
6.854 Advanced Algorithms

Lecture 20: 11/01/2004 Lecturer: David Karger
Scribes: Tushara C. Karunaratna

Online Algorithms (continued)

20.1 Introduction

In the previous lecture, we defined the term competitive ratio for deterministic online algorithms.
We studied a 2-competitive algorithm for ski-rental. We also observed that our greedy algorithm for
load balancing is a 2-competitive online algorithm.

In this lecture, we will study online algorithms for paging, finance, and k-server on a line.

20.2 Paging

Paging is an important problem in computer systems design. We model a machine’s memory as
consisting of two parts: an unlimited number of pages of slow memory, and a cache consisting of k
pages of fast memory. On a page request, if the requested page is not in the cache (we call this a
cache miss or a fault), then a page in the cache must be evicted and the requested page must be
brought in. A paging strategy specifies the choice of which page to evict on a cache miss. The goal
is to minimize the number of cache misses.

Here are the some of the commonly used paging strategies.

• LRU: evict the least recently used page. We will prove that this strategy is k-competitive.

• Random: evict a random page. It is known that this strategy is k-competitive.

• FIFO: evict the earliest fetched page. It is known that this strategy is k-competitive.

• Frequency counts: evict the least frequently used page. It is known that this strategy is not

competitive.

20.2.1 LRU is k-competitive

To analyse the performance of LRU, we partition the input sequence into phases. The first phase
begins immediately after LRU first faults. A phase ends immediately after LRU has faulted k times
since the start of the phase; the next phase begins at this point.

20-1



Lecture 20: 11/01/2004 20-2

We now prove that OPT faults at least once per phase.
Consider any phase such that LRU faults twice on some page p in this phase. We know that at least
k other distinct pages must have been requested in between the two requests of p (because otherwise
p would not have been evicted by LRU). Hence, there are at least k + 1 distinct pages requested in
this phase, and thus OPT faults at least once in this phase.
On the other hand, consider any phase such that LRU faults on k distinct pages in this phase. Let
p be the last fault of the previous phase. Note that even if p is one of the k faults in this phase, at
least k other distinct pages must have been requested in this phase (because otherwise p would not
have been evicted by LRU). Since p was in OPT’s cache at the start of this phase, OPT faults at
least once in this phase.

Therefore, LRU is k-competitive.

20.2.2 Lower bound for deterministic online paging

Consider any deterministic online paging algorithm A.

We construct a request sequence involving k +1 pages; at each step, we request the page that is not

in A’s cache. Note that for this sequence, A faults on every request.

Consider the offline algorithm that, on a cache miss, evicts the page that is requested furthest in
the future. When this offline algorithm faults, the page that it evicted won’t be requested until at
least k steps in the future. Therefore, this offline algorithm faults only once every k requests for our
above adverserial sequence.

Therefore, no deterministic online paging algorithm can be better than k-competitive.

20.3 Finance

We own some amount of stock. We have no information on how the price per unit of the stock may
fluctate in the future, but we know that the peak price is M and that the minimum price is m. We
want to sell our stock so as to maximize our return.

20.3.1 Reserve price algorithm

The stategy is to sell all our stock the first time that the price beats r.
We claim that r =

√
Mm is a good choice:

• Case 1: We never meet the reserve price. Then, our regret ratio is at most r/m.

• Case 2: We meet the reserve, and it eventually rises to M . Then, our regret ratio is at most
M/r.

max{r/m, M/r} is minimized by setting r/m = M/r. This gives us r =
√

Mm. With this choice of
r, the regret ratio is

√

M/m.



Lecture 20: 11/01/2004 20-3

20.3.2 Selling in fractions

We assume that M = 2km for some integer k.
Let OPT denote the maximum price that is reached (of course, we do not know this in advance).

Consider the following strategy: for each i where 1 ≤ i ≤ k, sell 1/k of our stock the first time that
the unit price falls in the interval [2im, 2i+1m).

