
6.854 Advanced Algorithms

Lecture 3: September 16, 1999 Lecturer: David Karger
Scribes: abhi shelat, Andrew Menard

Van Emde Boas Queues

We would like to design a queue that only handles integers from 0...C, but supports all operations in
O(log log C) time. This idea is first presented in “Design and Implementation of an efficient priority
queue”, Mathematical Systems Theory 10 (1977). Mikkel Thorup provides some extensions in “On
RAM priority queues” in SODA 1996.

This is a fantastic example of an efficient recursive data structure. This structure also exploits the
fact that keys in priority queues are most often integers and that computers have efficient operations
for manipulating the binary representations of integers (shifts, masks, logical operations).

Each vEB queue maintains the following information:

Field Notation
The current minimum min
Number of items in the queue n
vEB queue on high halfword summ
For each xh ∈ summ, a vEB queue on the low halfwords L(xh)

Intuitively, we have the minimum item stored so we can return it quickly. VEB priority queues take
the place of the buckets in the multi-level bucket structure that was presented earlier (see Scribe
Notes 2). We maintain the number of items in a queue so that we can quickly check whether a queue
has just one item. This will be important during the delete step.

The purpose of the HASH table is to allow constant time access to elements in the high halfword
queue (high halfword, xh = the higher-order w

2 bits in the w-bit representation of a number, x;
w = lg C). We use xh as the key, and L(xh) as the value in HASH. Implementing a hashtable to be
truly constant time in the complexity analysis is tricky. Multiply operations, for example, are not
constant time bit operations. The hashtable is only used to save space. The more straightforward
indexed array approach requires

√
U space.

Inserts

Consider the algorithm for inserting an element into the queue.

Insert(x, S) [1] (xh, xl) ⇐ x divide x into its high halfword, xh, and its low halfword, xl xh ∈ HASH
Insert(xl, L(xh)) L(xh) is stored as the key to xh in HASH Insert(xh,H) L(xh) ⇐MakeVeb(xl)
insert xh into hashtable, HASH x < min(S) min(S) ⇐ x n ⇐ n + 1

The recursions finishes when the queues become small enough to store as arrays (eg, 1-bit queues).

3-1



Lecture 3: September 16, 1999 3-2

Line 1 of the algorithm splits x into halfwords. This operation can be done with a bit shift operation
and a bitwise-AND operation. To check whether xh is in H, we query HASH in constant time.

At this point, we have split the problem of inserting x into this queue into a smaller problem of
either inserting the high halfword of x, or the low halfword of x. If we have already inserted xh in
a previous operation, then it suffices to insert xl in the low halfword queue that belongs to xh. If
we have not already seen xh, then we need to insert it into our high halfword queue. However, this
means that we can insert xl in O(1) time by simply creating a queue of size 1.

Notice that the function makes only one recursive call to the Insert function. Because all of the
other operations are O(1) time, the recurrence is

T (b) = T (b/2) + O(1)

where b is the number of bits in x. Hence, T (b) = O(log b) and since b = log C, the algorithm runs
in O(log log C) time.

A sample queue with the elements 15, 3, 9 would look like this:

Figure 3.1: A sample VEB queue.

Delete-Min

In order to delete an element, we return the current minimum and find its replacement. In order
to find the replacement, there can be two cases. We first look in the low halfword queue for the
current minimum, that is L(mh) where mh is the high halfword of min(S). If this queue has other
elements, we recursively delete the minimum from this queue, and read off the new minimum.

If the low halfword queue only has one element, then we need to find the next smallest high halfword.
We do this by recursively deleting the minimum from H, and then reading off the appropriate values
for our new minimum.

Delete-Min(S) [1] (mh, xl) ⇐ min(S) divide the current minimum into high and low halfwords
L(mh) has one element Delete-Min(H) x′

h = Min(H) x′
l = Min(L(x′

h)) Delete-Min(L(xh))
x′

l ⇐Min(L(mh)) x′
h ⇐ mh n ⇐ n− 1 oldmin ⇐ min(S) min(S) ⇐ x′

h(2b/2) + x′
l return oldmin

Once again, the running time for this algorithm is O(log log C) since all of the comparisons are O(1)
time and only one recursive call on b/2 bits is made.

Queue Creation

In order to create a queue in O(1) time, we have to be careful (lazy). The naive creation of a queue
of size b bits requires an insertion into the b/2 bit high halfword queue, and the creation of a b/2 bit
low halfword queue. Since the high halfword queue might need to be created before we can insert
into it, the recurrence describing the amount of work required is T (b) = 2T (b/2) + O(1) = O(b).
This is too expensive. To get around this problem, we employ lazy creation.

When a queue is first created, we defer the creation of the high and low halfword queues. We simply
record the first value that we are inserting as the queue’s minimum value. The other pointers in the
queue are set to NULL so that we can differentiate this queue during access/modification operations.
Since we no longer make recursive calls to create smaller queues, We have reduced the amount of



Lecture 3: September 16, 1999 3-3

work required to create a queue to O(1). For example, suppose we have inserted 9 into the four-bit
queue from above. Our structure would be

Figure 3.2: A 4 bit VEB queue after inserting 9.

We must argue that the lazy creation does not affect any of the other queue operations. Let us
consider what happens to the queue after subsequent inserts. The next insert into the newly minted
queue will either be a key that is larger than the minimum or smaller than the minimum. In either
case, we will be expanding only the larger element. Let y be the larger element. The insert requires
us to create a high halfword queue for yh, to allocate a hashtable, to create a low halfword queue
for yl, and to insert the low halfword queue in the hashtable. Both of the queue creations that were
required are lazy creates as described above. Hence, the amount of time spent for queue creation is
again O(1). At this point, there are two elements in the top queue.

Figure 3.3: A 4 bit VEB queue after inserting 9,13.

On the third insert, z, we might have to expand the high halfword queue if yh 6= zh. This involves
one more lazy queue create. As before, we create a queue for zl and insert it into the hashtable. If
yh = zh, then we only expand the low halfword queue L(yh). Each insertion requires at most two
lazy queue creations.

The key point is that the minimum value of a queue is never inserted into the queue. It is simply
recorded as the minimum. This allows the rest of the algorithms to work correctly and at the same
time facilities O(1) time queue creation.

Other supported operations

Note that it is easy to support all of the following operations in O(log log C) time

• Min(). Can be done in O(1).

• Max(). Symmetric to the min.

• Find(x). Determines whether the element exists in the queue.

• Succ(x). Finds the smallest value in the queue that is larger than x. Returns nothing if x is
the largest.

• Pred(x). Finds the largest value in the queue that is smaller than x. Returns nothing if x is
the smallest.

• Delete(x). Deletes the element x from the queue.

• Delete-Max(). Removes the max element from the queue. Works in the same way that
Delete-Min works.


