not that bad

4



• ie fib heaps reduces comparisons on moderate sized problems

• but, regular heaps are in an array

• fib heaps use lots of pointer manipulations

• lose locality of reference, mess up cache.

• non-amortized versions with same bounds exist.

1.2 Minimum Spanning Tree

minimum spanning tree (and shortest path) easy in O(m + n log n).
More sophisticated MST:

• why n log n? Because deleting from size-n heap

• idea: keep heap small to reduce cost.

– choose a parameter k

– run prim till region has k neighbors

– set aside and start over elsewhere.

– heap size bounded by k, delete by log k

– “contract” regions (a la Kruskal) and start over.

Formal:

• phase starts with t vertices.

• set k = 22m/t.

• unmark all vertices and repeat following

– choose unmarked vertex

– Prim until attach to marked vertex or heap reaches size k

– mark all vertices in region

• contract graph in O(m) time and repeat

Analysis:

• time for phase: m decrease keys, t delete-mins from size-k heaps, so O(m+
t log k) = O(m).

• number of phases:

– At end of phase, each compressed vertex “owns” k edges (one or both
endpoints)

– so next number of vertices t′ ≤ 2m/k

5



– so k′ = 22m/t′ ≥ 2k

– when reach k = n, done (last pass)

– number of phases: β(m,n) = min{i | log(i) n ≤ 2m/n} ≤ log∗ n.

Remarks:

• subsequently improved to O(m log β(m,n)) using edge packets

• chazelle recently improved to O(mα(n) log α(n)) using “error-prone heaps”

• ramachandran gave optimal algorithm (runtime not clear)

• randomization gives linear.

6


