This material takes 1:15

1 Heaps

Shortest path/MST motivation. Discuss Prim/Dijkstra algorithm.
Note: lots more decrease-key than delete.
Response: balancing

e trade off costs of operations

e making different parts equal time.
d-heaps:

e mlog,n + ndlogyn.

e set d=m/n

e O(mlog,,,,n)

1.1 Fibonacci Heaps

Fredman-Tarjan, JACM 34(3) 1987.
http://www.acm.org/pubs/citations/journals/jacm/1987-34-3/p596-fredman/
Key principles:

e Lazy: don’t work till you must
e If you must work, use your work to “simplify” data structure too
e force user to spend lots of time to make you work

e analysis via potential function measuring “complexity” of structure. user
has to do lots of insertions to raise potential, so you can spread cost of
complex ops over many insertions

e another perspective: procrastinate. if you don’t do the work, might never
need to.

e Why the name? Wait and see.
Lazy approach:
e During insertion, do minimum, i.e. nothing.
e For first delete-min, cost is n
e So, amortized cost 1.

Problem with second and further delete mins

n delete mins cost n>—means amortized n



Use your work to simplify

As do comparisons, remember outcomes

point from loser to winner

creates “heap ordered tree” (HOT)

might not be full or balanced, but heap ordered

now you take out the root, so get set of HOTs

next time, min is among roots of HOTs—less work to find
eg, if build perfect binary tree, just need to check 2 children
problem: can’t control tree shapes

problem: may get star, next delete min loses all useful info

Summary/Goals

Maintain set of HOT's

Formalize notion that scan through existing HOTs is “paid for” by con-
solidation

Devise mechanism so not too many additional trees added by removal of
min

Heap ordered trees implementation

definition
represent using left-child, parent, and sibling pointers
keep double linked list of HOT's

in contant time, can link two of them (Fibonacci heaps are mergeable in
constant time)

in constant time, can add item
in constant time, can decrease key (split key off, then merge)
time to find min equal to number of roots, and simplifies struct.

Problem: after building star heap ordered tree, one del-min loses all gains

Method: use heap-ordered trees, but keep degree small!

method: ensure that any node has descendant count exponential in degree.

how?



Idea:

— bucket HOT's by degree
— only link HOTSs of same degree
— start at smallest bucket; link pairs till < 2 left. next bucket.

lemma: if only link heaps of same degree, than any degree-d heap has 2¢
nodes.

creates “binomial trees” (draw)

“Binomial heaps” do this aggressively—when delete items, split up trees
to preserve exact tree shapes.

adversary has to do many insertions to make consolidation expensive.

analysis: potential function ¢ equal to number of roots.

amortized; = real; + ¢; — ¢;_1

— then > a; =Y 1 + ¢n — o
— upper bounds real cost if ¢,, > ¢o.
— sufficient that ¢,, > 0 and ¢ fixed

insertion real cost 1, potential cost 1. total 2.
deletion: take r roots and add c¢ children, then do r + ¢ scan work.
r roots at start, logn roots at end. So, r — logn potential decrease

so, total work O(c + logn) = O(logn)

Result: constant insert, O(logn) amortized delete
What about decrease-key?

basically easy: cut off node from parent, make root.
problem: may violate exponential-in-degree property
“saving private ryan”

fix: if a node loses more than one child, cut it from parent, make it a root
(adds 1 to root potential—ok).

implement using “mark bit” in node if has lost 1 child (clear when becomes
root)

may cause “cascading cut” until reach unmarked node

why 2 children? We'll see.

Analysis: must show

cascading cuts “free”



tree size is exponential in degree

Second potential function: number of mark bits.

if cascading cut hits r nodes, clears r mark bits
adds 1 mark bit where stops
amortized cost: O(1) per decrease key

so, number of new roots (additions to first potential function) is O() num-
ber of operations.

80, doesn’t harm first potential function analysis
note: if cut without marking, couldn’t pay for cascade!

— this is binomial heaps approach. may do same O(logn) consolidation
and cutting over and over.

Analysis of tree size:

node z. consider current children in order were added.

claim: 7' remaining child (in addition order) has degree at least i — 2

proof:

— Let y be it" added child

— When added, the ¢—1 items preceding it in the add-order were already
there

— i.e., x had degree >i—1
— So i*" child y had (same) degree >4 — 1
— y could lose only 1 child before getting cut

e let S be minimum number of descendants (inc self) of degree k node.
Deduce Sp =1, S; =2, and
k—2
S>> S
i=0
e deduce Sk > Fj42 fibonacci numbers
e reason for name
e we know Fj, > ¢F
Practical?

Constants not that bad



ie fib heaps reduces comparisons on moderate sized problems

but, regular heaps are in an array

fib heaps use lots of pointer manipulations
e lose locality of reference, mess up cache.

e non-amortized versions with same bounds exist.

1.2 Minimum Spanning Tree

minimum spanning tree (and shortest path) easy in O(m + nlogn).
More sophisticated MST:

e why nlogn? Because deleting from size-n heap
e idea: keep heap small to reduce cost.

— choose a parameter k

— run prim till region has k£ neighbors

— set aside and start over elsewhere.

— heap size bounded by k, delete by log k

— “contract” regions (a la Kruskal) and start over.
Formal:
e phase starts with ¢ vertices.
o set k = 227/t
e unmark all vertices and repeat following

— choose unmarked vertex
— Prim until attach to marked vertex or heap reaches size k

— mark all vertices in region
e contract graph in O(m) time and repeat
Analysis:

e time for phase: m decrease keys, t delete-mins from size-k heaps, so O(m+
tlogk) = O(m).
e number of phases:

— At end of phase, each compressed vertex “owns” k edges (one or both
endpoints)

— 80 next number of vertices t' < 2m/k



— s0 k' = 22m/t" > ok
— when reach k = n, done (last pass)
— number of phases: 3(m,n) = min{i | log® n < 2m/n} < log* n.
Remarks:
e subsequently improved to O(mlog 3(m,n)) using edge packets
e chazelle recently improved to O(ma(n)log a(n)) using “error-prone heaps”
e ramachandran gave optimal algorithm (runtime not clear)

e randomization gives linear.



