
6.854 Advanced Algorithms

Lecture 3: 09/12/2005 Lecturer: David Karger
Scribes: Xin Zhang

Splay Trees

3.1 Introduction

Splay trees are binary search trees with good balance properties when amortized over a sequence of
operations.

When a node x is accessed, we perform a sequence of splay steps to move x to the root of the tree.
There are 6 types of splay steps, each consisting of 1 or 2 rotations (see Figures 3.1, 3.2, and 3.3).
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Figure 3.1: The rr splay step: This is performed when x and x’s parent are both left children.
The splay step consists of first a right rotation on z and then a right rotation on y (hence rr). The
ll splay step, for x and x’s parent being right children, is analogous.

We perform splay steps to x (rr, ll, lr, or rl, depending on whether x and x’s parent are left or
right children) until x is either the root or a child of the root. In the latter case, we need to perform
either a r or l splay step to make x the root. This completes a splay of x.

We will show that splay operations have amortized cost O(log n), and that consequently all splay
tree operations have amortized cost O(log n).

3.2 Analysis of Splay Steps

For amortized analysis, we define the following for each node x:
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Figure 3.2: The lr splay step: This is performed when x is a right child and x’s parent is a left
child. The splay step consists of first a left rotation on y and then a right rotation on z. The rl

splay step, for x being a left child and x’s parent being a right child, is analogous.
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Figure 3.3: The r splay step: This is performed when x is the left child of the root y. The splay
step consists of a right rotation on the root. The l splay step, for x being the right child of the root,
is analogous.

• a constant weight w(x) > 0 (for the analysis, this can be arbitrary)

• weight sum s(x) =
∑

y∈subtree(x) w(y) (where subtree(x) is the subtree rooted at x, including

x)

• rank r(x) = log s(x)

We use r(x) as the potential of a node. The potential function after i operations is thus φ(i) =
∑

x∈tree r(x).

Lemma 1 The amortized cost of a splay step on node x is ≤ 3(r′(x) − r(x)) + 1, where r is rank

before the splay step and r′ is rank after the splay step. Furthermore, the amortized cost of the rr,

ll, lr, and rl splay steps is ≤ 3(r′(x) − r(x)).

Proof:
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We will consider only the rr splay step (refer to Figure 3.1). The actual cost of the splay step is 2
(for 2 rotations). The splay step only affects the potentials/ranks of nodes x, y, and z; we observe
that r′(x) = r(z), r(y) ≥ r(x), and r′(y) ≤ r′(x).

The amortized cost of the splay step is thus:

amortized cost = 2 + φ(i + 1) − φ(i)

= 2 + (r′(x) + r′(y) + r′(z)) − (r(x) + r(y) − r(z))

= 2 + (r′(x) − r(z)) + r′(y) + r′(z) − r(x) − r(y)

≤ 2 + 0 + r′(x) + r′(z) − r(x) − r(x)

= 2 + r′(x) + r′(z) − 2r(x)

The log function is concave, i.e., log a+log b

2 ≤ log
(

a+b
2

)

. Thus we also have (s is weight sum before
the splay step and s′ is weight sum after the splay step):

log(s(x)) + log(s′(z))

2
≤ log

(

s(x) + s′(z)

2

)

r(x) + r′(z)

2
≤ log

(

s(x) + s′(z)

2

)

(note that s(x) + s′(z) ≤ s′(x))

≤ log

(

s′(x)

2

)

= r′(x) − 1

r′(z) ≤ 2r′(x) − r(x) − 2

Thus the amortized cost of the rr splay step is ≤ 3(r′(x) − r(x)).

The same inequality must hold for the ll splay step; the inequality also holds for the lr (and rl)
splay steps. The +1 in the lemma applies for the r and l cases.

Corollary 1 The amortized cost of a splay operation on node x is O(log n).

Proof:

The amortized cost of a splay operation on x is the sum of the amortized costs of the splay steps on
x involved:

amortized cost =
∑

i

cost(splay stepi)

≤
∑

i

(

3(ri+1(x) − ri(x)
)

+ 1

= 3(r(root) − r(x)) + 1
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The +1 comes from the last r or l splay step (if necessary). If we set w(x) = 1 for all nodes in the
tree, then r(root) = log n and we have:

amortized cost ≤ 3 log n + 1 = O(log n)

3.3 Analysis of Splay Tree Operations

3.3.1 Find

For the find operation, we perform a normal BST find followed by a splay operation on the node
found (or the leaf node last encountered, if the key was not found). We can charge the cost of going
down the tree to the splay operation. Thus the amortized cost of find is O(log n).

3.3.2 Insert

For the insert operation, we perform a normal BST insert followed by a splay operation on the node
inserted. Assume node x is inserted at depth k. Denote the parent of x as y1, y1’s parent as y2, and
so on (the root of the tree is yk). Then the change in potential due to the insertion of x is (r is rank
before the insertion and r′ is rank after the insertion, s is weight sum before the insertion):

∆φ =

k
∑

j=1

(r′(yj) − r(yj))

=

k
∑

j=1

(log(s(yj) + 1) − log(s(yj))

=

k
∑

j=1

log

(

s(yj) + 1

s(yj)

)

= log





k
∏

j=1

s(yj) + 1

s(yj)



 (note that s(yj) + 1 ≤ s(yj+1))

≤ log

(

s(y2)

s(y1)
·
s(y3)

s(y2)
· · ·

s(yk)

s(yk−1)
·
s(yk) + 1

s(yk)

)

= log

(

s(yk) + 1

s(yk)

)

≤ log n

The amortized cost of the splay operation is also O(log n), and thus the amortized cost of insert is
O(log n).
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We have proved the following:

Theorem 1 All splay tree operations have amortized cost O(log n).