Let j be the largest integer such that 2jm ≤OPT.
Note that 2jm > OPT/2.
Therefore, we sell 1/k of our stock at price at least OPT/2.
So our regret ratio is OPT

OPT/(2k) = 2k = 2 lg (M/m).

20.3.3 A randomized reserve-price strategy

We pick i uniformly at random from 1, 2, . . . , k. We set the reserve price to 2im.

Let j be the largest integer such that 2jm ≤OPT.
With probability at least 1/k, we have a return of 2jm > OPT/2.
Therefore, our expected return is at least OPT/2k.
So our expected regret ratio is 2k = 2 lg (M/m).

20.4 k-server on a line

We have k servers on a line. A request specifies a point on the line to which a server must be moved.
The cost of serving a request sequence is measured by the total distance travelled by servers. Thus,
the goal is to be clever in the way servers are moved, such that the total distance travelled by the
servers is minimized.

20.4.1 A greedy strategy that isn’t competitive

A greedy strategy for this problem is to simply move the server that is closest to the requested point.

However, we can easily see that this greedy strategy is not competitive. Suppose that we have two
servers A and B that are initially at points x and y, respectively, with x < y. Suppose that our
requests repeatedly alternate between the points y − (y − x)/4 and y + (y − x)/4. Then, according
to the greedy strategy, all the requests will be served by B, and the total distance travelled will be
infinite. A better strategy would be to first move A and B to our two request points, in which case
the total distance travelled would be only constant.



Lecture 20: 11/01/2004 20-4

20.4.2 Double coverage

The double coverage (DC) strategy is

• If the request falls between two servers, then move both towards the request at the same rate
until one reaches it.

• Else (in which case the request falls “outside”), just move the closest server to the request.

Now, we show that DC is k-competitive.

We compare the moves of DC to those of an optimal offline algorithm OPT. We can assume that
OPT satisfies a request by moving exactly one server; we can convert any offline strategy into a
strategy that moves exactly one server per request, without increasing the cost, by differing moves
to the future.

Let M be the cost of the minimum cost matching between DC’s and OPT’s servers.
Let S be the sum of the pairwise distances of DC’s servers.
Let Φ = kM + S. This is our potential function.

We consider the requests one by one. For each request, we first observe OPT’s move, and then we
observe DC’s move. We compute the ammortized cost incurred by DC for each move.

• OPT moves distance d. The distance from the moved server to the moved server’s match
increases by at most d. Hence, M increases by at most d. Of course, S is unchanged.
So ∆Φ ≤ kd.
The real cost incurred by DC is 0.
So the ammortized cost incurred by DC is ≤ kd.

• DC moves. There are two cases to consider.

– The request falls between two servers. Suppose that each of the two moved servers
moved a distance d. The pairwise distance between the two moved servers decreases by
2d. The changes in the other pairwise distances cancel out. So S decreases by 2d.
One of the moving servers has its match on its destination. The other moving server
might be moving further from its match, but only at the same rate. Therefore, M does
not increase.
So ∆Φ ≤ −2d.
The real cost incurred by DC is 2d.
So the ammortized cost incurred by DC is ≤ 0.

– The request falls “outside”. Suppose that the moved server moved a distance d. The
moved server has its match on its destination. So M decreases by at least d.
Each of the k − 1 pairwise distances involving the moved server increases by d. So S
increases by (k − 1)d.
So ∆Φ ≤ −kd + (k − 1)d = −d.
The real cost incurred by DC is d.
So the ammortized cost incurred by DC is ≤ 0.



Lecture 20: 11/01/2004 20-5

Note that positive ammortized cost is incurred by DC only when OPT moves. When OPT moves,
the ammortized cost incurred by DC at most k times the distance moved by OPT’s server.

Thus, the total real cost incurred by DC is at most k times that incurred by OPT (plus some
additional constant if the potential wasn’t initially 0).

So, DC is k-competitive.


